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¥4 PmERFO011 35X EF7=ES ThEEIIE

Re&A, £ 5, TAZ, KEA, HEF

(Abmeolr R BelbkeiBe/AE TR B AT 5207 B APt 0 T 85 S0l 5/ B R AE T T RRR ARBIFE toLAR £ A4 53R
At 5T 28 2 /P MR 2 B T AR ST o, dE T 100083)

WE: [ B8 ] BFMR Prunus mume ¥R VLK s 69 2 F Huh), B4 AP2/ERF 4 & B T Kk £ 5 HOAE P e 1F
B, ABAMRARE KRR SIREAEL RN, [ Ak ] @3 AW R RESF PmERFOL] AW 53], KR AH1Z
BEHFESHARARNLZRA RS FTIMKAERAAH; AR ENKAEEE PCREMN ZAREHLRRAR (R, £,
wh) e Bt RO RER . M Rk BAR AL E IR Arabidopsis thaliana, it Z BRI E A it S TR L A T4k,
[ 4% ] PmERFO11 /% T AP2/ERF # % B -+ K, 5 & B+t Rosaceae L4 #F (B P. persica. % P. armeniaca) % &
B, 125 dit. KR4S Oryza sativa ¥ 257 2% ; BT IRXAER LS K. PmERFOI] S X AR TEEE A K Zmp
M MREFHEMNERI R PmERFOI] RS ERFHR T AL ZREG, A PAX SRR, HEARMHITERE
B iR PmERFOI] 23238 T WA F (P<0.05), [4# ] PmERFOI] EARSE 5 HIE % 694k, RMfkA
%)% Prunus AAMH A BRI AR, B 742 %46
E4#i7: AP2/ERF; PmERFOII; #76; #A; #ZHF
hESES: S722; S685.1 YRR : A NERE: 2095-0756(2026)01-0076-10

Cloning and functional validation of the transcription factor
PmERFO011 in Prunus mume
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University, Beijing 100083, China)

Abstract: [Objective] This study aims to reveal the molecular mechanism of plant architecture in Prunus
mume and clarify the role of AP2/ERF transcription factor family in branching regulation, so as to provide
theoretical basis and candidate genes for the improvement of plant architecture in P. mume. [Method]
PmERF(0I1 gene sequence was obtained via gene cloning technology, and bioinformatics methods were
employed to analyze its phylogenetic relationship and promoter cis-acting elements. The spatiotemporal
expression patterns of PmERF(011 in different tissues (roots, stems, and leaves) of P. mume were detected by
real-time quantitative PCR (RT-qPCR). An overexpression vector was constructed and transformed into
Arabidopsis thaliana, followed by phenotypic observation and statistical analysis to verify its transgenic
function. [Result] PmERF0II belonged to the AP2/ERF transcription factor family, which was highly
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homologous to related species in Rosaceae family (P. persica and P. armeniaca), but significantly different
from A. thaliana and Oryza sativa. The analysis of promoter cis-acting elements revealed that it contained
methyl jasmonate and auxin response elements. The results of tissue-specific assay showed that PmERF(011 had
the highest expression level in roots and stem xylems, but lower expression level in leaves. The results of
transgenic A. thaliana showed that overexpression of PmERF(011 significantly increased the number of lateral
branches in 4. thaliana (P<<0.05). [Conclusion] PmERF0I1 has the function of promoting branch growth,
which is a candidate gene for the improvement of plant architecture in P. mume and other Prunus species. [Ch,
7 fig. 2 tab. 46 ref.]
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HAE Prunus mume 1% 7% F} Rosaceae 2% J& Prunus 7% M IRA,  HOMURE AW E RS 15 R )58 B SCAE Y T8
i SO EZE R SORRAN . FEMFERIARTENR R T, BHAR R BEIESRE S84 B B R SF f 2
WL E NP RITEZ5 8 (T8 iS5 o e et 2 U AR OGP, SR, B TG T A6 2 R AR 1 3 A% IR A L
PSANTE I, X BRI T AREAE s R ek B 5 0 R

FEY) A Ry e MR T R DGR 28, LR 2 R B R R B i 35 () SR R m SRS RE
T2 ER MG D, W RN R E S @R . s RS PR B B U Rl AR BUA gk
By AR A 5 24K R0 AN B N TR R A A RO RO TR R R G, [A]IN AZ 0 B 5
JEUO B FRRGLN T IR SRR IR U B 1Y KA Wy ian U SRR AT S R R . A ORI
ST IRENLE] oy 2 2%, Ak T e T ILA W IR B i Sk -, Ho BRCI™, BRC2M,
MYB2' | TBIM™ ., SPL" TEMZFAE K A i M dE ], NACPY . woXPY . WRKY™ RIS I8 BUT
PR

AP2/ERF JEHE Y | IZ AP 7E 0 — S FEe Sk I KR, KRB & H AP2/ERF Z5H 5, %6 14>
AP2 SERIEAE B AE WA IT Arabidopsis thaliana "9 &I, HRYE AP2/ERF 285 55 K 145 A 35 1) 5k
mREEAIFH, KA S AWK : AP2. ERF, DREB, RAV Fl Soloist™, 43l 5 1% & BE i 1) 1)
AEsrfb . AP2/ERF ZJ% £ EAEAH P HLANFER P TR0 EhakP7 @il &35 A= Wyl 38 LA S A= W
18PV SE T R PR AR, R EAE ) A K R R A O T AR A E AR E YR . I WKAE Oryza sativa
DSP LRV 7 BEAFRL K FEY, OsEATB 52 WM Ak i B FEE Y, W Populus trichocarpa PtAILI 1¢
PR EMR Z A, A, AP2/ERF Gl B S MR S E S HE S ERE . & Lilium
lancifolium LIERF12 383 B AR A5 5 IR IR ZEIE Y. ML Nicotiana tabacum NtESR2 W)3E i3 454 1
iz SR FE 2R S d 0 AR ST EBE JE PR 3 1145 20 Mo 34 5 5 Wi i 25 2 B RN ZE 0 Y A
P. nigra PnANTLI Fl PnANTL2 AN B4 - H8 0y ERF114 ZERKINIHSE Brassica napus Wi 1 5
S 1o AR A 2R AR BE S N o A AR CT s ERFILS 38 28 ST 2 -2 ML 53 24 3 {5 5 T AR 30 400 R O A 8 iR R
AP, ERF109 TER RS Il 8 05355 SR A AR AE DY, RINZ R T o AR U i R 2. |
IRAFFE RS T AP2/ERF 5 53 A -3 ask I 2 405 S M R 45 0B R X 4 . ARG % B 7028 2H 2006 M DA T B I A
Y& LBV Pl

MEAEAE BB RERAWFAY), VEAZE N E, ERSEAR MR, IR R L E
P EE Ty ) . AP2/ERF ¥ 5k 1 R IGAEARY) RO P b A HEAE N, i et e S 1
116 4~ AP2/ERF ZJE M. 51, 41400 3 N (AP2. ERF 1 RAV) M 1 ASBph i 5% Soloist, PmERFO011 &
T ERF K HEWY, TEH A Fheb i[RI R K A IS S A K kKT, (ML PmERFOI1 (A Y) 7D HE
IANIERE . R, ABFSETERE T M5 AE PmERFOI1 JEPR T34 7 5L R i 25 A . B BE D T g S ik 407
DL BT B LM AL B VR

1 #MEE 7 &*®

1.1 EmEs
e B2’ ‘Zao Lve’ 1 ARSI AIL ML K2ARZE ; HF RNA #2EAZERB . A6
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B2 RIS TR AF T80 C vkAi T . BF AU RI I (Col-0) Fl pPCAMBIA2300 £ {4 Hy b 5t Aol K27 fel
WREEBEAE T RIS RR 5 43+ B AL 5t T 8 R S S AR AE

1.2 MRFZE

1.2.1 PmERFOII % % 13 & F o A1 i@ i Je lir Mg 5% [N 241 4K W PmERFO11 B9 #% TR Ml 2 H ¥ 31
(https://www.rosaceae.org/Analysis/13114608); ifi if ExPASy(https://web.expasy.org/protparam/) ] 3k 43 # H:
. AEMRKE .. EIR SR A ARUER B R KTE 8%, JF R Cell-PLoc 2.0(http:/www.
csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/) 7£ £k 73 AT T. B X PmERFO11 % 5% PR 7 #4704 M 22 47 T o 3 2o
Sopma (https://npsa.lyon.inserm.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html) Tl 25 [ it — 2% 2%
¥, WEE o882 05E . -4 FITCHLG 4 9 2R L3 5 FIIFH Swiss model (https:/swissmodel.expasy.org/) Til
W E AR =S50 . 3B PmERFOLIT F % 2 000 bp V8K 5 3 T 5 %1, FI 18 28 % PlantCARE
(https://www.plantcare.co.uk/) X PmERF011 J&i ¥ 1§ 5 A7 AR FH 04 i 10 3 A, 2F mi 4 3 4 2%
PR ZRe . 8 56 A HOAR (S B bl (NCBI) M3sixt PmERFO11 & 1T 517 Blast 824, 4R EIHLE
K2 W) B ERF X % 5 PmERFO11 25 H AR /¥ 41, i ESPript 3.0(https:/espript.ibep.fi/ESPript/cgi-
bin/ESPript.cgi) # /44 PmERFO11 & (4751 5 i i NCBI-blast #5153 1 & H P9I 0EiT Z E LR, #iE
AR X AR AN AR AV o5 . [RIEHE FH MEGA 7.0 (https://www.megasoftware.net/) XA R E K EW, WA
PR ARk

122 #HIEFFALMHERKE . RNA $F A cDNA &% NRMEE PmERFO11 FE N TE AR R 4210 %
KA, R HEE H -3y CRaE 3 bk, IS, i et AL W RETHER . JERRL
2. WIEER . MR CEARBTZE . SEAeARTZE 11 FPAZME, HAIEZH LB BRI LA
RERE S, TEDOCRIL R GUEE (Leica M165FC) T, ol TS TR 1) TV 25 2 AR BT 52 Ak Je 3 | BEUE 180 )22 .
BEYH ML (JEBE N 0.2~0.5 mm), kAR ARMALTG R, RS EELE TRA T #EE, ik
RNA 588 . WA BE G530 2 4855 — 8B40k M 3 B A= Py BB A7 BR 2\ %) 1 llumina HiSeq
2500 AT M FF, I3 — M RAF T80 °C vKAf o T S22t 5E & PCR (RT-qPCR) A&l . 1 JH
RNAprep Pure Z i 2 i AE 4 5 RNA $2HUAF & (DP441, RARAEYH AN F) SBARAE 1R 11 Fhdlg i
RNA, JF£7HH NanoDrop-1000 il 22 £ /iy RNA ¥ B RN i, dF— 250 FH B 20 B0R 1% (RS B B I vl
VKRIAE i RNA 5838 . 218 PrimeScript RT reagent Mix with gDNA Eraser 151l & #5425 M 1L
RNA [ 5% 57 cDNA.

123 REALRF PmERFOIT B R EKF 54 MR R AN 7Rl ai R, {1 TBtools £ il ZHZUFF
SR IR L [RIBTF) A IDT 7 468K 1 (https://sg.idtdna.com/scitools/Applications/Real TimePCR/) 15 i1 1
{& PmERFO11 B:RFE 7519 (8 1)o TB Green #5265 T RT-qPCR. fifi ] PikoReal &4t (Thermo
Fisher Scientific) #£17 RT-qPCR 43#71. KW AKZ N . TB Green Premix Ex Tag 11(2x)10.0 pL, #5147 0.8
uL, F#F51% 0.8 uL, cDNA 2.0 uL 1 ddH,0 6.4 pL; SW AR N : 95 °C WAL 30 s; 95 °C Ll 5 s,
60 C LW 15s, 40 AMEH; WML 60~95 °C. WML PmPP24 FRVE NS . R 3 M EY)
M3 ANEARESR, HEEREIRERH 222 %15

124 slapsot 5 AR AE RIEHESEIRRNAS, Pt PmERFO1IT SN F5] . M ITELEK A Primer
Premier 5 (https://www.premierbiosoft.com/prim erdesign/) BT PEFE eS| Yy, % BB R A Y TR
MARAFGR, IR 1, s ‘285 cDNA, {iiff] TaKaRa Prime Star Max 5 PR H
Bt 47 PCR RV, B R0 6F 1 F UKOAG: 36 2% 4 1B, [l I B R AR ZE AR BB AT BR A /) (o) /938 38
DNA 7= i AL i3] & (DP 204) X H /9 /- Bealifb il . 5 pTOPO v b A 2 £, e 1k 2 R i e A 1A

=1 5|19F75
Table 1 Primer sequences
&) FF3I(5'—3" el FEI(5'—3")
TR IS ) TGCTCTCAGGAATTGCAAGTG RT-qPCRIZ [1]5 |4 TCTAATCTCAGCCACCCACTTC
SRR IR 51 ) TGAACTCCTTGTCATCCTTGATGA RHRBEREEEH Em S ) AAGATGGATTGCACGCAGGT
RT-qPCRIE 1514 AAACCAGCAGCAACAGCAAC RHRFE R L 15 1) TCACGGGTAGCCAACGCT
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Escherichia coli DH5a J&5Z ZSM . FHBRZ S MR TE5H 50 mg- L' RABE R LB BEAR: 73 I,
F 37 CHIREEFEA P E SRS . PRH M SRR VR TS, A RVE RN i AT E R EY) TR
R0y A5 B RIS, 03 A0 ) R AR A7 8 pTOPO-PmERFO11 %A%

125 #yAMpd REEA FIHARRE AR pCAMBIA 2300 #4844 # PmERFO11 i3 32 K 5044
FH TaKaRa BR il 15 VI Xba 1 Quickcut, Sac I Quickcut #EF7TXUEFYI, Ltttk FIH A [F W
FLREL ), LA pTOPO-PmERFO11 BRAE BN, #5417 PCR RN, Xf=#ydkfT o gsatifh, H Wil 4k
PEALSE A S DNA Fr Bef T B2, AL RIG R A, PRI Se 4T PCR %85 o K FH % PCR H
PEATIRM,  fJ5 ARAR IE B O B 2 R o R VR 2R R 8 000 P B ) 1) J A 7 Ak 2 A AT 1 Agrobacterium
tumefaciens GV3101 B2 25, AT PCR A, B Ih AL B RATH T80 C 17-4F

1.2.6 MR R AR AR W IR Y R IR AR pCAMBIA2300-PmERFO11 % AARAT B
GV3101 JRZ 2, wHEWIEMI TR, R Yk e el ma ot o M8 T AP FIE, #F T &
50 pgemL™ RABEE R Y 1/2 MS 55373, K45 T 12 ¥Ryl , @4 A OEI~OEI12, 10 d 553k B3/ .
WO A bR A, R AT R B DNA, L PmERFO11 vl 5| Wy A R 25 2 35 8 5 1 W 43 ) e 17
PCR %5 5E YA R, 3L OE6 B BHME (Kl 1), J5Z245 4 RT-qPCR 38T PmERFO11 B3Rk, ik
R IR I IR R TR SR AIMER . LA T, RS VR R SEFAE R (WT) HRE 5 5 floy S8k, Bk
RE/DIE 10 Bk, THEFHEREZE, 5 WT 17 K5 (P<<0.05)

M OEl OE2 OE3 OE4 OE5 OE6 OE7 OE8 OE9 OE10OEll OE12 P WT H,0

5000 bp
3000 bp
2000 bp
1 000 bp
750 bp
500 bp
250 bp
100 bp

M. DL5000; OEI~OE12. #4%:[K¥k & ; P. UMM IE, WT. BB, H.0. 25 (X,

B 1 PmERFOI1] %X B4 I Atttk PCR %52

Figure 1 PCR identification of positive PmERF011 transgenic A. thaliana plants

2 HRERH

2.1 18iE PmERFO11 %X EFEYERZESH

211 PmERFOI1 %A & o242 047 ik ExPASy 7ELRSMHT -3 4 PmERFO11 2 11 E /40
SR, SEREY . ZE M 175 DEIERRA R, HIIE S TR 19.844 kDa, FRIRAEH AR
9.39. AIEFRA BT WoR . 225R (Ser, 11.4%) 5 AR (Gln, 8.6%) i 2K 11 ) 2 B2 i 4 4k
. HR45 Guruprasad AKE RECFAEHRME (B 40), PmERFO1L A AR HDN 58.88, RUILETA
ROEE . HUGTREPE T R BL: IXER 1 E 20 D GO AT AR [ RAZRR (Asp) A4 &R (Glw)] 5 26 4>
A IE HL TR IE [ AR (Arg) FUBUER (Lys)], AL l+6, FREite® Camit. ok, FLaTFmmk
Pk (GRAVY #6550 H7-1.107, 3XIESE PmERFO11 Syt REKPEEE 1. Cell-PLoc 2.0 7EZL /07 T HEAT 0
ANARE (AT 45 W . PmERFO11 3T 40 A% R 20 i o

2.1.2 PmERFO11 & &5 #4441 ilid NCBI Muix PmERFO11 8 LS, KB 48~111 (& KM
A 14 AP2/ERF {R~FESHIIR . 1— 2 T Sopma &2 93 TN H — G 25 e B : - oD E 1 S At 4 v
T 58~134 (AU MR, (5 N 24%; JORMUNAE th 45 o0 A b B, o B IR i 2 76% . RT3 -
i S B-AT A . H T Swiss model 19 3 UM (1) 26 19 Jot = 2254 (41 2) "I 61: PmERFO11 BAT 3 434511 a-
W, 5 AEATNG BB, 4 S SR AP2/ERF KRR

2.1.3  PmERFO11 B3F MK AR HHAELE N PlantCARE Xt PmERFO11 N 73 35 B
TCAFHAT IO o B3 UL A RS 2l RIS 5 - DX b O i A F T TATA-box . CAAT-box 4, Jii3h
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FRIMLGEA B IR . K% T RRARS S % %)

AT 5 AR IR ) L TC AL 4G 2 5 5 7 1R S M @ %
AT H BRI 0 TE P (3% 2). R FAN
2.1.4 PmERFO11 5 RIREZ G FIFILAMHHT N alBBE e
5% PmERFO11 (Y EAL C R M R~y 4, il i NCBI- ’“‘(W?/ 5 35% f’ﬂ/
BLAST X} H: 5 i 2k ¥ F i ERF 5% 2 1 647 W] R e

o3, WATEAY Prunus armeniaca . Bk Prunus persica 3 7

Y % Fragaria * ananassa. E© H ¥ Populus B2 PmERFO11 & & =4 2 M7
trichocarpa . BRI & % Bk Prunus avium. At 8 Figure 2 Protein tertiary structure prediction of PmERF011

Eriobotrya japonica. V4§13 Pyrus communis, -3

Malus domestica. 1% Pyrus x bretschneideri. J3Vi %5 Rubus argutus. H 2% Rosa chinensis. /XF5. HArg
IF . EK Zea mays. /NF Triticum aestivum 3£ 15 9 F . [FIUE S AT 45 5L B . 948 PmERFO11 5
B AL BRUNETEBEER ERFOLL 85 P H 58 A0 R, RSP 8 Pz R RS RS, ST . K
Fi. RAE. BEA. KR MR PUVERL. IR AR RIGEE. AR BK NEEAFIIN
AP2/ERF S50 [ IEEESR (K 3).

®2 BEHFIRERTHST

Table 2 Analysis of promoter cis-acting elements

TC 24 FR AN B AV TRe pIRLZ A AN B IR
ABRE ACGTG 1 Z5BERRN GATA-motif ~AAGGATAAGG 2 JGWARICHFR—HRs)
ARE AAACCA 3 SHREAHS GC-motif CCCCCG 1 SHERERERS
Box 4 ATTAAT 2 ZERN MRE AACCTAA 1 MYB&EENLL(S 5EmN)
Box II ACACGTAGA 1 JGmaRTTlEn—#4 | 02-site GATGACATGG 1|  ZS5EAREACSHEE
CAT-box GCCACT 1 ZHOEHARK P-box CCTTTTG 1 AREEE W e
CGTCA-motif CGTCA 1 ZSRFMRTENN | Spl GGGCGG 1 e e &5y
G-box CACGAC 2 5N TGA-element AACGAC 1 AERFEmR o
G-box TAACACGTAG 1 Z5eR TGACG-motif TGACG 1 S 5IRFRRH ER
G-box TACGTG 1 5

I MEGA 7.0 84, % FH 41 #3244 8 PmERFO11 [F] J5 & (00 2 W) Fh kb i, 45 3 SR .
PmERF011 575 ERFO11 &b T bR AR — 53 32 1, PIE RS O R IR, IR 2 MO FE A Ak
Bk, UESE T SRR JE N R R B S R RS s S HA S AR R (WA Fragaria . A& Pyrus. F
RIE Malus 55) FAES#EH R (BIEEIT . KA. BABS) 1 ERFOL B SRGOCREGE, BT ixkk
PRIE R T Al A b n] e = AR IR RE R 1k (B 4).

2.2 PmERF011 EEREZEX S

B SR 21 B 2 ik AR R RT-qPCR K il 45 5 7% . PmERFO1T ReRAE4 M . @ . AR W
B RS, B2 FIEGH . EE . BRTRZE | AR 11 MU A Kk, [ERERENE,
PmERFO11 WEKVAFAE B Z AN 25 FEMRMZEAR TR RA i m, fEWCEMZER) ki
Wz, MTEM R RERAR (& 5). XFpRIXEX VI PmERFO1] F 55 5Kk & ML A A KM
PRUORLECSUN TN
2.3 PmERFO011 JhEERIE
23.1 PmERFO11 # X W3 w RBRMBPAYER, XTI 11 MR IR Tt Rk vk R AT RT-
qPCR Kzl , 43477 PmERFO11 SR M FRBKT o G5RRI . ANFFEEER R R BIRBKPAAEDREES,
Horp OE2 Riki ik, OE5. OE3. OE8 FKiki#ifm (K 6). Mkl OE3. OES Fl OE8 iX 3 >3k
AR R T IR SR AEL
232 PmERFOI] XAt A AR EEFREEEN T, 183 ¥R (OE3. OES Fl OE8) 1 1#kFh
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20 30 40 50 60
%}?EPmnusmume TSTEKRKQRONQQQQQQVGGNHDHR . HOE KR RIS S 3 333
Prunus armeniaca T|T|S TEKRKQRONQQQQQQVGGNHDHR . HOEKQMR & 1 IS S IAF NB 583
W ETAEBE Prunus avium T|STEKRK|QRONQQQQQQVGGNHDHR . HOE KQMR € T EY SRS IAF S F S35
JE Prunus persica TISTEKRKQRONQQQQQQVGGNEDHR . HOEKQFR (g T ERS e [eFdna T SRS $:p]
il Er:obotryajapomca T|SMEKRK B B3]y IcRMRKWGKWVAEIRE P
FERL Pyrus communis SMISMEKRK H| :(e)3e]y GERMRKWGKWVAEIREP
Y Malus domestica S|TISMEKRK|. H BRIy IGHRMRKWGKWVAE IRE P
1%L Pyrus x bretschneideri MSMEKRK B R3]yl RMRKWGKWVAEIRE P
YA Fragaria x ananassa LTTISLEKRKKRQHE B 3y I RMRKWGKWVAEIREP
R 1A B4 Rubus argutus T|T|SLEKRKKRQQD H Oy ACRMRKWGKWVAE IRE P
HZF Rosa chinensis TISLEKRKKRQHE . Ay AcHRMRKWGKWVAE IRE P
I Arabidopsis thaliana MGIGTRK|. o o v v vvvvnnn S SRy [{ClRMRKWGKWVAE IRE P
IKF& Oryza sativa LAAAAAAVAAKEEQAAAAAVLPLQQQQPRRIQNR 6V IS 40T -Vo5$:3:5:]
EH¥) Populus tomentosa TATTEKRK . v vt vin e EpYelo)S{epBNIYY HIGIRMRKWGKWVAE IRE P
K Zea mays AISHAAVLGAGVAVAVAPAAGNGRGGGG|GGKQNR 6V EIESAUTAF S S35
/NFZ Triticum aestivum ORPTAAQ. ..PLSARVPAGGVHAGRGGGGRIOMREV ISP NS VPG IP)
70 80 90 100 110
WT«E Prunus mume fKRERIWLGS YWTEAAARAYDTAVFLRGEEARLN F P i
Prunus armeniaca INKREIRIWLGSYRNTEMAAARAYD TAVFMLRGIESIARL N F PSS PSRN
bt 2 W A T BN < REIR TWLGS YR TISWAAARA YD TAVFHLRGIZSARL N F P [ZHRva0 I
B Prunuspelwca NKRERIWLGS YJNTEMAAARAYD TAVFRYLRGEEANL N F P jsRAS
A LEriobotrya japonica NKRER IWLGS YWTIRYAAARAYD TAVFLRGIZARL N F o Riig IS
VErEAL Pyrus communis NKREIRIWLGS YR TEEMAAARA YD TAVFRLRGEEANL N F P joRTSc I, )
R Malus domestica NKREIRIWLGS YQITISYAAARAYD TAVFRLRGIEEARL N F P [SHAvA N

Pyrus x bretschneideri
Fragaria x ananassa
VBF Rubus argutus
Rosa chinensis

3% Arabidopsis thaliana
% Oryza sativa

17 Populus tomentosa
Zea mays

Triticum aestivum

NKRERIWLGS YRRTIEMMAAARAYDTAVFMLRGIZSAINL N F P [SS VS  F.
NKRWRIWLGS YRRTIEMAAARAYDTAVFMLRGIZSIAINLN F P |SEFAVS ] S
WMKREIRIWLGS YRITIYAAARAYD TAVFMLRGIZSIAINL N F P SNV D
INKREIRTWLGSYINTERYAAARAYDTAVFMLR GIZS]A L N F P |SREAvS NN
MNKREIRIWLGS YJATISAAAARAYD TAVFMLRG|SSIAINLN F P 35iy:-\e) iy
BKRESRIWLGS YR\TERYAAARAYD TAVFMLRGISA ML N F P REoERISEN:Nh N
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Figure 4 Phylogenetic tree for PmERFO11 and its homologous proteins
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