[1] |
POOVAIAH B W, MCFADDEN J J, REDDY A S. The role of calcium ions in gravity signal perception and transduction [J]. Physiologia Plantarum, 1987, 71(3): 401−407. |
[2] |
BUSH, DOUGLAS S. Calcium regulation in plant cells and its role in signaling [J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1995, 46(1): 95−122. |
[3] |
ASAI N, NISHIOKA T, TAKABAYASHI J, et al. Plant volatiles regulate the activities of Ca2+-permeable channels and promote cytoplasmic calcium transients in Arabidopsis leaf cells [J]. Plant Signaling & Behavior, 2009, 4(4): 294−300. |
[4] |
DUPONT G, COMBETTES L, BIRD G S, et al. Calcium oscillations [J/OL]. Cold Spring Harbor Perspectives in Biology, 2011, 3 (3): a004226[2024-05-01]. DOI: 10.1101/cshperspect.a004226. |
[5] |
STEPHAN A B, SCHROEDER J I. Plant salt stress status is transmitted systemically via propagating calcium waves [J]. Proceedings of the National Academy of Sciences, 2014, 111(17): 6126−6127. |
[6] |
TIAN Wang, WANG Chao, GAO Qifei, et al. Calcium spikes, waves and oscillations in plant development and biotic interactions [J]. Nature Plants, 2020, 6(7): 750−759. |
[7] |
LI Feng, WANG Jing, MA Chunli, et al. Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis [J]. Plant Physiology, 2013, 162(3): 1497−1509. |
[8] |
HOLDAWAY-CLARKE T L, FEIJO J A, HACKETT G R, et al. Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed [J]. The Plant Cell, 1997, 9(11): 1999−2010. |
[9] |
YANG Huimin, ZHANG Xiaoyan, WANG Genxuan. Cytosolic calcium oscillation signaling in guard cell [J]. Plant Science, 2004, 166(3): 549−556. |
[10] |
DODD A N, LOVE J, WEBB A A. The plant clock shows its metal: circadian regulation of cytosolic free Ca2+ [J]. Trends in Plant Science, 2005, 10(1): 15−21. |
[11] |
MONSHAUSEN G B, MESSERLI M A, GILROY S. Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis [J]. Plant Physiology, 2008, 147(4): 1690−1698. |
[12] |
KEINATH N F, WAADT R, BRUGMAN R, et al. Live cell imaging with R-GECO1 sheds light on flg22- and chitin-induced transient [Ca2+]cyt patterns in Arabidopsis [J]. Molecular Plant, 2015, 8(8): 1188−1200. |
[13] |
GRADOGNA A, CARPANETO A. Electrophysiology and fluorescence to investigate cation channels and transporters in isolated plant vacuoles [J/OL]. Stress Biology, 2022, 2 (1): 42[2024-05-01]. DOI: 10.1007/s44154-022-00064-z. |
[14] |
CARAFOLI E, SANTELLA L, NICOTERA P. Calcium signaling in the cell nucleus [J]. Cell Calcium, 1997, 22(5): 313−319. |
[15] |
CORTESE E, MOSCATIELLO R, PETTITI F, et al. Monitoring calcium handling by the plant endoplasmic reticulum with a low-Ca2+-affinity targeted aequorin reporter [J]. The Plant Journal, 2022, 109(4): 1014−1027. |
[16] |
MA Yun, DAI Xiaoyan, XU Yunyuan, et al. COLD1 confers chilling tolerance in rice [J]. Cell, 2015, 160 (6): 1209−1221. |
[17] |
YUAN Fang, YANG Huimin, YAN Xue, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis [J]. Nature, 2014, 514(7522): 367−371. |
[18] |
JIANG Zhonghao, ZHOU Xiaoping, TAO Ming, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx [J]. Nature, 2019, 572(7769): 341−346. |
[19] |
LAOHAVISIT A, WAKATAKE T, ISHIHAMA N, et al. Quinone perception in plants via leucine-rich-repeat receptor-like kinases [J]. Nature, 2020, 587(7832): 92−97. |
[20] |
WU Feihua, CHI Yuan, JIANG Zhongbao, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis [J]. Nature, 2020, 578(7796): 577−581. |
[21] |
RINGER S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart [J]. The Journal of Physiology, 1883, 4(1): 29−42, 23. |
[22] |
HEILBRUNN L V, WIERCINSKI F J. The action of various cations on muscle protoplasm [J]. Journal of Cellular and Comparative Physiology, 1947, 29(1): 15−32. |
[23] |
KINOSITA H. Discovery of the role of Ca2+ in muscle contraction. My days with the late Professor Takeo Kamada [J]. Advances in Biophysics, 1984, 17: 1−4, 23. |
[24] |
CHEUNG W. Cyclic 3′, 5′-nucleotide phosphodiesterase. Demonstration of an activator [J]. Biochemical and Biophysical Research Communications, 1970, 38(3): 533−538. |
[25] |
NEHER E, SAKMANN B. Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibres [J]. The Journal of Physiology, 1976, 258(3): 705−729. |
[26] |
TSIEN R Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures [J]. Biochemistry, 1980, 19(11): 2396−2404. |
[27] |
TSIEN R Y, RINK T J, POENIE M. Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths [J]. Cell Calcium, 1985, 6(1/2): 145−157. |
[28] |
MINTA A, KAO J P, TSIEN R Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores [J]. The Journal of Biological Chemistry, 1989, 264(14): 8171−8178. |
[29] |
SHIMOMURA O, JOHNSON F H, SAIGA Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea [J]. Journal of Cellular and Comparative Physiology, 1962, 59: 223−239. |
[30] |
LORO G, DRAGO I, POZZAN T, et al. Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells [J]. The Plant Journal, 2012, 71(1): 1−13. |
[31] |
COSTA A, CANDEO A, FIERAMONTI L, et al. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy [J/OL]. PLoS One, 2013, 8 (10): e75646[2024-05-01]. DOI: 10.1371/journal.pone.0075646. |
[32] |
NAKAI J, OHKURA M, IMOTO K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein [J]. Nature Biotechnology, 2001, 19(2): 137−141. |
[33] |
MCAINSH M R, NG C K. Measurement of cytosolic-free Ca²+ in plant tissue [J]. Methods in Molecular Biology, 2005, 312: 289−302. |
[34] |
GRYNKIEWICZ G, POENIE M, TSIEN R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties [J]. The Journal of Biological Chemistry, 1985, 260(6): 3440−3450. |
[35] |
王永祥, 刘斌. 细胞内游离Ca2+的荧光指示剂研究进展[J]. 西安文理学院学报(自然科学版), 2006, 9(1): 21−24.
WANG Yongxiang, LIU Bin. Development of fluorescent indicators of intracellular free Ca2+ [J]. Journal of Xi’an University of Arts & Science (Natural Science Edition), 2006, 9(1): 21−24. |
[36] |
BUSH D S, JONES R L. Measurement of cytoplasmic calcium in aleurone protoplasts using indo-1 and fura-2 [J]. Cell Calcium, 1987, 8(6): 455−472. |
[37] |
CALDER G M, FRANKLIN-TONG V E, SHAW P J, et al. Ca2+ oscillations in plant cells: initiation by rapid elevation in cytosolic free Ca2+ levels [J]. Biochemical and Biophysical Research Communications, 1997, 234(3): 690−694. |
[38] |
JOHNSON I. Just-right light: inherently adaptive for application-specific needs [J]. Laser Focus World, 2017, 53(2): 30−33. |
[39] |
DIGONNET C, ALDON D, LEDUC N, et al. First evidence of a calcium transient in flowering plants at fertilization [J]. Development, 1997, 124(15): 2867−2874. |
[40] |
姚洁, 孙津歌, 史乐谦, 等. 细胞内自由钙离子的测定 ——荧光指示剂法[J]. 资源节约与环保, 2019(7): 136−137.
YAO Jie, SUN Jin’ge, SHI Leqian, et al. Determination of intracellular free calcium ions by fluorescence indicator method [J]. Resources Economization & Environmental Protection, 2019(7): 136−137. |
[41] |
WILLIAMS D A, CODY S H, GEHRING C A, et al. Confocal imaging of ionised calcium in living plant cells [J]. Cell Calcium, 1990, 11(4): 291−297. |
[42] |
WALCZYSKO P, WAGNER E, ALBRECHTOVÁ J T. Use of co-loaded fluo-3 and fura Red fluorescent indicators for studying the cytosolic Ca2+ concentrations distribution in living plant tissue [J]. Cell Calcium, 2000, 28(1): 23−32. |
[43] |
QU Haiyong, JIANG Xueting, SHI Zebin, et al. Fast loading ester fluorescent Ca2+ and pH indicators into pollen of Pyrus pyrifolia [J]. Journal of Plant Research, 2012, 125(1): 185−195. |
[44] |
ZHANG Mi, CAO Huizhen, HOU Lei, et al. In vivo imaging of Ca2+ accumulation during cotton fiber initiation using fluorescent indicator YC3.60 [J]. Plant Cell Reports, 2017, 36(6): 911−918. |
[45] |
QIU Li’na, HUANG Daqing, WANG Yongzhang, et al. Staining the cytoplasmic Ca2+ with fluo-4/AM in apple pulp [J/OL]. Journal of Visualized Experiments, 2021(177): e62526[2024-05-01]. DOI: 10.3791/62526. |
[46] |
BEHERA S, KREBS M, LORO G, et al. Ca2+ imaging in plants using genetically encoded Yellow Cameleon Ca2+ indicators [J]. Cold Spring Harbor Protocols, 2013(8): 700−703. |
[47] |
PALMER A E, QIN Yan, PARK J G, et al. Design and application of genetically encoded biosensors [J]. Trends in Biotechnology, 2011, 29(3): 144−152. |
[48] |
GRENZI M, RESENTINI F, VANNESTE S, et al. Illuminating the hidden world of calcium ions in plants with a universe of indicators [J]. Plant Physiology, 2021, 187(2): 550−571. |
[49] |
KNIGHT M R, CAMPBELL A K, SMITH S M, et al. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium [J]. Nature, 1991, 352(6335): 524−526. |
[50] |
JOHNSON C H, KNIGHT M R, KONDO T, et al. Circadian oscillations of cytosolic and chloroplastic free calcium in plants [J]. Science, 1995, 269(5232): 1863−1865. |
[51] |
CHANDRA S, STENNIS M, LOW P S. Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells [J]. The Journal of Biological Chemistry, 1997, 272(45): 28274−28280. |
[52] |
MAZARS C, THION L, THULEAU P, et al. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts [J]. Cell Calcium, 1997, 22(5): 413−420. |
[53] |
KIEGLE E, MOORE C A, HASELOFF J, et al. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root [J]. The Plant Journal, 2000, 23(2): 267−278. |
[54] |
WOOD N T, HALEY A, VIRY-MOUSSAÏD M, et al. The calcium rhythms of different cell types oscillate with different circadian phases [J]. Plant Physiology, 2001, 125(2): 787−796. |
[55] |
TRACY F E, GILLIHAM M, DODD A N, et al. NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition [J]. Plant Cell Environment, 2008, 31(8): 1063−1073. |
[56] |
KNIGHT M R, READ N D, CAMPBELL A K, et al. Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins [J]. The Journal of Cell Biology, 1993, 121(1): 83−89. |
[57] |
SEDBROOK J C, KRONEBUSCH P J, BORISY G G, et al. Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia and Arabidopsis thaliana seedlings [J]. Plant Physiology, 1996, 111(1): 243−257. |
[58] |
ALLEN G J, KWAK J M, CHU S P, et al. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells [J]. The Plant Journal, 1999, 19(6): 735−747. |
[59] |
MIYAWAKI A, GRIESBECK O, HEIM R, et al. Dynamic and quantitative Ca2+ measurements using improved cameleons [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 2135−2140. |
[60] |
GRIESBECK O, BAIRD G S, CAMPBELL R E, et al. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications [J]. The Journal of Biological Chemistry, 2001, 276(31): 29188−29194. |
[61] |
TANAKA K, SWANSON S J, GILROY S, et al. Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis [J]. Plant Physiology, 2010, 154(2): 705−719. |
[62] |
IWANO M, ENTANI T, SHIBA H, et al. Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth [J]. Plant Physiology, 2009, 150(3): 1322−1334. |
[63] |
RINCÓN-ZACHARY M, TEASTER N D, SPARKS J A, et al. Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations [J]. Plant Physiology, 2010, 152(3): 1442−1458. |
[64] |
KREBS M, SCHUMACHER K. Live cell imaging of cytoplasmic and nuclear Ca2+ dynamics in Arabidopsis roots [J]. Cold Spring Harbor protocols, 2013, 2013(8): 776−780. |
[65] |
BARBERINI M L, MUSCHIETTI J. Imaging of calcium dynamics in pollen tube cytoplasm [J]. Methods in Molecular Biology, 2015, 1242: 49−57. |
[66] |
BARBERINI M L, SIGAUT L, HUANG Weijie, et al. Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor [J]. Plant Reproduction, 2018, 31(2): 159−169. |
[67] |
LORO G, COSTA A. Imaging of mitochondrial and nuclear Ca2+ dynamics in Arabidopsis roots [J]. Cold Spring Harbor Protocols, 2013(8): 781−785. |
[68] |
BEHERA S, WANG Nili, ZHANG Chunxia, et al. Analyses of Ca2+ dynamics using a ubiquitin-10 promoter-driven Yellow Cameleon 3.6 indicator reveal reliable transgene expression and differences in cytoplasmic Ca2+ responses in Arabidopsis and rice (Oryza sativa) roots [J]. New Phytologist, 2015, 206(2): 751−760. |
[69] |
LORO G, RUBERTI C, ZOTTINI M, et al. The D3cpv Cameleon reports Ca2+ dynamics in plant mitochondria with similar kinetics of the YC3.6 Cameleon, but with a lower sensitivity [J]. Journal of Microscopy, 2013, 249(1): 8−12. |
[70] |
AKERBOOM J, RIVERA J D, GUILBE M M, et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design [J]. The Journal of Biological Chemistry, 2009, 284(10): 6455−6464. |
[71] |
TALLINI Y N, OHKURA M, CHOI B-R, et al. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2 [J]. Proceedings of the National Academy of Sciences, 2006, 103(12): 4753−4758. |
[72] |
ZHANG Yachun, ZHANG Donghui, HUANG Shanjin, et al. Real-time calcium imaging in living plants [J]. Trends in Plant Science, 2023, 28(11): 1326−1327. |
[73] |
CHOI W G, SWANSON S J, GILROY S. High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors [J]. The Plant Journal, 2012, 70(1): 118−128. |