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Research progress on the effects of nitrogen and phosphorus addition on
plant belowground foraging traits

YU Wenwen, ZHU Liqin, LI Jingkai, LIU Pingyu, ZENG Lingzhe, FAN Rongrui, LIU Hanyu, LU Yanxin

(Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Jiangxi
University of Water Resources and Electric Power, Nanchang 330099, Jiangxi, China)

Abstract: Plant belowground foraging traits are crucial for plant nutrient acquisition and environmental
adaptation. Nitrogen (N) and phosphorus (P) availability, as key driving factors, have a profound impact on
plant belowground nutrient acquisition strategies. First, it introduces the classification of plant belowground
foraging traits. This include absorptive root traits (morphology, architecture, and proliferation), mycorrhizal
traits (mycorrhizal fungal colonization rate and hyphal density), and exudation traits (root carbon exudation rate
and root enzyme activity). Subsequently, it illustrates the effects of N and P addition on these foraging traits.
Regarding absorptively root traits, studies have shown that the effects of N and P addition vary depending on
tree species and nutrient conditions. Plants optimize resource acquisition by altering their morphology,
architecture, and proliferation characteristics. For mycorrhizal traits, mycorrhizal fungi regulate belowground
resource acquisition through differentiated strategies (For example, arbuscular mycorrhizal fungi rely on hyphal

extension for inorganic nutrient uptake, while ectomycorrhizal fungi secrete enzymes to decompose organic
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matter), however, N and P addition generally suppress mycorrhizal colonization rates. As for exudation traits,
root acid phosphatase and nitrate reductase, which are key indicators reflecting plant P and N acquisition and
metabolism, were significantly regulated by N and P addition. Next, it also explores the coordination
mechanisms among belowground foraging traits. This includes synergies and trade-offs among traits, as well as
cost-benefit optimization in resource allocation. Finally, addressing current research gaps, future research
directions are proposed, focusing on N-P interactions, the synergistic response mechanisms among root
secretory traits, absorptive roots, and mycorrhizal traits, in situ observations of mature plants in the field, and
foraging strategies of different mycorrhizal types of tree species. These directions aim to deepen our
understanding of plant belowground nutrient acquisition strategies and their adaptation mechanisms to
environmental changes, providing a scientific basis for the management of forest ecosystems. [Ch, 2 tab. 95 ref.]
Key words: nitrogen and phosphorus addition; belowground foraging traits; absorptive roots; mycorrhizal

symbiosis; exudation traits
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Table 1 Description of belowground foraging traits
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Table 2 Responses of root morphological traits in different tree species to nitrogen addition
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H 242 28 336kg:hm>:a’ 3 ke [45]
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