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Effects of exogenous polyamines on proliferation of embryogenic
calli of Pinus koraiensis
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Abstract: [Objective] To elucidate the physiological and biochemical effects of adding exogenous
polyamines (PAs) on the embryogenic calli of Pinus koraiensis, which can enhance the proliferation ability of
P. koraiensis embryogenic calli. [Method] By adding putrescine (Put), spermine (Spm) and spermidine (Spd)
with different concentrations to the proliferation medium, the proliferation rate of embryonic calli were checked.
The levels of hydrogen peroxide (H,0,), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and
indoleacetic acid (IAA), abscisic acid (ABA), ethylene (ETH) were analyzed. Furthermore, the dynamic

changes of Put, Spm and Spd levels response to exogenous PAs were also determined. [Result] Exogenous
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PAs had a positive effect on the proliferation of embryogenic calli, with 5-30 mg+ L™ Put, 40—50 mg-L™' Spm,
and 10-20 mg- L™ Spd exhibiting the most significant promoting effects. In the cultivation of three cell lines,
5-30 mg-L™" Put increased proliferation by 2.22%—79.27%; 40-50 mg-L™"' Spm enhanced proliferation by
80.56%—141.12%; and 10-20 mg-L™" Spd boosted proliferation by 61.25%—96.21%. Additionally, exogenous
addition of PAs significantly reduced intracellular H,O, content and antioxidant enzyme activities (P<<0.05)
while increasing endogenous PAs and hormone levels within the cells. Specifically, exogenous supplementation
of 50 mg- L™ Spm could notably elevate the levels of endogenous PAs and hormones (P<<0.05). Exogenous
addition of 10 mg+L™" Put significantly increased intracellular ethylene and Spm contents (P<<0.05), whereas
exogenous supplementation of 20 mg+ L™ Spd effectively promoted the increase in IAA, Put, and Spm contents.
[Conclusion] The addition of exogenous PAs at appropriate concentrations can elevate endogenous PAs
levels, hormone content, and antioxidant capacity, thereby facilitating the proliferation of embryogenic calli in
P. koraiensis. [Ch, 4 fig. 35 ref.]
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£1¥A Pinus koraiensis JeF4 ARG HT DRAR TRV 1A FA ARG EERERD , dL 2R ARJEARIX N TRk B 0
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Z Wz (PAs) FJE N (Put), KMz (Spm). WKSIE (Spd) FIHVKS I (Tspm) 25 & — K8 Wi G/ Ny T, 1
HYhEEES, AT &R, B, &O T e AT e 454, 25 DNA. RNA Al
BB N ZRAIERARIIG R B R IEE TR, &S 5HYEE. Fall A
YRR A Y ae B g R R TEA AR AN BRI S A AR R, PR 22 e ) e 2 e A AN IR R JEE 1 AR
fBU2, SATHISH %SV B 58 K B . AMIR £ i vl i H BE Saccharum spp. (R4 MENR G K A= 48 2 f5 DA B
TS RS0 gy B - e HF— 2 K Z M AIAD Lycium barbarum WIRARHI 2 A B CHEE . 7EXTAR
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il 0 Gk Z W IE . SE T UL, ASHWESE LALTAA IR ME @ LS Rk, 3 I A B A 4 SR A R IS IR [ R R vk
JEM 2R, FRICINEZREXT LA B L SV BE 5E R, B 72 AL LA AR A VR it 2 R R AR R
R

1 #MEEF&®

1.1 HEYHRSEREYS

A ALIAA ARG F IR kL, S B A A S U IREIRAE . 1 S 3G R ol R i R4
HeFE ARG FREE (mLV), FFHRM 2.0 mg- L' 1-Z8 48 (NAA). 1.5 mg-L™' 6-F & JEIEERS (6-BA). 0.5 g-L™'
FR K R EE A . 30.0 g- L7 JREMEFN 4.0 g L7 50858, KIRHPIEEE 525 pH 8 2 5.8, KRS T/ES
A 0.5 g+ L7 20k . K IR DR AE R IR B 0 L U R B A T S 95 3 BRI, W0 as FH IR 4RHe 2
BSR4, 55 3 R 1 IRIEACR S FR 5, 5 4% 15 & 4R 0 B i 72 1 E TR 98 40) . 2
2 ANHABA R IR ULEE (1L AR 14 d), e B RS R 09 3 MR R (45 L-1. L2, L-3,
IEFCRAE AR B AR A A 2R ) . SR R SR 56 F mLV ERRE FRIENY, B30 0.5 mg- L™ 6-BA. 2.0
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mg- L' 2,4-"HAARE LR (2,4-D). 0.5 gL FR/KFRIEE S 1. 30.0 g~ L7 BEMEAN 4 g- L7 S50 18, KT
pH % 5.8, KEGHEBETAEGHIMA 0.5 g L HRABEIE LA B RHRE 0. 5. 10, 20, 30, 40,
50, 60mg- L") e, WIGEH . Kl . RS SIS MBE TR, TR (23+2) °C 40 T s
F%, BHALEEL 3K,
1.2 ARG AR IEEENE

TERB Y TAE & T3 A Je BOFFR it 3 IR R 45 3 Al 2, Rfiff ey 02 g, Wl
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ik i
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5514 REF, FEAMNBERIAS R Z M BEA A0 R, SRR BT 3 A i R A 418U Ak
AT A S PRI, DAATSINZ RE A @ AR SUE XTI (ck)o Hirpr, i 8L E (H,0,) B B /R Uk 5 ke
A ALY LG (SOD)., i AL & (CAT). i &b W i (POD) 5 Hit S 4k Bl 1% 1 15 i FHil 7l & OF MRk
B MSE 5 m5Ie-3-L 1R (IAA) . 7SR (ABA) FI LM (ETH) #2M8 LI AE A5 i s Ja e . SRS ARG
JiieHi B DUTRA AU (5 e, JFfolf PG IEC o2 W B & (Mot 2 ) Al o £DA @84 K
RS2 BB IC S . BRI ER 3 K,
1.4 HELE

i FH SPSS R 4F 47 B PH 2 07 2293 7 (one-way ANOVA) FIXE 5 £ H 4L (Duncan, ¢=0.05), Jf 11
Origin 2022 24,

2 HREHAAH

2.1 SN S B3 LT 4 B 45 28 4R B 5 2R A RS M

bWiE 2 M E TS, 3 IR AL SN RR Y 2 ETHE RS Hdr, SNERm
5~30 mg- L™ B Bic bk F AR E T L-2 Bl L-3 40 R 1Y3EFE (P<<0.05), Rl 65 1 o Wk BE A B8, A 41 41
OB RB W TR, {HAE 60 mg- L' JE B AL B R BE A I FF . EEXT L-1 QUM R, Irf A B R IR B UK
-, AHAMETR N 10 mg- L' i e X A AT — 8 AR RO . 16 5~30 mg- L' i e /2 2T A A 4 4 3R
WHP R EWRE, FRTRERE T, 34000 &R M35 %R 158.33% ~518.33%, R X B T
2.229%~79.27% (& 1A), FHXF T XFBE, SMEZR N 10~60 mg- L™ A5 e i 2542 7F L-1 F1 L-3 40 il 2 59 384 5
(P<<0.05), #MJE 20~60 mg- L™ 4 I 2 2% 1 #F L-2 40 B &R B934 58 (P<<0.05), H: b 40~50 mg- L' K i 2
3N R AN B e O MR, AR MR T, 3 AN R AR Rk 325.00%~586.67%, HH AT
WS T ORI T T 80.56%~141.12% (&l 1B), AHXT FTXFHE, SR AN 5~50 mg- L™ VA & 1 35 fi i7F L-
1 1 L-2 400 & A BE 58 (P<0.05), AMBEZAN 5~30 mge L™ A i i & 12 ok L-3 40 i R 9458 (P<<0.05),
Horp 10~20 mg L' WAE M2 34 R e A B, fEBL R E W IE T, 340 R B R N
451.67%~693.33%, AHLHLXT BEIGTERCRIETT T 61.25%~96.21% (I8 1C), ] W, AS[RIZEH Y £ e X 20 A
i 2R G OCR A AR AR B 52 md . Hodr, AMIRESIN 10 mg- L™ e . 50 mg- L™ K e LA & 20
mg- L' W AE B B RE A8 1 2 (e AN [RI S AA 20 it R b A ZH 8L G 58 (P<<0.05). PRI, TEJG2emyitos
W5 7 5 RSN Y 10 mge L7 8% . 50 mge L™ AF B L M 20 mg- L™ SRS M A7 2007 o WMo g8 %
M. ZRACHE WIS AL S S | RS, R A EMZ2RY) (K 2), FBASMNEA N
10 mg- L™ e . 50 mg- L™ A5MELL K2 20 mg- L™ RS Bic B8 5 I s AR #E AL A5 1 8L A
2.2 MBS RRITOMAEE G AL RN ERNRm
221 MR % Rt R A AR T BAL R B ERR BN K 3A AT S5XFREAEEL, SNE
NI 10 mg- L™ e L-2 Fi L-3 4 3R i ack SR Ak 00T 1t R JR Mk B At 2552 ) (P<<0.05), A EE ok 43l
&7 59.20% F11 54.80%. AMEEIN 50 mge L™ g HEXT L-2 A L-3 41 ifg 5 /Y5 S Ak S0 8 JBE IR R 5 52 )
F (P<0.05), HHH ck 70 AR T 50.70% 1 61.30%, MAh, SMEGRIN 20 mg- L' WAE X L-1, L-2 1
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Figure 1  Effect of exogenous polyamines on the proliferation rate of the three kinds of P. koraiensis embryonic calli
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Figure 2 Growth of embryonic calli of P. koraiensis under different exogenous polyamines
L-3 4 2 f s 4801 0B H R SR UK S B 8 (P<<0.05), AH L ek 23 BIFEAR T 61.00% . 59.20% F1 66.70%
222 MR % BT AN IR R A B RALER S Y AR AL S B TR AR AR T, 248N 10
mg- L' JE B, L-1. L-2 F1 L-3 4 ff 5 8 4 Ak 9 B A6 1 3% 7 53 1) 4 60.90.. 86.70 F1 53.90 pmol-g '
min"', 5 ck I FRET 62.54% . 50.70% H1 66.20%; ¥AN 50 mg- L Kz, L-1. L-2 F1 L-3 4iJ0
M A AL W AR B S A 77.56. 56.58 1 47.69 pmol-g emin”', 5 ck ML FFE T 52.30%.
67.80% F1 70.10%; ¥ 20 mg- L™ WAGMEAT, L-1. L-2 F1 L-3 40 58 A A Y B A BTG 4 5 ok A LT
K 1 50.76%~68.30% (I&] 3B). TExt A AL BEEAS A JrTH, AMEES N 10 mg- L™ JEREAE 3 IRk dhi i
At E AL SRS TEAEL T ok B3 TR T 40.69%~59.51% (P<<0.05); ¥R 50 mg- L™ AN (i fr s 4
2k AL ST I B R T 51.70%~57.50% (P<<0.05); ¥SAN 20 mge L' ZME A B4t L-1 A1 L-3 41
i ZR A0 2o S A ST 4 5 ) J 3 (P<<0.05), o S AL U PR 20 IR 2 36.72 1 25.20 nmol+ g '+ min”', 5
ck ML T T 57.60% F1 63.83% (I 3C). fEid A ALY B PEAS AL 716, 24U 10 mg- L™ J e,
3 AN 2 ik A BT PE AR T B R A T 31.149%~38.90%; ¥R 50 mg: L™ G RT3 ASIRPE A2
)t E AL BTG HERRAR T 43.939%~58.94%; UsHIl 20 mge L' SRS Hie i [R) R AR T @405 2H 2L it B Ak
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Figure 3 Effect of exogenous polyamines on antioxidation of embryonic calli of P. koraiensis after 14 days treatment
2.3 SMNEZEMOREERGARARRRERENF N
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AN 10 mge L™ T 3 A2t 322 151 W £ 198 Jo et Wk 1 722 A O B 35 52 0
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JHEXT 3 240 B 2% 058 % T ot e VAR G S S 5 )

HMIE SN 10 mg- L' J& A 50 mg- L7 K5 e i 2 & T L-1. L-2 M1 L-3 40 i R 09 & 0 I 2 ik
(P<<0.05)(IX1 4C). T#AN 20 mg+ L™ ARG XT3 440 A 38 %) &0 Jo £ VA B2 TG I 35 5 il
2.4 HMNIE % BRI AT HABR 1 R 5 A R MR & BR TR E R B R R

ANJEER TN 10 mg- L7 8§ B2 A1 20 mge L™ S0 Bl B 35 42 FF L-1. L-2 40 28 A% P9 TR0 e o e ok
(P<<0.05), T+ L-3 40 A 28 04 PR I050 66 i o o vk 8 TG 3 5 i o M AN RN 50 mg- L AFHEH, L-1. L-
2 1 L-3 A ZR 0 P U B o ek R B e, 4o 3 544,68, 3 095.13 F12 864.58 ng-L™', 5 ck #H
For B T 33.08% . 29.40% 1 16.12% (/4] 4D).

HMUE TSN 10 mg- L7 AT 20 mg- L™ RS B g B 3 B S T L-2 40 AR B P IRORG e o i vk R
(P<<0.05), 4354 3 988.23 F13961.29 ng-L™", 5 ck AHHL/ G N T 12.35% 1 11.59%. $Rfi, L-1 4
it 25 v A PR VRORS e I e R R B A TR T, S REAH R TE R A . SN 50 mg- LT RS AT, L1,
L-2 1 L-3 41 0 2 %) P 50K e e i B2 40 ik 4 441.76.. 4 336.37 A1 4 411.99 ng- L', 5 ck AHH /42 5
T 16.11%, 22.15% F119.02% (/4] 4E).

ANJEERNN 10 mg- L™ J& B A1 20 mge L™ 3PS e Xt 3 /4™ 40 i 2R B4 P 00 A e ol 8 ke 44 G . 3 32 i
ANEERIN 50 mge L7 A e 0 & 5 4 T L-1, L-2 Al L-3 40 &R B9 P9 I VA i i R B (P<<0.05), 5
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Figure 4 Effect of exogenous polyamines on the hormone and polyamine content of embryonic calli of P. koraiensis

ck A LA B4R T 31.69% . 34.24% F1 31.01% ([ 4F).
3 it

22 U300 H WA R S — Bl D R IR 2 A v (R A R R A 0, IR B IR R R R AR
Hevea brasiliensis VR IR NG & A SRR BOREREO ) XEZ5 4% Litchi chinensis WITF5Y & B . TE A 15 4H 408 5
BEFRIE LS . RS AR e T A2 1 0 A1 SO B AR IR AR 38 2o VS i — R R A
HINIE 22 Jie B AR HE 2T 0 W1 A0 2R A BG5S ELAN [) 32k A1 784 1 200 i 2R 6T 22 B Ao I R0 o Yk B8 1) i 1o AN
], Hod 10 mg- L7 J# e . 50 mge L™ AF AN 20 mg- L™ WRG X 3 N0 28 (R 38 R RO A -

o A SR A Ry S T 2 R B 38 S RO ) R S e, T DU I 22 24 R0 Ak R 1RO
(MAPK) G875 e i S v s i P2 SEAb A TR 3 2 5 R P i 41 20 i T 4L (ROS) KF-, H
HUVEZ A i A S A B A T e T RN R 48 46459 81 TARGF A RAE Y, A IFE
IR IR S A RE ) 5 R AL W R TR R R R I B VIR, FE I B 42 Picea glauca WF5EHh
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EERIR, S RAEP BN R - SR AY Z2 fle SHA ) FR0 AT S e T AR Lycium barbarum AR A
R AL IR TR RIS . AR ABL: 5 ok AHLL, AMEEIN 10 mg- L' J@ M . 50 mg- L™ KL 20
mg- L™ WA, BEARAT bR e T U5 5 P IRV B2 A R S Ae g T v . DAL, HEDN 2 g s 2 5 2|
)06 PE AR A AR G HE R b, DAE SE LM M O A SR 3G 5, X 5K M W Fraxinus
mandshurica® W53 45 FAHZEL .

AEFFRR W B TR S S R IRIG Z AT A 2R, NIEMIRZER . BIERR N KT 88742
AR AR K A R T I OCSF 5270 FELIANE TR B, IR B A A0 R AR 5 LD AR R i
EERMTHEZYL S, MR #AE Citrus reticulata S35 22 e 00728 4k BEAS 52 0 8475 1) A 41 i AR
e kA RE I, ABFFRER . AMEES N 50 mg- L™ KGREFT 20 mg- L™ PG e BB 52 25 44 e P T ms| e £ R o
B, AT IMEEGAS A, SNETRIN 50 mge L™ K R RE W8 52 2 PR I VR AR L Ik . 76T
A2 Araucaria cunninghamii FIBF5EH, AMIEZ2 e B9 U o 2 i 7 P 50 W SR A B T IR AL R 2,
ZREH] . TR MER I N 2 S YR A G SOV R , T2 WM L9656 BGRAR TR X AR [ )
S-HE B 22 (SAM) FETEse D, AR A . MG 10 mg- L™ AT 50 mg- L' K5 e RE AL i
ZIFA L-1 A L-2 R N IR QIR R . RIS, SR Z2 e s Inxt 3 /1~ 4 i 5% P9 1 2 g Jo 1 vk J3E LA
i AR HEAE o PR, I S S AR 22 B2 T AR AR N TR 2 RN S I SE IS SAM DAHT AR R Y
B, DN E N IR 22 e TN L o i e P BT it i o A, SN 22 Bieoxh IV A 4 1 34 R A 240
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