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3种黄连木属植物叶绿体基因组结构特征及遗传关系

周泽霖，向长武，张少军，陈日美，何杰祖，牙    璋，黄    毅，劳广杰

（广西生态工程职业技术学院，广西 柳州 545004）

摘要：【目的】开展 3 种黄连木属 Pistacia 植物叶绿体基因组的对比分析，旨在解析其结构特征及遗传进化关系。

【方法】以美国国家生物技术信息中心 (NCBI) 的 3 种黄连木属植物叶绿体基因组为材料，利用生物信息学手段对其叶绿

体基因组结构、重复序列、核苷酸多态性及遗传关系开展分析。【结果】3 种黄连木属植物叶绿体基因组均呈四分体环

状结构，且蛋白编码序列 (CDS)、核糖体 RNA (rRNA) 及转运 RNA (tRNA) 的数目完全一致；简单重复序列统计显示：

以单核苷酸中的 A (34.35%) 或 T (39.69%) 重复单元为主，但未检测到六核苷酸。散在重复序列统计显示：以回文重复

(105 个)、正向重复 (76 个) 为主，但未检测到反向重复；3 种黄连木属植物叶绿体基因组在大单拷贝区 (LSC)、小单拷贝

区 (SSC) 区域的基因间隔区 (CNS) 序列有不同程度的变异，但在四分体边界附近的基因在收缩或扩张上均无明显差异；

核苷酸多态性分析在 LSC 区及 LSC 与反向重复 b 区 (IRb) 的边界检测到 5 个高度变异序列 (matK、trnG-UCC~trnR-

UCU、trnT-UGU~trnL-UAA、petD~rpoA、rpl22~rpl2)；遗传进化关系显示：黄连木属植物与盐肤木属 Rhus 植物相互分

开，中国黄连木 P. chinensis 与清香木 P. weinmaniifolia 关系亲近，而阿月浑子 P. vera 与大西洋黄连木 P. atlantica 可单独

划分一支。【结论】3 种黄连木属植物叶绿体基因组结构类似且相对保守，在各类基因数量上保持一致；检测出的 5 个

变异序列可作为黄连木属植物的候选分子标记；中国黄连木与清香木在遗传关系上更为亲近，而阿月浑子与前两者相对

疏远。图 6 表 1 参 46
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Structural characteristics and genetic relationship of
chloroplast genomes of 3 Pistacia species

ZHOU Zelin，XIANG Changwu，ZHANG Shaojun，CHEN Rimei，HE Jiezu，YA Zhang，

HUANG Yi，LAO Guangjie

（Guangxi Eco-Engineering Vocational and Technical College, Liuzhou 545004, Guangxi, China）

Abstract: [Objective] In this study, the chloroplast genomes of 3 Pistacia species were compared to analyze
their  structural  characteristics  and  genetic  evolution. [Method] 3  publicly  available  chloroplast  genomes  of
Pistacia species  from  National  Center  for  Biotechnology  Information  (NCBI)  were  selected  as  research
materials,  and  their  chloroplast  genome  structure,  repeat  sequence,  nucleotide  polymorphism  and  genetic
relationship  were  analyzed  by  relevant  bioinformatics  methods. [Result] The  chloroplast  genomes  of  the  3
species were tetrad ring structure, and the numbers of protein-coding sequence (CDS), ribosomal RNA (rRNA),
and  transfer  RNA  (tRNA)  were  exactly  the  same  among  them;  The  simple  repeat  sequences  were  mainly  A
(34.35%) or T (39.69%) repeat units in mono-nucleotide, but no hexa-nucleotide. And the number of scattered
repeat sequences were mainly palindromic repeats (105) and forward repeats (76), but no reverse repeats; There 
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were different degrees of variation in the conserved non-coding sequences (CNS) of the large single copy (LSC)
and small single copy (SSC) of the chloroplast genomes of three species, but there was no significant difference
in  the  contraction  or  expansion  of  genes  near  the  tetrad  boundary;  5  highly  variable  sequences  (matK, trnG-
UCC~trnR-UCU, trnT-UGU~trnL-UAA, petD~rpoA, rpl22~rpl2)  were  identified  in  the  LSC  region  and  the
boundary between LSC and inverted repeat b (IRb); Phylogenetic reconstruction based on complete chloroplast
genomes demonstrated clear segregation between Pistacia and Rhus, and P. chinensis was closely related to P.
weinmaniifolia, while P. vera and P. atlantica could be formed a distinct clade. [Conclusion] The chloroplast
genome structure of the 3 Pistacia species was similar and relatively conservative, and the number of various
genes  was  consistent;  The  5  mutant  sequences  detected  could  be  used  as  candidate  molecular  markers  for
Pistacia species;  The  genetic  relationship  between P.  chinensis and P.  weinmannifolia was  similar,  while P.
vera was relatively distant from former 2 species. [Ch, 6 fig. 1 tab. 46 ref.]
Key words: Pistacia; chloroplast genome; sequence repeat; genetic relationship

叶绿体为植物细胞质体之一，是植物进行光合作用的特有细胞器，内部具有独立而完整的基因组[1]。

植物叶绿体基因组一般由 1 个大单拷贝区 (LSC)、1 个小单拷贝区 (SSC)、2 个反向重复区 (IRs) 组成的

环状四分体结构[2]，序列长度约 120~160 kb[3]，含有大量可以自我调节的蛋白编码基因、rRNA 编码基因

以及 tRNA 编码基因[4]，遵循单亲遗传规律，结构简单且总体保守，进化速率也相对适中。随着基因测

序技术的快速发展，基于植物叶绿体基因组的研究已被广泛应用于系统进化[5]、物种鉴别[6]、转基因[7]

以及核质协作[8] 等领域。

黄连木属 Pistacia 是漆树科 Anacardiaceae 的关键演化分支，全球约 10 个物种[9]，中国主要有中国黄

连木 P. chinensis、清香木 P. weinmaniifolia、阿月浑子 P. vera[10]。中国黄连木分布于南北干旱丘陵区，

成熟种子富含油脂 (含油率＞40%)[11]，是一种潜在的生物能源树种[12]；清香木生于云南、四川等喀斯特

地貌区，叶片富含抗菌活性的挥发性萜烯类化合物[13]，是传统药用植物；阿月浑子原产于中亚，在中国

新疆地区已形成独特的栽培种群，是世界第五大坚果作物[14]。然而，生长于中国的黄连木属植物受不同

地区气候变化和人为干扰的影响，导致部分野生种群萎缩，亟需通过叶绿体基因组研究指导种质资源保

护与利用。因此，本研究拟选取中国黄连木、清香木、阿月浑子这 3 种黄连木属植物，解析叶绿体基因

组的结构分化，为黄连木属植物的系统分类和进化历史提供科学依据。 

1    材料与方法
 

1.1    材料收集

从美国国家生物技术信息中心 (NCBI) 数据库 (http://www.ncbi.nlm.nih.gov/)，搜索并下载已公布的中

国黄连木 (MK738124)、清香木 (MF630953)、阿月浑子 (MN551174) 叶绿体基因组序列信息展开分析。 

1.2    叶绿体基因组的参数统计

利用 Geneious Prime 软件统计黄连木属叶绿体基因组的各项参数，包括基因组大小、各区序列长

度、GC 含量、基因总数、蛋白编码序列 (CDS) 数量、核糖体 RNA (rRNA) 数量、转运 RNA (tRNA) 数
量，并在 Chloroplot 在线程序[15](http://irscope.shinyapps.io/chloroplot/) 绘制叶绿体基因组图谱。 

1.3    叶绿体基因组重复序列分析

利用 MISA 在线工具[16](http://webblast.ipk-gatersleben.de/misa/) 计算黄连木属叶绿体基因组中的简单

重复序列数量 (simple sequence repeat，SSR)，最小重复单元设置：单核苷酸重复为 10，二核苷酸重复为

5，三核苷酸重复为 4，四核苷酸重复为 3，五核苷酸重复为 3，六核苷酸重复为 3，重复序列之间的最

小间隔为 100 bp。利用 REPuter 在线工具[17](https://bibiserv.cebitec.uni-bielefeld.de/reputer) 检测不同的散在

重复序列类型，包括回文重复 (P)、互补重复 (C)、正向重复 (F) 和反向重复 (R)，参数设置：最大重复距

离为 5 000 bp，最小重复长度为 30 bp，海明距离为 3。 

1.4    叶绿体基因组的结构分析

以中国黄连木为参考，利用 mVISTA 在线工具[18](http://genome.lbl.gov/vista/index.shtm) 选择 Shuffle-
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LAGAN 模式对黄连木属叶绿体基因组开展结构可视化差异分析；利用 CPJSdraw 软件[19] 完成四分体边

界差异分析。 

1.5    核苷酸变异分析

利用 DnaSP V6 软件 [20] 检测黄连木属叶绿体基因组的核苷酸多态性 (Pi)，参数设置：窗口长度为

600 bp，序列步长为 200 bp。 

1.6    共线性与系统进化树构建分析

选择盐肤木属 Rhus 植物旁遮普麸杨 R. punjabensis (MT230555)、盐肤木 R. chinensis (OP326720) 为外

类群，另收集其他国外黄连木属叶绿体基因组信息，包括大西洋黄连木 P. atlantica (PP101613)、埃及黄

连木 P. khinjuk (PP101614)，利用 MAFFT V7 在线工具[21](http://mafft.cbrc.jp/alignment/server/) 完成叶绿体

全基因组对比，再通过 MEGA 7.0 软件[22] 以邻接法 (neighbor-joining) 构建系统进化树。 

2    结果与分析
 

2.1    黄连木属植物叶绿体基因组的基本特征

由图 1 可见：3 种黄连木属叶绿体基因组均由 1 个大单拷贝区域 (LSC)、1 个小单拷贝区域 (SSC) 和
2 个反向重复区域 (IRs，包括 IRa 和 IRb) 组成的四分体环状结构。3 种黄连木属叶绿体基因组的长度为
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图 1    3 种黄连木属植物叶绿体基因组图谱
Figure 1    Chloroplast genome map of 3 Pistacia species
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160  618~160  767  bp  (GC 为 37.87%~37.90%)，其中 LSC 为 88  371~88  402  bp  (GC 为 36.00%~36.04%)，
IRs 为 26 595~26 618 bp (GC 为 42.93%~42.95%)，SSC 为 19 057~19 129 bp (GC 为 32.42%~32.45%)，且在

蛋白编码序列数量 (87 个)、核糖体 RNA 数量 (8 个) 和转运 RNA 数量 (37 个) 保持一致 (表 1)。
  

表 1    黄连木属植物叶绿体基因组的基本特征信息
Table 1    Basic characteristic information of the chloroplast genomes of Pistacia species

物种
全基因组 大单拷贝区 反向重复区 小单拷贝区 基因总

数/个
蛋白编码序

列数量/个
核糖体RNA

数量/个
转运RNA
数量/个长度/bp GC含量/% 长度/bp GC含量/% 长度/bp GC含量/% 长度/bp GC含量/%

中国黄连木 160 618 37.90 88 371 36.04 26 595 42.95 19 057 32.45 132 87 8 37

清香木 160 767 37.87 88 402 36.00 26 618 42.93 19 129 32.42 132 87 8 37

阿月浑子 160 654 37.89 88 376 36.04 26 596 42.95 19 086 32.41 132 87 8 37
  

2.2    黄连木属植物叶绿体基因组的重复序列特征

利用 MISA 在线工具在 3 种黄连木属植物叶绿体基因组中筛选出 5 种简单重复序列类型，共有

262 个潜在的简单重复序列位点，但未检测到六核苷酸。从图 2A 可知：在这些潜在的简单重复序列位

点中，单核苷酸中的 A 或 T 重复单元的数量最多，占比分别为 34.35%、39.69%，其次是二核苷酸中的

AT 或 TA 重复单元，占比分别为 3.44%、2.67%，其他重复单元的数量总体差异不大且占比很低。

散在重复序列经 REputer 在线工具统计结果 (图 2B) 显示：3 种黄连木属植物叶绿体基因组中共检测

到 184 个散在重复序列位点，且同类型重复在各物种之间无明显差异，其中回文重复数量最多

(105 个)，其次是正向重复 (76 个)，互补重复最少 (3 个)，各物种均未检测到反向重复序列。
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图 2    3 种黄连木属植物叶绿体基因组的简单重复序列 (A) 和散在重复序列 (B) 统计
Figure 2    Simple repeat sequence (A) and scattered repeat sequence (B) statistics of chloroplast genomes of 3 Pistacia species

  

2.3    黄连木属植物叶绿体基因组的结构特征

黄连木属植物叶绿体基因组的全序列差异对比结果 (图 3) 显示：3 种黄连木属植物叶绿体基因组的

转运/核糖体 RNA (t/rRNA)、外显子 (exon) 的序列总体保持较高的保守性，而基因间隔区 (CNS) 序列发

生不同程度的变异，集中在 LSC 区与 SSC 区，其中 trnS-GGA~rps4、ccsA~ndhD 等序列区域差异较为明

显。四分体边界对比结果 (图 4) 显示：ndhF、ycf1 分别位于 JSB、JSA 边界线上，rpl2 基因位于 IR 区且

其 3'端距离 JSB/JSA 边界线为 116~140 bp，表明 3 种黄连木属植物在 IRs 区边界 (JLB、 JSB、 JSA、

JLA) 附近的基因在收缩或扩张上无明显差异。 

2.4    黄连木属植物叶绿体基因组的核苷酸多态性分析

核苷酸多态性 (Pi) 分析结果 (图 5) 表明：3 种黄连木属植物叶绿体基因组共包含了 535 个多态性位

点，Pi 为 0~0.02，平均为 0.002  23，并检测到 matK (2  830~3  829  bp)、 trnG-UCC~trnR-UCU (11  112~
11 911 bp)、trnT-UGU~trnL-UAA (49 664~50 487 bp)、petD~rpoA (81 644~82 650 bp)、rpl22~rpl2 (88 121~
88 932 bp) 等 5 个高变序列 (Pi＞0.01)，除了 rpl22~rpl2 序列跨越 LSC 与 IRb 区，其余都位于 LSC 区内。 

2.5    黄连木属植物叶绿体基因组的共线性分析与系统进化构建

以 2 种盐肤木属植物为外类群，另加入其他黄连木属植物。植物系统发育树结果 (图 6) 显示：黄连
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木属与盐肤木属外类群分割开，清香木与中国黄连木的亲缘关系比较相近，而阿月浑子与大西洋黄连木

以 100% 的支持率可单独划分一支。 

3    讨论

与万寿菊属 Tagetes[23]、大百合属 Cardiocrinum[24] 等陆生植物叶绿体基因组一样，3 种黄连木属植物

叶绿体基因组也均为闭合环状四分体结构，且在基因长度、基因顺序和 GC 含量等方面具有高度的保守

性 [25−26]。 GC 含量在 3 种黄连木属叶绿体基因组的不同区域呈不均等分布， IRs 区的 GC 含量

(42.93%~42.95%) 明显高于 LSC 区 (36.00%~36.04%)和 SSC 区 (32.41%~42.45%)，可能是 IRs 区存在 4 个

高 GC 含量的 RNA 基因 (rrn4.5、rrn5、rrn16、rrn23)[27−28]，不过 IRs 区的高 GC 含量也有助于叶绿体基
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图 3    3 种黄连木属植物叶绿体基因组的全序列对比图
Figure 3    Sequence comparison map of chloroplast genomes of 3 Pistacia species
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Figure 4    Comparison map of tetrad boundaries of chloroplast genomes of 3 Pistacia species
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因组的稳定性[29]。此外，本研究还发现叶绿体各种类型基因数量保持一致，表明了 3 种黄连木属植物在

基因组成方面有较高的相似性，也是黄连木属植物难分类的重要因素之一。

叶绿体基因组中的重复序列具有较高的多态性，是植物群体遗传和进化研究的重要分子标

记[30−31]。本研究在检测 3 种黄连木属植物的所有散在重复序列类型中，发现回文重复与正向重复比例较

大，与楠属 Phoebe[32]、石蒜属 Lycoris[33] 等植物的结果基本一致。在黄连木属植物叶绿体基因组的简单

重复序列类型中，单核苷酸的 A 或 T 重复单元所占比例最高，在忍冬属 Lonicera[34]、紫麻属

Oreocnide[35] 等植物也有类似报道。A/T 重复频率高的 1 个潜在原因是叶绿体基因组中的 mRNA 末端发

生聚腺苷酸化[36]。另外，在质体复制过程中，A/T 碱基的链比 G/C 碱基更容易分离，导致滑链错配[37]。

这些分析所得到的重复序列位点代表了黄连木属植物丰富的变异，有助于检测居群、种内和栽培品种水

平的遗传多态性，以及比较更远的亲缘关系。

研究叶绿体四分体不同区域的基因分布、边界信息、变异序列，对了解叶绿体基因组结构的差异、

物种进化等具有重要意义。本研究表明：3 种黄连木属植物叶绿体基因组具有很高的序列相似性，且

IRs 区序列变异程度很低，差异表现集中于 LSC、SSC 区的非编码区，这与紫薇属 Lagerstroemia[38]、栎

属 Quercus[39] 等的植物表现一致。虽然 IRs 区序列在大多数植物，特别在同一属内表现高度保守，但 IRs
区的边界普遍存在扩张或收缩现象，是导致不同植物群体的整个叶绿体基因组长度差异的主要因素[40]。

通过比较 3 种黄连木属植物，发现四分体 IRs 边界没有明显的扩张或收缩差异，表明了 3 种黄连木属植

物叶绿体基因组大小具有高度保守性。此外，本研究 3 种黄连木属植物叶绿体基因组的核苷酸多态性分

析检测到 5 个变异序列 (matK、trnG-UCC~trnR-UCU、trnT-UGU~trnL-UAA、petD~rpoA、rpl22~rpl2)，这

些高度变异序列可作为鉴定黄连木属的候选分子标记，特别是编码成熟蛋白酶的相关基因 matK，具有

相对较快的突变率[41]，正成为研究多数被子植物系统学和进化的潜在候选基因[42−44]。

明确黄连木属植物及其近缘属在系统进化中的生态位置，对于理解共同进化背景下黄连木属植物不

同种的适应性进化及生物多样性具有重要意义。本研究系统发育树结果表明：黄连木属与盐肤木属在遗

传进化上明确了两者的属级分类，与早期基于核糖体基因内的转录间隔区 (ITS) 序列构建的系统发育结

果一致[45]；从黄连木属分支距离来看，中国黄连木与清香木在遗传进化中表现亲近，而阿月浑子与大西

洋黄连木关系更为密切，这可能与地理距离及环境差异相关联。遗传分化是环境压力所施加的选择或遗

传漂变的影响以及地理隔离限制部分群体基因交流的结果[46]。原产东亚的中国黄连木与清香木叶绿体基

因组的亲近性暗示两者仍保留较高的母系基因交流历史。相比之下，产于中亚的阿月浑子与分布地中海

的大西洋黄连木的密切关系反映了其共同祖先可能在气候干旱化过程中分化出适应不同干旱生态位的类

群。这一结果为研究不同地域的黄连木属植物的“抗旱性”进化策略提供新的思路，也为黄连木属植物

种质资源保护提供参考依据。 

4    结论

本研究发现：3 种黄连木属植物叶绿体基因组都是序列长度在 160 618~160 767 bp 的环状四分体，
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序列结构类似且相对保守；简单重复序列以单核苷酸中的 A 或 T 重复单元为主，散在重复序列以回文重

复与正向重复为主。检测到 5 个高变序列 (matK、 trnG-UCC~trnR-UCU、 trnT-UGU~trnL-UAA、petD~
rpoA、rpl22~rpl2) 可作为黄连木属植物的潜在分子标记。基于全叶绿体基因比较，中国黄连木与清香木

在遗传距离上相近，而阿月浑子与前两者相对疏远。
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