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Regional differentiation patterns of common functional traits of
Salix matsudana in precipitation gradient zones
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(1. National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University,
Hangzhou 311300, Zhejiang, China; 2. Yixing Forestry Guidance Station, Wuxi 214206, Jiangsu, China)

Abstract: [Objective] The objective is to analyze the variation characteristics and driving factors of functional
traits of Salix matsudana, a common species distributed along the precipitation gradient, and reveal the
adaptation mechanism and potential of S. matsudana under climate change. [Method] From July to
September 2021, taking the transect from southeast to northwest of China as its research platform, 10 sampling
points were selected along the precipitation gradient in Xuancheng, Xinyang, Sanmenxia, Tongchuan,
Qingyang, Wuzhong, Jinchang, Zhangye, Jiuquan, and Hami. The common species of S. matsudana was used as
the target plant and 16 functional traits including leaf mass per area (4;,,), Huber value (H,), and maximum net

photosynthetic rate per unit mass (4,,,s) Wwere measured. One-way ANOVA and plant trait network were used to

Wi H A 2024-08-26; &I H#H: 2024-12-01

HETH . ERARPEESRIITRH (32371662, 42330503, 31901280); WiTARHE)THARHE LI (2022C02019)

YEZ R/ 3L (ORCID: 0009-0000-1763-1982), MFHAEY LR A5 . E-mail: meimiao0226@163.com, il f51E
# . T % (ORCID: 0000-0001-6018-4647), Rl # #Z, M+, NFHYWAE S F VR . E-mail
wangzhongyuan2014@163.com


mailto:meimiao0226@163.com
mailto:wangzhongyuan@163.com
https://www.hyyysci.com
https://doi.org/10.11833/j.issn.2095-0756.20240505
https://doi.org/10.11833/j.issn.2095-0756.20240505
https://doi.org/10.11833/j.issn.2095-0756.20240505

282 WroIL R R K A R 2025 4E 4 F 20 H

explore the variation characteristics and adaptation strategies of S. matsudana in the precipitation gradient. The
main climatic factors driving trait variation were further revealed by hierarchical partitioning method. [Result]
(1) There were regional differences in functional traits of S. matsudana. A,,,s, H, and A;,, all reached extreme
values under moderate rainfall. 4., and H,, in semi-humid and semi-arid regions were significantly higher than
those in humid and arid regions (P<<0.05), while A;,; was the opposite, significantly lower in semi-humid and
semi-arid regions than in humid and arid regions (P<< 0.05). (2) S. matsudana exhibited higher resource
utilization efficiency in semi-humid and semi-arid regions with more favorable conditions, where the average
path length was shorter, and the average clustering coefficient and edge density were higher. The average path
length in descending order was as follows: arid region (2.124), humid region (2.013), semi-humid region
(1.838), and semi-arid region (1.681). The average clustering coefficient from high to low was semi-arid region
(0.750), semi-humid region (0.700), arid region (0.576), and humid region (0.505). The semi-humid region had
the highest edge density, which was 0.400, followed by the semi-arid region at 0.325. (3) The contribution rate
of climatic factors to the variation of the overall functional traits of S. matsudana along precipitation gradient
from high to low was as follows: mean annual precipitation (21.57%), photosynthetically active radiation during
the growing season (19.73%), and mean temperature during the growing season (11.94%), totalling 53.24%.
[Conclusion] Precipitation change is the main climatic factor driving the regional differentiation of functional
traits of S. matsudana. [Ch, 4 fig. 3 tab. 40 ref.]
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Table 1 Coordinates of 10 sites and their climatic characteristics

X sk FER HEN) SEE) ERFFEC AFHRKEMmm AERFEE ARG (mol - m?-d)

1RIHEIX IR 30.33° 118.77° 25.3 1394.6 384
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ETEREX RE 36.45° 105.77° 20.5 235.6 49.8
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Figure 1  Coefficients of variation of functional traits of S. matsudana
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Figure 2 Regional differentiation of functional traits of S. matsudana
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Figure 3 Functional trait network diagram of S. matsudana in different regions
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Table 3  Variation of the overall parameters of the trait network in the four climatic regions
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Figure 4  Effect of climatic factors on functional traits of S. matsudana
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