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Biotic and abiotic mechanisms of the impact of forest restoration on
soil N,O emissions
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Conservation, Southwest Forestry University, Kunming 650224, Yunnan, China)

Abstract: Nitrous oxide (N,0) is the third most important greenhouse gas next to carbon dioxide and methane.
Forest restoration may mediate the changes in plant-soil biological-physicochemical environment, and thereby
significantly affect the dynamics of soil N,O emissions. It is of great scientific significance to explore the biotic
and abiotic mechanisms of the impact of forest restoration on soil N,O emissions. In this study, four microbial
pathways (autotrophic nitrification, heterotrophic nitrification, biological denitrification and nitrifying bacterial
denitrification) of N,O produced from forest soil were reviewed. The regulation mechanisms of biotic factors
(litter, root biomass, root exudates, soil microorganisms and animal communities) and abiotic factors (climate

type, temperature, moisture, pH, carbon pool, as well as nitrogen, phosphorus and potassium pools) affecting
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soil N,O emissions during forest restoration were discussed. At present, research about the effect of forest
restoration on soil N,O emissions mainly focuses on the analysis of single-factor mechanism, while there is a
relative lack of research on the mechanism of multi-factor coupling in regulating the direction, intensity and
dynamics of forest soil N,O emissions. Future research on the regulatory mechanism of greenhouse gas
emissions from forest soil should focus on the synergistic direct or indirect effects of multiple factors of “plant-
microbial-soil fauna-physicochemical environment” under the background of global climate change
intensification, so as to provide key theoretical support for accurately predicting the impact of forest restoration
on global climate change. [Ch, 91 ref.]

Key words: forest restoration; N,O emissions; nitrification; denitrification; biological regulation; abiotic

regulation; review
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