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Abstract: [Objective] This purpose was to investigate the physiological and molecular responses, as well as
the molecular mechanisms, of Juglans hindsiixJ. regia overexpressing line JrDHN during drought stress, to
provide theoretical basis for breeding drought-resistant J. regia (walnut) cultivars. [Method] Healthy
overexpressing walnut JrDHN were subjected to drought stress at different time points. The response of the

overexpressing JrDHN line to drought stress was observed from various aspects including phenotype,
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antioxidant enzyme activity, and reactive oxygen species content. Quantitative PCR was conducted to analyze
the expression levels of drought-related genes MYB, ADH, and CAM in plant tissues, exploring the molecular
mechanism by which overexpression of JrDHN gene affects plant drought resistance. [Result] The results
confirmed the overexpression of JrDHN gene in walnut seedlings, with expression levels in JrDHN]I, 2, 3 being
2.55, 1.72, and 1.49 times higher than the WT respectively. Phenotypic traits of the overexpressing JrDHN line
were superior to WT after 1—4 weeks of drought treatment, with significantly lower stomatal aperture in the
overexpressing JrDHN line compared to WT after 2 weeks of drought treatment. The activities of antioxidant
enzymes (SOD, POD, CAT) showed an initial increase followed by a decrease trend, reaching maximum values
at 2 weeks, with SOD and POD activities in JsrDHN1 significantly higher than WT (P<<0.01), and CAT activity
showing significant difference (P<<0.05). Chlorophyll content reached its minimum after 4 weeks of drought
treatment, with significantly higher levels in the overexpressing JrDHN line compared to WT. Levels of MDA,
H,0,, and O, ™ increased gradually with prolonged drought stress, reaching maximum values at 4 weeks, with
significantly lower levels in JrDHN1 compared to WT. Expression levels of drought-related genes MYB, ADH,
CAM showed an initial increase followed by a decrease trend, with significantly higher levels in the
overexpressing JrDHN line compared to WT after 2 weeks. [Conclusion] The overexpressing JrDHN
transgenic walnut seedlings exhibited superior phenotype, photosynthetic capacity, and antioxidant capacity
under PEG-simulated drought stress compared to WT. Overexpression of JrDHN gene in walnut seedlings
effectively enhanced the activity of antioxidant enzyme system, scavenged reactive oxygen species, reduced cell
damage, thereby improving plant drought resistance. [Ch, 8 fig. 1 tab. 34 ref.]
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¥k Julgans regia S ABEEL Juglandaceae # kIR Juglans BRI Y™ v EIFPREAZ A Y D7 s AT 36
#3000 afi, HEMOAMTZY, BFEL, mam. PEAEERASKRE>EZ P AR ER,
TEW X N R IR AZARE , JFRE RO AR AR Y, PTA RO TS Gk B . AP A i s AR 2 A0
HY BBEARMIPIIETE | Fb R eE . MELR , TR . RHIRSE; Bk K b i Z8 IR 2 o vl AR
gukh, EERRY AT EDU AL 2 Y, MRS E SR B . BEAR LA M 4R AR R Bl SFREHY v AE TS ) .
femikth ey, BAWEZHNME, gk “21 ey aas” 7,

L AERME S FERMMEIE AT E ST, WEETRERESEY, PETE. B TRXERY
o E AR 13 DL, TRMIXEEKR D, KRR 2, JoiE RSk A KR BRI K
W, HURICHE L LSS o HEZE . IHZERR A UG . TREm, USROG 145 LEA (late embryogenesis
abundant) WM 1. % 0 SnRK2 45, b LEA 28 — 5% U /K Z 211 (dehydrin, DHN) fic i T3
IR A B KRS Oryza sativa TR I, Ja RGOS 2 A T AR, 2R . 64
Yy E S, A R DHN FE DY) 2R 8 R RN B2 5 R A IV 0 B B BE I AE OG . X B R AR T A P
Paeonia suffruticosa PsDHN1 FL N FE N PLRE I Arabidopsis thaliana i, R B R DR L R O P S K A B
BAC T B A AL LY SV NN Triticum aestivum Y 315 1) DHN14 5 P 56 A K i 38 A T
Escherichia coli, KPR EEME . T5 . &EEFFEAYHE T KR AWHAFATE R, LIU
M B K Zea mays THEEUAY ZmDHN13 %% AMREL Nicotiana tabacum, 7% ¥ 1] i 25 HE T4 J PR AR B X 48
e 0s i 3z Pk . DHN ] LSS & &) 8+, MWARZA L idi b i #4 (ROS) 19774 ; DHN B A DL45 &
DNA, fRIPPHAZINAIRE 17 R 3% ; DHN SRR 5 AL G, Im4eRs WL g5t ny
FeE A

ERFRTEMRT T, KRG RAK T E 2 2akimlh ey E2 e, Kk, pHmEyn
PUEHLE S A7 g P I AR B AT 28 5 U0 ARG i TRk OK 3R JrDHN J PR 530 15 Jih a6 )
M AL, iz 20 N Tk R TR iC B A AR LS KR, AR TR TEIET
UL AR ALK
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1.1

HF A RUAZ A (WT) 2K H W7 T4 K248 3 3k
WA R E R E L= WA R I
hindsiixJ. regia 1 . AW C 3154 F A% Bk JrDHN it
FORRIR, FEW K& 345 JrDHN i Rk R4, 5
29 %342 N JFDHN1 . JrDHN2. JrDHN3 % 3 4>
WRZR, RIEHRR SO RARKAft:, K3 — g i
Wa, TR L T R R (E 1),
Bkl TH R SR, BREERER 25+2) C,
10k 80%~85%, 't HEE & Ok 15 000~20 001 Ix,
1.2 Fi% . g 5
1.2.1 M JrDHN it & A M dk A8 3t R ik 2 69 5 47 Fife 11 C#ffitdifliﬁ%jiiii:jit

TE AL RARA AR A BR A R /) 2 05 2 A )

S RNA $2BOAH S R BUZ PR IR IR RNA, JEH 5 £1 qPCR3|#
Ffé&}ﬁ éi E]/‘J E’@ iﬁﬁ%jf % J5H TaKaRa /L\\ﬁj B/‘] cDNA }i Table I qPCR primers
i FAR A B DU cDNA RN HEF7 95 6 EAL A3
PCR (qPCR) %ﬁﬁ*ﬁ , }Té)zﬁ NCBI mﬁﬁ?{éﬁ&i+al ACtTn—F ATGATGTCAAGGTTAAGGACTC
% . F,III %m%% 1. qPCR ﬁmﬁg% %7 . TB Green 0.5 Actin-R CACAATGATCTCAGCTCCG
. QJrDHN-F ATTCAGCTCACCGACGAACA
puL, F/R primer 0.2 pL., cDNA 0.4 pL, ddH,O 4.2
QJrDHN-R CTCCTCATGCTGCTGCTTCT

Lo W FRF M : 95 °C 10 min, 95 °C 10s, 60 °C
31s, 40 MEH; 95 °C 15s, 60 °C 1 min, 95 °C 305, 60 C 15s.

122 FadF A sred 3 oben  7ERTOE BMEE T WS FAE JrDHN i iR MR ZE RIS R V) g (o
PHRICE H (GFP) DG RGN, Bk SRS IRERR R BHPERE I

1.2.3 AT F Wi F M JrDHN i A & R AR E Bl B R ECN 5%PEG 8000 [ DKW [ {AK;
FREL, BRI Ra AR, A3 E AT R A R R B 7, 14, 21, 28 d BYALFEAL, DIEERT
DKW IE# B3 (001) MR X IR, R E 3 MY EE

1.2.4 BT Fphia F A AT B LT E AT koA TR T SRR AL EE 0 F1 14 d S5, 435
BYHUE A7 WT Fl JrDHN 33 3RIBARA , ZEE R R RERTK V248, KT8~ 55 b
FAEAY B WS HIIE . B0 d MR InA Seb s, 78 B BT iD SR SR .

125 #EWMFFMih F APk JrDHN it Fk AR A RALF L ExH S RITECT2 s 7, 14,
21, 28 d [ JrDHN i FRiIkMR R A WT M-, RIS i A 20 mL B & 47/ DAB (1.0 g-L™"). NBT (0.5
g L) P, =R FRDGYLE 1~3 h, A 30 mL ARFUMECR 95% Y 8%, #RIE E T 100 C ik
IKIEINH 15 min, WEHSRRE LV T, ZEREmE,

1.2.6 Ak JrDHN & R A4k % 09 £ B AR AR 2 51 WT f& JrDHN1 T 508 7. 14, 21, 28 d ARt
R 0.1g, JA 10 mL (R ECR 95% M L BEV T . SERE Z50F T IR 48 he LUAFIM BN 95% L FE A=
HOXE AR, DU 2 K 663 A1 646 nm &b (9 W S BE 4% ISR 3R A A 43 $0=[20.2D(645)+8.2D(663)]x[ V/
(1 000 A8, Hd v ERR M S X IR BOR SRR, w2 i R 6 R 8 A Ak Y I AL
(SOD). L4 fLfF (POD). it A fLE il (CAT) it LB & BB+ H 3L (0,7). HEE (H,0,). W
fiE (MDA) F3 FH 5 MBS A= AR A BRA B St 700 e o HAAR Ty 2% DA i B 45 .

12.7 #AJrDHN it R ik 20 E A B A X TN E  Ca'5 CaM LM E W] LSRRI F Y
NADKc 454, 9Kz RBOH % M =L 4ifa4h ROS!, i #E L7k ROS [l fg L1, Tl ad X Fp oy =X,
A LA A0 5 P A S 0 B S PR SR A, DA RIS 2 2R 1 R AN GG SR 19, SR g ml LY — & 51
PUEAH I BRI, W ADH. SOD. POD FEH%PY, Ky, X WT M JrDHN1 76 T Wrif 28 d FH#%
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Figure 2 Positive identification of walnut JF-DHN gene overexpression strain

S HE G E B PCR 45 3% (8] 2B) B : bk JrDHN 33 3635 Fi2E bk R JrDHN JE RN 63k B34 i 3%
= FHEFA AL (P<<0.05), JrDHN1 PR ZR B AR ek 1 0 BFAE LAY 2.55 4%, JrDHN2 #R Z2 R X 2235 1 B
AR 1.72 £, JrDHN3 ¥k R WA ik 5o B AR AL 1.49 £, 2R B3 JrDHNL, 2, 3 Z[A3[H
FKIkEERARFE, (HrDHNI R R A FRE.
2.2 #Z#k JrDHN £ [Fid RiEXHA B B R0
22.1 Ak JrDHN A R R AR E G H A58 %w  HE 30 . WT 34 JrDHN i3 £k vk R 1E
001 FiFR 4 FYREIE R B K, 28 AP HRA LI W 255 . 76 PEG BT, FfiE Mhd i #E 4, WT Al
IR R BT R AL YE . TR AT 14 d B, WT M RERE 7%, 1M JrDHN i3 26350k
R TR, WAL JrDHN i 2650k R PR AE IR T WT,
222 MM JrDHN A B it A 5 A ILE S #em WK 4 Bios: FE0dBF, WT X JrDHNL ., 2. 3 IS
LI (TR K ) 290 057, 046, 045, 0.51, 3 JrDHN i R IAMRBRSIITES WT 2R A0
% MifE PEG Wit 14 d &), WT Ml JrDHN i 50k R AP E B 46/, o WT S AL 0.46,
JrDHN1, 2. 35 fLJF B3 %10 0.15, 023, 026, JrDHN it FiEMR BT E B EMHKT WT
(P<<0.05), Hr, JrDHN1 (S FLIFE B FART JrDHN3 (P<0.05). 16833235 JrDHN J PR ] AR 1k
TS TR ALITEE, N Ak St 22 e 1 .
2.3 #%#k JrDHN EE I RIEXNHRER M FERES

FERIEE TSR R . 3 LAk JrDHN 3 3Rk PR 2 PR A0 i ) i AR T 0% (K] SA). JrDHN it
FIRPR R SR AR R AR 5 B2 A R SR A AR Y LR 2 S T WT (P<<0.05), WT SRR T AR5 )2 4
JH F T RS- 34 LR R 0.65, 3 A4 JrDHN 3 3R 35 bk R S A 3R 1T FH 5 BRL 2 A R 3R TR LR 4000
0.77. 0.76. 0.78, 5 WT M L4 3N T 18.5%. 17%. 20%(/& 5B)., #t—H M & B, 7Eia o
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Figure 3 Phenotype of test-tube plant let under drought stress

JrDHN1 JrDHN2 JrDHN3 B

0.8 O WT

S a =3 JrDHN1
= l}d 06+ a a c JrDHN?2
S A2 a mm JrDHN3

0.4 F

E ab b
=l -
+ i 02 a

» , 0
: 0 14
I} [el/d

A 14d M FIOAILER, BATUFIEIOE K. RR/NG FREF5 2 57 B3(P<0.05).
B4 FFpia T AILER BRI E S
Figure 4 Analysis of stomatal phenotype and stomatal opening under drought stress

dit, WT K JrDHN i Fih Pk & (1 it 5 R it 40 800 0 35 25 5 (K 5C). Bl & T 51038 s ] 1) ZE
WT K JrDHN1 Hig S R Rt B0 I P et (HAEA3E 7 d 5, WT Hf iy 438 i i S0 FIom sl
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d, WT M- ZFE05 TS, 291k 033, 025, 0.15mg g, JrDHN1 5t 2 5520500 91
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Figure 5 Changes of chlorophyll shape and content of walnut after drought treatment
fi, v JrDHN1 5 WT 1) SOD J POD i ¥ 22 F il 12 3 (P<<0.01), CATEM 27 % (P<0.05);
JrDHN1 BIPTE AL BRE PETE T2 M0 7~28 d M W &5 T WT (P<<0.05). HEl 6D or: Bl 15 Whifkh
PRI R ARG, AR R MDA B3 B /R MR B2 B TF. 0 d B, WT Al JrDHN1 FEAR ) MDA Jii 2
IRHC AT RS 78 14 F1 28 d I JrDHN1 1) MDA Ji i BE JR e 2l B KT WT (P<<0.01); 7 #il
21 dAf, JrDHN1 MDA JFit B R e 2 8T WT. 25 L3R, i3858 JrDHN 3 K n] A bk 9514
PR T T, A AR N IR LR, DM R Bk i T T2 il g
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Figure 6 Changes of antioxidant enzyme activity and malondialdehyde content in walnut JrDHN1 after drought treatment
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BEE T S0 i E] A48 0, DAB Y o S RN I By 1 B (0B M IR, 76 28 d IF WT M Fr 524 kit fo
1M JrDHN1 Y26t WT 35 NBT YA 5 (985 g, WT i R (9B &2 4 e JrDHN1
AR R M B, HE 28 d o2 hIRE R, JrDHNL TR 53 KO el e 6 i
AR 7 O B K BEAE A TN A , R BEE AR AR IR, KT 5408 7~28 d, JrDHN1 K
HYBEMRT WT, 5RIBUENEE R (B 7C fE 7D). #E—H5rMr & B B T 536 i il 3
i, WT & JrDHN1 H i) HyO, Fll O, it BE /R IR FE B Wi 2, 7626 28 KikFm R{H. 0d iy, WT HI
JrDHN1 H1 /) HyO, Fll Oy i it BE /R WK BE TC b 2 25 55 28 d B, WT H i) H,0, Fll O, Jii hit BE /R FE 3 b
FET WT (P<0.05); 78 7 Fl 28 A, JrDHN1 W () H,0, i & BE /R W B 5 WT 22 i) i 3 (P<
0.01), 7 14 F1 21 d B HyO, J o B JR W B2 ) f IR T WT (P<<0.05), 1fif 7~28 d B, JrDHN1 5 WT 1y
O, TR R /R W FE 1 22 il B 3% (P<<0.01)(J&l 7E ME 7F). &5 Lprid, 35K JrDHN JEH 3% B RAZ Ak
FEREH HyO, 1 O, IR, I $i R HAT R A8 ) .
2.6 1%tk JrDHN ERE SR EX RS EREREEN RN

PO E = qPCR K450 (K1 8) s : AR HR MYB, ADH, CAM Ry A= IR FREm#



1156 LA 3 Nl N =+ 2024412 A 20 H

0d 100 - 4WT 6p =2WT
= JrDHN1 = JrDHN1
WT )
JrDHN1
2 0 7 14 21 28 0 7 14 21 28
i} [i)/d ) fil/d
B 0d F
OWT
100 200 o pHNI
WT 80 o
60 3
100
40 é
JrDHN1 20 5 50
y 0 0
0 7 14 21 28 0 7 14 21 28
i [|)/d i 1) /d

A.DAB J+5% A, B.NBT Jet88H; C. DAB Yo RAN N KFE(E: D. NBT YR AN MK I E. Hy0, i i BRI E
F. PEG AH 5 R AIRS I B O3 B EE/RIKIE . *Fok s WT Z R E3#(P<0.05); **FR5 WT 2578 EP<0.01).

A7 FFAIEA JrDHN] ROS T AL
Figure 7 ROS content changes of walnut JrDHNT1 after drought treatment
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Figure 8 Analysis of JrDHN1-related stress resistance gene expression after drought treatment
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PR SGE, TR 080 0 R R S 3 R 4CH 15% 1) PEG 6000 i A H T 5
Jip 30 Ab B 4 ASN[FI R H % Vitis vinifera dhFP, Z553RM, BEAE T SEETTEIAGBEIN, 4 SN[ A R R
BRFIKVE B WAL, MDA & & EF, 4 NFFY SOD. POD. CAT LAANIR] Y25 Ak i B2 52 B e s K 5
FEAR A AR AR 0 FAR TR 434k 5% () PEGDKW 5 35 340 2 30835, BEE T ReRpER, 5
WT # L, TLER JrGA200x1 FE R IR REMAZ IR R BT ILEE SOD. POD. CAT &2 e TR Ja Rk
¥, [Fm /> MDA FI ROS FFR R, T HE ARG R RE 12" ASBIEFE @S X JrDHN 33 3RiA R 5 2
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