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Abstract: [Objective] Maize (Zea mays) growth period refers to the complete growth cycle from sowing to
maturity, with key representative traits including tasseling stage, anthesis stage, and silking stage. Identifying
key genes regulating maize growth period is of great significance for optimizing maize production and
promoting industrial quality and efficiency improvement. [Method] In 2022 and 2023, phenotypic
investigations of traits such as tasseling stage, anthesis stage, and silking stage were conducted on 322 maize

germplasm resources at 2 locations (Dongyang and Haining, Zhejiang Province). Genome-wide association

Wk H . 2025-03-19; f&[RTH H: 2025-10-29

FETH . WA RO AR TR0 B IR HE 4 E 5 PEM (2022-2024); 5 H RRI I H (31501394); #t
TEARMK AR & R HE4: (2020FR058); #IVTA T KB LT (2021C02064-4-3)

YEZ TS : BRE (ORCID: 0009-0003-0808-5504), M = T K Ff BT BF IR DI EF2 40 5% . E-mail: 1214218246@qq.com.
WAEIEH : ¥ (ORCID: 0009-0007-8362-2508), @l ##%, ti+, MF EKBfEF AP . E-mail:
wangyang@zafu.edu.cn


mailto:1214218246@qq.com
mailto:wangyang@zafu.edu.cn
https://www.hyyysci.com
https://doi.org/10.11833/j.issn.2095-0756.20250210
https://doi.org/10.11833/j.issn.2095-0756.20250210
https://doi.org/10.11833/j.issn.2095-0756.20250210

2 RN/ NI NI e 14 20254 X A 20 H

study (GWAS) was performed on the above traits combined with genotypic resequencing data. [Result] The
frequency distribution of tasseling stage, anthesis stage, and silking stage traits showed a unimodal curve,
consistent with a normal distribution. GWAS results revealed: for the tasseling stage, 61, 27, 281, and 57 SNP-
associated loci were identified in the 4 experimental sites (Dongyang and Haining in 2022, Dongyang and
Haining in 2023) across 322 maize germplasms, explaining phenotypic variation ranging from 7.26% to 10.68%
and distributed on all 10 chromosomes. For the anthesis stage, 51, 26, 424, and 58 related loci were identified,
explaining phenotypic variation from 7.25% to 11.80% and mainly distributed on chromosomes 1, 2, 3, 7, 8, 9,
and 10. For the silking stage, 47, 277, 212, and 1 169 related loci were identified, explaining phenotypic
variation from 7.25% to 41.26% and mainly distributed on chromosomes 1, 2, 3, 4, 7, 8, and 10. A total of 49,
53, and 24 overlapping SNP loci were detected for tasseling stage, anthesis stage, and silking stage among the 4
experimental sites, respectively. Through comprehensive analysis of SNP locus information, gene annotation,
and gene tissue expression profiles, 6 key candidate genes for maize growth period were finally screened out.
[Conclusion] Tasseling stage, anthesis stage, and silking stage traits showed a normal distribution, and a large
number of environment-specific and overlapping SNP loci were identified. Ultimately, 6 key candidate genes
for growth period were screened out, providing important genetic resources for the genetic improvement of
maize growth period and the high-quality development of the industry. [ Ch, 8 fig. 3 tab. 44 ref.]

Key words: maize (Zea mays); growth period; genome-wide association study (GWAS); candidate genes
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Table 1 Descriptive statistical data of phenotypes for core traits of maize growth period across different experimental sites and years
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growth period across multiple experimental sites and years
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Figure 1  Frequency distribution of tasseling stage phenotypic data and BLUP values across different experimental sites
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Figure 5 Manhattan plots of significantly associated SNPs for anthesis stage trait across multiple experimental sites
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