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摘要：【目的】通过对慈竹 Neosinocalamus affinis 竹叶中的黄酮类化合物进行组分鉴定，并探究竹叶黄酮对 α-葡萄糖苷

酶以及 α-淀粉酶的抑制作用，为慈竹竹叶资源的深度利用和开发提供理论依据。【方法】以慈竹竹叶为原料，通过大孔

树脂纯化得到纯化竹叶黄酮，使用超高效液相色谱-质谱技术对纯化竹叶黄酮的化学成分进行了鉴定，并通过体外试验探

究了纯化竹叶黄酮对 α-淀粉酶和 α-葡萄糖苷酶活性的抑制作用，以及纯化竹叶黄酮降血糖的作用机制。【结果】慈竹竹

叶提取物中共鉴定出 18 种黄酮类化合物，包括甘草黄酮醇、表紫草氰苷Ⅱ、宝藿苷Ⅰ等黄酮类化合物；体外试验结果显

示：纯化竹叶黄酮对 α-淀粉酶和 α-葡萄糖苷酶都存在抑制作用，当纯化竹叶黄酮质量浓度为 0.5 mg·mL−1 时，对 α-淀粉

酶 的 抑 制 率 为 79.71%±5.02%， 半 抑 制 质 量 浓 度 (IC50) 为 (0.057±0.005)  mg·mL−1； 对 α-葡 萄 糖 苷 酶 的 抑 制 率 为

74.17%±6.17%，IC50 为 (0.071±0.004) mg·mL−1，纯化竹叶黄酮对这 2 种酶的抑制类型都呈现出竞争性-非竞争性混合抑

制。【结论】根据酶活性抑制动力学试验结果表明：慈竹竹叶中的黄酮类化合物可能是降血糖的活性成分之一。图 3 表 4
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Identification of flavonoid constituents and inhibitory effects on α-amylase and
α-glucosidase in the leaves of Neosinocalamus affinis
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Forestry University, Kunming 650224, Yunnan, China）

Abstract: [Objective] This study aimed to identify the flavonoid components in the leaves of Neosinocalamus
affinis and to investigate their inhibitory effects on α-glucosidase and α-amylase, so as to provide a theoretical

basis for the deep utilization and development of N. affinis leaf resources. [Method] Using N. affinis leaves as

raw  material,  purified  bamboo  leaf  flavonoids  (PBLF)  were  obtained  by  macroporous  resin  purification.  The

chemical components of PBLF were identified by ultra-performance liquid chromatography-mass spectrometry

(UPLC-MS).  The  inhibitory  effects  of  PBLF  on  α-amylase  and  α-glucosidase  activities,  as  well  as  the

hypoglycemic  mechanism  of  PBLF,  were  investigated  through  in  vitro  experiments. [Result] 18  flavonoid 
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compounds were identified in the N. affinis leaf extract, including glycyrrhizinol, epimedium cyanidin Ⅱ, and
baohuoside Ⅰ. Furthermore, the in vitro results demonstrated that PBLF significantly inhibited both α-amylase
and α-glucosidase activities. At a concentration of 0.5 mg·mL−1, PBLF inhibited α-amylase by 79.71%±5.02%
with a half-maximal inhibitory concentration (IC50) of (0.057±0.005) mg·mL−1, and inhibited α-glucosidase by
74.17%±6.17% with  an  IC50 of  (0.071±0.004)  mg·mL−1,  and  both  types  of  enzyme  inhibition  showed
competitive-noncompetitive  mixed  inhibition. [Conclusion] Enzyme  inhibition  kinetic  studies  indicated  that
the  flavonoids  present  in N.  affinis leaves  likely  function  as  active  hypoglycemic  components,  potentially
through a non-competitive inhibition mechanism. [Ch, 3 fig. 4 tab. 34 ref.]
Key words: Neosinocalamus affinis; flavonoids; component identification; α-amylase; α-glucosidase; inhibition

慈竹 Neosinocalamus affinis 属禾本科 Poaceae 竹亚科 Bambusoideae 植物，别称大叶慈竹、绵竹等，

主要分布在中国西南部地区，包括四川、贵州、云南、陕西南部及甘肃南部等地[1−2]。慈竹有着适应性

强、生长快、竹笋产量高等特点，栽植 3~5 a 后即可成林，可持续利用百年，是优良的笋竹两用品种[3]。

慈竹竹叶在中医中被广泛使用，主要用于清热利尿、除烦止渴、小便短赤和口舌生疮等症，此外慈竹竹

叶中含有的黄酮类化合物 (槲皮素、芦丁等)、多糖等物质具有显著抗氧化、降血糖以及抗炎等活性[4−5]。

中国作为全球竹资源最丰富的国家之一，竹产业整体开发水平仍显不足，占竹体总量约 35% 的竹叶资

源长期被视作生产废弃物，若将其充分利用，可提升慈竹的资源利用率[6−7]。

黄酮类化合物 (flavonoids) 是一种广泛存在于植物体内的天然产物，是多种药用植物的有效成分[8−9]。

竹叶黄酮 (BLF) 作为多效生物活性物质，其功能特性涵盖抗氧化、抗炎及增强免疫力等方面 [10−11]。

YANG 等[12] 通过高脂血症大鼠模型发现：竹叶黄酮能随剂量升高而降低血清总胆固醇 (TC)、甘油三酯

(TG) 和低密度脂蛋白胆固醇 (LDL-C) 水平，其作用机制与调节 AMPK/SREBP-2 信号通路相关。区少碧

等[13] 研究表明：竹叶黄酮能降低活性氧 (ROS) 水平，并通过增加超氧化物歧化酶 (SOD)、谷胱甘肽过氧

化物酶 (GSH-Px) 和过氧化氢酶 (CAT) 等相关酶活性来抑制氧化应激。黄酮类化合物有着调节血糖水平

的功效，可以通过选择性抑制 α-葡萄糖苷酶和 α-淀粉酶来减缓肠道黏膜对葡萄糖的摄取速率，从而有效

控制餐后血糖波动，达到平稳降糖的治疗效果[14−15]。然而，关于慈竹竹叶黄酮类化合物降血糖的物质基

础及作用机制还未见报道。

为分析慈竹竹叶黄酮的化学组成，并探究其在降血糖活性方面的作用，本研究采用超高效液相色

谱-四极杆-飞行时间串联质谱 (UPLC-QTOF-MS/MS) 技术对纯化竹叶黄酮 (PBLF) 进行鉴定，并探究其

对 α-淀粉酶和 α-葡萄糖苷酶的抑制作用。同时，通过 Lineweaver-Burk 和 Dixon 方程构建酶动力学模型，

解析慈竹竹叶黄酮降血糖活性的抑制类型及其协同作用机制，以期为慈竹资源的开发利用提供科学依据。 

1    材料与方法
 

1.1    材料与试剂

慈竹竹叶于 2024 年 11 月采自西南林业大学树木园，样本保存于西南林业大学生物与食品工程

学院。

试验所用试剂包括：α-葡萄糖苷酶 (7×105 μmol·mL−1·min−1，江苏伊势久生物有限公司)；阿卡波糖

及对硝基苯-α-D-葡萄糖苷 (PNPG)(合肥千盛生物科技有限公司)；α-淀粉酶 (4×103 μmol·g−1·min−1)、淀粉

显色反应配置 DNS 溶液 (上海源叶生物技术有限公司) 与配套磷酸盐缓冲体系 (Na2HPO4/KH2PO4，天津

科密欧化学试剂有限公司)；可溶性淀粉及碳酸钠 (郑州津北化工)；色谱级乙腈/甲酸 (安捷伦科技)。其

余化学试剂均为分析纯。 

1.2    慈竹竹叶黄酮的提取与纯化

慈竹鲜叶经清洗后放入烘箱中，在 60.0 ℃ 下干燥 18 h，烘干后粉碎过筛制得慈竹竹叶粉末。取定

量样品按料液比 1∶20 加入体积分数为 80% 的乙醇，在 50.0 ℃、309 kW 下超声 62 min 辅助浸提。提取

液经真空抽滤及旋蒸脱醇得粗提液，−18.0 ℃ 预冻后在−65.5 ℃ 下冷冻干燥 (2 Pa) 获得粗黄酮。经 AB-8
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型大孔树脂层析 (体积分数为 70% 的乙醇梯度洗脱)，洗脱液 2 次脱醇冻干后得纯化竹叶黄酮粉末。 

1.3    纯化竹叶黄酮成分鉴定 

1.3.1    竹叶黄酮样品前处理    精确称取纯化样品 125 mg，经 1 mL 预冷甲醇涡旋震荡溶解，12 000 r·min−1

离心 20 min 后，上清液通过 0.22 μm 有机滤膜完成无菌化处理，制得液相色谱-质谱 (LC-MS) 进样溶液。 

1.3.2    色谱分析系统    配置 Waters BEH C18 色谱柱

(2.1  mm×100.0  mm×1.7  μm)，流动相为质量分数

0.1% 的甲酸水溶液 (A)-乙腈 (B) 体系，流速为

0.3 L·min−1，柱温箱设定为 40 ℃。采用梯度洗脱模

式 (程序见表 1)，自动进样器定量注入 5 μL 待测样品。 

1.3.3    高分辨质谱 (HRMS) 条件    采用电喷雾电离

(ESI) 进行正离子和负离子模式检测。使用加热电喷雾

离子 (HESI) 源进行离子化，电离参数设定：喷雾电

压 (+4 kV/−3.2 kV)；毛细管温度为 350 ℃；鞘气/辅
助气流速为 40/5 L·min−1，扫描范围为 50~1 200 m/z。
应用 UPLC-QTOF-MS/MS 技术获取相应色谱质谱数据。黄酮类化合物的鉴定采用多反应监测 (MRM) 模
式检测待测离子对。对数据中缺失值超过 50% 的代谢物离子峰进行去除；采用 MultiQuant 软件提取色

谱峰面积及保留时间。利用混标、保留时间、Q1/Q3 离子对、二级质谱等相关条件进行纯化竹叶黄酮成

分鉴定。 

1.3.4    高效液相色谱-质谱联用技术 (HPLC-MS) 分析    基于 mzCloud、mzVault 及 PubChem 多数据库联

用技术，并参考王倩等[16] 的方法完成黄酮类化合物的结构解析。 

1.4    体外降血糖试验 

1.4.1    α-葡萄糖苷酶活性抑制率测定     参照俞遴等 [17] 的方法对 α-葡萄糖苷酶进行测定，实验

流程如下：用磷酸盐缓冲液 (PBS，0.1 mol·L−1，pH 6.8) 配制不同浓度梯度的待测样品溶液。取 25 μL α-
葡萄糖苷酶溶液 (2 μmol·mL−1·min−1) 与 120 μL PBS 于反应体系中，混合均匀后在 37 ℃ 恒温水浴 15 min。
随后加入 25 μL PNPG 溶液 (2.5 mmol·L−1，PBS 配制)，继续在 37 ℃ 条件下反应 25 min。终止反应时加

入 100 μL 碳酸钠溶液 (0.2 mol·L−1)，再使用酶标仪检测波长 405 nm 下的吸光值 (A1)。设置 2 组对照：空

白组以等体积 PBS 替代酶液，对照组以 PBS 代替样品溶液，分别测得吸光值 A2 和 A0。按公式 (1) 计算

样品对酶活性的抑制率 (H)。

H= [A0－(A1－A2)]/A0×100%。 （1）

式 (1) 中：A0 为 pH=6.8 时的磷酸盐缓冲液吸光值；A1 为所加入样品的吸光值；A2 为用磷酸盐缓冲液代

替 α-葡萄糖苷酶溶液的吸光值。 

1.4.2    α-葡 萄 糖 苷 酶 活 性 抑 制 动 力 学 实 验     参 照 潘 玥 等 [18] 的 方 法 进 行 试 验 。 步 骤 如 下 ：

固定纯化竹叶黄酮溶液质量浓度梯度 (0.02~0.10  mg·mL−1，PBS 配制 )，底物 PNPG 浓度梯度 (0.5~
2.5 mmol·L−1)。参照 1.4.1 方法测定不同底物浓度下的酶促反应速率，其中酶促反应速率以单位时间的

吸光度变化值表示。通过比较不同抑制剂浓度下斜率与纵截距的变化规律，结合米氏方程动力学参数分

析，判定纯化竹叶黄酮对 α-葡萄糖苷酶的抑制模式。

1
V
=

Km
Vmax×S

+
1

Vmax
。 （2）

式 (2) 中：V 为酶促反应速率；Vmax 为最大反应速率；S 为底物质量浓度 (mg·mL−1)；Km 为米氏常数

(g·L−1)。
混合型抑制类型 Dixon 方程可进一步验证抑制类型并确定相关抑制常数。

V =
Vmax×S

S (1+ I
KIS

)+Km(1+ I
KI

)
。 （3）

式 (3) 中：I 为抑制剂质量浓度 (g·L−1)；KI 为抑制剂对酶的抑制常数；KIS 为抑制剂对酶-底物复合物的

 

表 1    洗脱程序
Table 1    Elution procedure

洗脱时间/min 流动相A体积分数/% 流动相B体积分数/%

0 95 5

2 95 5

20 5 95

25 5 95

26 95 5

30 95 5
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抑制常数。 

1.4.3    α-淀粉酶活性抑制率测定    参照温柔等[19] 的方法采用 3,5-二硝基水杨酸 (DNS) 显色法进行试验。 

1.4.4    α-淀 粉 酶 活 性 抑 制 动 力 学 实 验     参照刘承毅等 [20] 的方法。 α-淀粉酶抑制动力学机制

研究采用 Lineweaver-Burk 双倒数法。试验设计：设置纯化竹叶黄酮溶液质量浓度梯度 (0.1~0.5 mg·mL−1，

PBS 配制)，底物可溶性淀粉质量浓度梯度 (2.0~10.0 g·L−1)。参照 1.4.2 试验流程，测定不同底物质量浓

度下的酶促反应速率，其中酶促反应速率以单位时间的吸光度变化值表示。 

1.5    数据处理

采用 SPSS 21.0 进行数据处理，Origin 2021 进行绘图，每组实验平行测定 3 次，所得结果以平均

值±标准差表示。 

2    结果与讨论
 

2.1    纯化竹叶黄酮成分鉴定结果分析

通过 PubChem、ChemSpider 等数据库，查阅相关文献，对比图 1 相关化合物的采集时间和离子丰

度，共鉴别出 18 种黄酮类化合物 (表 2)。将这些化合物的峰面积对比得知：黄酮含量较高的化合物主要

包括甘草黄酮醇、异鼠李素-7-芸香糖苷、宝藿苷Ⅰ、穿心莲素 F、表紫草氰苷Ⅱ、矢车菊素 3-O-β-D-
半乳糖苷、5,7,2',4',6'-五甲氧基黄酮，5-羟基-6,7,3-三甲氧基黄酮-8-O-β-D-葡萄糖苷等。其中已有研究表

明：部分化合物有着抗氧化、降血糖等功效，如甘草黄酮醇可抑制餐后血糖，在 2 型糖尿病模型中，可

有效降低模型的空腹血糖值、糖化血红蛋白 (HbA1c) 及尿糖水平，同时升高高密度脂蛋白胆固醇 (HDL-
C)[21]。此外，体外试验表明：甘草黄酮醇可显著抑制 α-葡萄糖苷酶活性，延缓碳水化合物的水解与吸

收，降低餐后血糖峰值[22]。甘草黄酮醇还可通过清除自由基、提升超氧化物歧化酶 (SOD)、过氧化氢酶

(CAT) 活性，以及增加还原型谷胱甘肽 (GSH) 含量，显著改善尿酸诱导的氧化应激损伤[23]。同时，甘草

黄酮醇能降低丙二醛 (MDA) 和过氧化氢 (H2O2) 水平，减轻细胞氧化损伤。曹文洁等[24] 对异鼠李素-7-芸
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图 1    正离子模式 (A) 和负离子模式 (B) 下的纯化竹叶黄酮总离子流图
Figure 1    Total ion flow diagrams of purified bamboo leaf flavonoids in positive ion mode (A) and negative ion mode (B)

4 浙  江  农  林  大  学  学  报 2025 年 X 月 20 日



香糖苷的抗炎、抗氧化、抗肿瘤、调节血糖等作用进行过介绍，异鼠李素-7-芸香糖苷是一种广泛存在于

药用植物的黄酮醇类化合物，核心机制是改善胰岛素敏感性，能激活 AMPK 信号通路，促进骨骼肌和

脂肪组织的葡萄糖摄取与利用；同时通过激活 PPAR-γ 受体，增强胰岛素信号传导，改善胰岛素抵抗，

从而抑制血糖水平。此外还有研究表明：异鼠李素-7-芸香糖苷在糖尿病模型中可显著降低空腹血糖、糖

化血红蛋白 (HbA1c) 及血脂紊乱指标[25]。体外实验进一步证实：主要活性成分异鼠李素-7-芸香糖苷可显

著抑制 α-葡萄糖苷酶活性，这些结果都表明：纯化竹叶黄酮具有潜在的降糖生物活性[26]。宝藿苷Ⅰ是一

种多羟基黄酮苷类化合物，蔡钊萌等[27] 研究发现：宝藿苷Ⅰ具有降血糖、心血管保护、抗肿瘤、免疫调

节等作用。宝藿苷Ⅰ作为雌激素受体激动剂，在雌性糖尿病模型中效果更显著，试验表明其在卵巢切除

的糖尿病小鼠中，降糖效果减弱，补充雌激素后恢复[28]。宝藿苷Ⅰ还通过 PPARγ/AMPK 双路径激活、

β 细胞保护及 G 蛋白偶联雌激素受体 (GPER) 介导的雌激素作用多靶点调控糖代谢，在动物模型中表现

出显著的降糖功效。

穿心莲素 F 在动物模型中显示出降血糖和调脂作用，通过激活 AMPK 信号通路改善胰岛素抵抗，

或通过抑制脂肪生成酶 (如 FAS) 调节脂代谢，常用于糖尿病或非酒精性脂肪肝的辅助治疗[29]。表紫草氰

苷Ⅱ能激活脑内胰岛素通路，通过 AMPK/PGC-1α 介导的线粒体修复、胰岛 β 细胞保护及肝肾并发症干

预发挥多维度降糖作用，这对糖尿病神经性病变具有重要意义[30]。同时，本研究的竹叶经纯化后，竹叶

中黄酮类化合物纯度明显提升，可使这 18 种竹叶黄酮化合物在降血糖方面的协同作用增加，其协同

性体现在 3 个维度：第一是作用靶点互补。例如甘草黄酮醇和异鼠李素-7-芸香糖苷侧重肠道 α-葡萄糖苷

酶抑制 (控制餐后血糖)，宝藿苷Ⅰ和紫草氰苷Ⅱ强化 AMPK 通路 (改善胰岛素敏感性)，穿心莲素 F 则激

活 μ 受体 (肠促胰岛素效应)。这种靶点分布覆盖了糖代谢全过程。第二是器官保护协同。矢车菊素 3-O-

 

表 2    纯化竹叶黄酮成分信息
Table 2    Compositional information of purified bamboo leaf flavonoids

序号 化合物名称 离子模式
保留时间/

min
分子式 分子m/z 碎片m/z

1
5,7,4'-三羟基-6-C-阿拉伯糖苷-8-C-葡萄糖苷黄酮trihydroxy-6-
C-arabinoside-8-C-glucoside flavone [M-H]− 6.235 C26H28O14 563.139 7 561.162 1

2
3,4',5,7-四羟基黄酮-3-L-鼠李糖苷3,4',5,7-tetrahydroxyflavone-
3-L-rhamnoside [M-H]− 6.877 C21H20O10 431.098 7 533.261 6

3
3,6,8,3',4'-五甲氧基-5,7-二羟基黄酮3,6,8,3',4'-Pentamethoxy-
5,7-dihydroxyflavone [M-H]− 7.137 C20H20O9 403.104 1 769.219 7

4 5,7,2',4',6'-五甲氧基黄酮5,7,2',4',6'-Pentamethoxyflavone [M-H]− 7.532 C20H20O7 371.114 6 93.035 0

5
5-羟基-6,7,3-三甲氧基黄酮-8-O-β-D-葡萄糖苷5-Hydroxy-
6,7,3-trimethoxyflavone-8- O-β-D-glucoside [M-H]− 8.034 C24H26O12 505.136 3 517.266 4

6 甘草黄酮醇A glycyrrhiza-flavonol A [M-H]− 9.077 C20H18O7 369.097 7 115.320 4

7 5,7,2',3'-四羟基黄酮5,7,2',3'-tetrahydroxyflavone [M-H]− 13.766 C15H10O6 285.041 3 165.019 5

8 5,7,2',3'-四羟基黄酮5,7,2',3'-tetrahydroxyflavone [M-H]− 17.847 C15H10O6 285.041 2 373.075 7

9 5,7,2',3'-四羟基黄酮5,7,2',3'-tetrahydroxyflavone [M-H]− 18.150 C15H10O6 285.041 9 323.132 9

10 异鼠李素-7-芸香糖苷isosakuranetin-7-rutinoside [M+H]+ 4.022 C28H34O14 595.202 1 277.217 8

11 异鼠李素-7-芸香糖苷isosakuranetin-7-rutinoside [M+H]+ 4.288 C28H34O14 595.202 5 275.202 6

12
1-O-龙胆二糖基-3,7-二甲氧基-8-羟基黄酮1-O-gentiobiosyl-
3,7-dimethoxy-8-hydroxyxanthone [M+H]+ 5.456 C27H32O16 612.167 9 331.251 2

13
1-O-龙胆二糖基-3,7-二甲氧基-8-羟基黄酮1-O-gentiobiosyl-
3,7-dimethoxy-8-hydroxyxanthone [M+H]+ 6.096 C27H32O16 612.168 6 371.248 1

14
2,3,4,7-四甲氧基黄酮-1-O-β-D-吡喃木糖-(1-6)-β-D-吡喃葡萄
糖苷2,3,4,7-tetramethoxyxanthone-1- O-β-D-xylopyranosyl-(1-
6)- β-D-glucopyranoside

[M+H]+ 6.354 C28H34O16 626.183 7 277.182 2

15 穿心莲素F andrographin F [M+H]+ 6.613 C25H28O13 536.151 6 539.214 2

16 宝藿苷Ⅰ baohuoside Ⅰ [M+H]+ 11.492 C27H30O10 515.192 0 328.251 0

17 表紫草氰苷Ⅱ epimedokoreanoside Ⅱ [M+H]+ 14.196 C36H44O16 733.268 9 279.233 8

18 矢车菊素3-O-β-D-半乳糖苷cyanidin 3- O-β-D-galactoside [M+H]+ 15.646 C21H21O11 449.109 6 291.179 5
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β-D-半乳糖苷的肾脏保护与 5,7,2',4',6'-五甲氧基黄酮的 β 细胞抗氧化形成并发症防御网，而宝藿苷Ⅰ的

神经保护与其他成分的肝糖调控共同维护多器官功能。第三是药代动力学增效。比如宝藿苷Ⅰ的自组装

胶束技术可迁移应用于其他成分，甘草黄酮醇的分散片工艺也能提升整体生物利用度[31]。因此慈竹竹叶

黄酮是一种具有降血糖潜力的活性成分。 

2.2    竹叶黄酮生物活性测试结果分析 

2.2.1    抑制 α-葡萄糖苷酶活性    α-葡萄糖苷酶抑制剂作为口服型抗高血糖药物，其作用机制是通过选择

性抑制小肠上皮细胞的多种 α-葡萄糖苷酶，延缓食物中碳水化合物分解为单糖的生化过程，同时减缓肠

道黏膜对葡萄糖的摄取速率，从而有效控制餐后血糖波动，达到平稳降糖的治疗效果[32]。

图 2A 所示：纯化竹叶黄酮对 α-葡萄糖苷酶的抑制活性呈现剂量依赖性增强趋势，其抑制率随质量

浓度的升高而明显提升。当与阳性对照药物阿卡波糖进行相同质量浓度比较时，阿卡波糖表现出更强的

酶抑制效应。同时，随着纯化竹叶黄酮质量浓度的梯度增加，两者间的抑制活性差异趋于缩小。酶抑制

活性评价结果表明：纯化竹叶黄酮对 α-葡萄糖苷酶的半抑制质量浓度 (IC50) 为 (0.071±0.004) mg·mL−1，

阿卡波糖的 IC50 为 (0.034±0.002) mg·mL−1，虽然纯化竹叶黄酮高于阿卡波糖，但在 0.5 mg·mL−1 质量浓

度下，阿卡波糖与纯化竹叶黄酮对 α-葡萄糖苷酶的抑制率分别为 97.97%±4.62% 和 74.17%±6.17%，表明

纯化竹叶黄酮在此浓度阈值下已具备作为 α-葡萄糖苷酶抑制剂的潜力。李翱翔等[33] 研究显示：流苏香

竹 Chimonocalamus fimbriatus 叶黄酮在 0.5 mg·mL−1 质量浓度下，对 α-葡萄糖苷酶的抑制率只有 30%，

而本研究表明：纯化竹叶黄酮在相同质量浓度下对 α-葡萄糖苷酶的抑制率达 74.17% (图 2A)，表明慈竹

相比于其他常见竹种，在降血糖方面有着更明显的优势。

双倒数动力学分析结果 (图 2B) 表明：纯化竹叶黄酮对 α-葡萄糖苷酶抑制动力学特征呈现明显剂量

依赖性。随着纯化竹叶黄酮质量浓度梯度的升高，Lineweaver-Burk 曲线的斜率呈现规律性递增，而 x 轴

截距则随质量浓度上升逐步向原点偏移。分析表明：米氏常数 (Km) 随着抑制剂质量浓度的增加呈线性

升高趋势，而最大反应速率 (Vmax) 则随着质量浓度的增加而下降。此外，不同质量浓度拟合直线在第二
 

Vmax为最大反应速率；S为底物质量浓度(mg·mL−1)；Km为米氏常数(g·L−1)。
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图 2    纯化竹叶黄酮对 α-葡萄糖苷酶的抑制作用
Figure 2    Inhibition effect of purified bamboo leaf flavonoids on α-glucosidase
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象限形成交点，呈现出竞争性-非竞争性混合抑制的特点。综合上述特征，可判定纯化竹叶黄酮对 α-葡
萄糖苷酶的抑制属于混合型抑制机制，其同时具备竞争性和非竞争性抑制的动力学特征。

根据纯化竹叶黄酮抑制 α-葡萄糖苷酶的动力学参数分析 (表 3)，其作用机制通过双倒数作图法计

算，通过构建不同抑制剂质量浓度下的纵截距 (1/Vmax) 和斜率 (Km/Vmax) 以及作用质量浓度的二次线性回

归模型 (图 2C、D)，计算获得酶抑制常数 (KI=0.020  7  mg·mL−1) 及酶 -底物复合物抑制常数 (KIS=
1.103 1 mg·mL−1)。动力学特征显示：KI 低于 KIS，

表明纯化竹叶黄酮更倾向于与游离态 α-葡萄糖苷酶

发生高亲和力结合，这种选择性结合优势通过竞争

性占据酶活性中心，从而降低底物催化转化效率，

实现有效的降血糖作用。 

2.2.2    抑制 α-淀粉酶的活性    通过抑制 α-淀粉酶的

催化活性，可有效阻断食物中淀粉类碳水化合物的

酶解进程，使其裂解为可被肠道直接吸收的双糖

(如麦芽糖、异麦芽糖等)。这种酶活性调控能够延

长碳水化合物的消化时间，降低葡萄糖的吸收，从

而实现对餐后血糖波动的干预。该作用机制从源头

上控制葡萄糖的生成与吸收速率，为 2 型糖尿病患者

提供了基于碳水化合物代谢调控的新型治疗路径[34]。

图 3A 所示：纯化竹叶黄酮对 α-淀粉酶的抑制

活性呈现剂量依赖效应，其抑制效率与样品质量浓

度呈正相关。在 0.1~0.5  mg·mL−1 质量浓度区间内，阳性对照阿卡波糖的 IC50 为 (0.011±0.003)
mg·mL−1，低于纯化竹叶黄酮 [IC50 为 (0.057±0.005) mg·mL−1]，表明阿卡波糖具有更强的酶结合亲和

力，然而当质量浓度达 0.5 mg·mL−1 时，阿卡波糖对 α-淀粉酶的抑制率为 91.67%±2.08%，与纯化竹叶黄

 

表 3    纯化竹叶黄酮对 α-葡萄糖苷酶抑制作用
的Michaelis-Menten方程

Table 3    Michaelis-Menten  equation  for  inhibition  effect  of  α-
glucosidase by purified bamboo leaf flavonoids

纯化竹叶黄

酮质量浓度

/(mg·mL−1)
Michaelis-Menten方程 R2

0.02 1
V
=

103.258 5
S

+5.864 2 0.960 6

0.04 1
V
=

105.223 7
S

+8.902 0 0.974 0

0.06 1
V
=

107.194 5
S

+11.692 1 0.980 9

0.08 1
V
=

108.909 4
S

+14.499 0 0.982 0

0.10 1
V
=

110.618 0
S

+17.548 9 0.992 2

　　说明：V为酶促反应速率；S为底物质量浓度(mg·mL−1)。
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图 3    纯化竹叶黄酮对 α-淀粉酶的抑制作用
Figure 3    Inhibition effect of α-amylase by purified bamboo leaf flavonoids
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酮对 α-淀粉酶的抑制率 (79.71%±5.02%) 差异缩小，表明纯化竹叶黄酮在此质量浓度下具有与临床药物

相近的 α-淀粉酶抑制效率。

根据纯化竹叶黄酮对 α-淀粉酶的双倒数动力学解析 (图 3B)，通过双倒数作图法构建了纵截距

(1/Vmax) 和斜率 (Km/Vmax) 随着抑制剂质量浓度变化的线性回归模型。由图 3C、D 表明：Km 随着抑制剂

质量浓度的增加呈线性升高趋势，而 Vmax 则随着质量浓度的增加而下降。动力学参数计算显示：纯化竹

叶黄酮抑制动力学呈现出随着样品质量浓度的递增，Lineweaver-Burk 拟合直线在第二象限形成收敛交

点，同时伴随 Vmax 的降低以及 Km 的升高。这种动力学参数的协同变化符合混合型抑制的核心判据，说

明纯化竹叶黄酮可能通过双重作用机制干扰酶催化过程。

根据表 4 所示：纯化竹叶黄酮对游离酶的抑制

常数 (KI=0.043 6 mg·mL−1) 低于对酶-底物复合物的

抑制常数 (KIS=1.346 9 mg·mL−1)，其与游离酶的结

合效率较 ES 复合物提升约 31 倍。这种选择性结合

特性通过优先占据酶活性位点，有效阻断底物催化

进程，使 Km 增加 3.2 倍的同时，Vmax 下降 58%，从

分子层面揭示了其通过竞争-变构双模调控实现碳水

化合物消化延滞的降糖机制。 

3    结论

本研究表明：纯化竹叶黄酮对 α-葡萄糖苷酶和

α-淀粉酶均表现出剂量依赖性混合型抑制特性。通

过 Lineweaver-Burk 双倒数作图验证了纯化竹叶黄酮

对 2 种酶的抑制机制及竞争性与非竞争性特征，说

明纯化竹叶黄酮在降血糖方面有着良好的表现，可

为慈竹竹叶纯化黄酮在糖尿病临床及日常应用方面提供有益指导。
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