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Plant-microbe interaction mechanism of soil available phosphorus in
regulating carbon dynamics in maize rhizosphere

ZENG Lisha, YANG Guangya, FANG Huixuan, CHEN Junhui, MA Xiaomin

(Key Laboratory of Soil Remediation and Quality Improvement of Zhejiang Province, Zhejiang A&F University,
Hangzhou 311300, Zhejiang, China)

Abstract: [Objective] This study aims to investigate the effects of soil available phosphorus content on the
growth of Zea mays, the allocation of photosynthetic products to the belowground parts, and the structure of
rhizosphere microbial communities. It also explores the responses of maize to low-phosphorus stress and the
impacts of these responses on the carbon dynamics in the rhizosphere soil. [Method] Root-box cultivation
methods were employed to grow maize under high and low phosphorus conditions. Relevant indicators related
to soil, roots, root exudates, plant samples, and microbial community structure were measured and analyzed.
[Result] Under high phosphorus condition, the phosphorus content in maize leaves increased, which promoted
the growth of both the aboveground and underground parts of maize. High phosphorus condition also increased
the secretion of total root exudate dissolved organic carbon (DOC) and enhanced the activities of chitinase,
glucosidase, cellulase, and acid phosphatase in the rhizosphere. Additionally, it significantly increased the

relative abundance of Acidobacteriota, Actinobacteriota, and Gemmatimonadota in the rhizosphere (P<<0.05).
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Under low phosphorus condition, the infection rate of arbuscular mycorrhizal and the content of easily extracted
glomalin-related soil protein (EE-GRSP) were significantly higher than that under high phosphorus condition
(P<<0.05). [Conclusion] Under low phosphorus condition, the mycorrhizal infection rate and the secretion effi-
ciency of root exudates in maize were increased, and this promoted the growth of R-strategy microorganisms and
the content of glomalin-related soil protein (GRSP) in the rhizosphere. Under high phosphorus condition, the
rhizosphere of maize has higher activities of chitinase, glucosidase, cellulase, and acid phosphatase. These enzyme
activities are positively correlated with the relative abundance of K-strategy microorganisms. [Ch, 5 fig. 32 ref.]
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Figure 1 Effect of different phosphorus levels on the aboveground dry weight, phosphorus content, root dry weight, total root surface area, root

exudate dissolved organic carbon secretion rate, and root exudate dissolved organic carbon secretion rate per plant in maize
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