[1] POOVAIAH B W, MCFADDEN J J, REDDY A S. The role of calcium ions in gravity signal perception and transduction [J]. Physiologia Plantarum, 1987, 71(3): 401 − 407.
[2] BUSH, DOUGLAS S. Calcium regulation in plant cells and its role in signaling [J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1995, 46(1): 95 − 122.
[3] ASAI N, NISHIOKA T, TAKABAYASHI J, et al. Plant volatiles regulate the activities of Ca2+-permeable channels and promote cytoplasmic calcium transients in Arabidopsis leaf cells [J]. Plant Signaling & Behavior, 2009, 4(4): 294 − 300.
[4] DUPONT G, COMBETTES L, BIRD G S, et al. Calcium oscillations [J/OL]. Cold Spring Harbor Perspectives in Biology, 2011, 3 (3): a004226[2024-05-01]. doi: 10.1101/cshperspect.a004226.
[5] STEPHAN A B, SCHROEDER J I. Plant salt stress status is transmitted systemically via propagating calcium waves [J]. Proceedings of the National Academy of Sciences, 2014, 111(17): 6126 − 6127.
[6] TIAN Wang, WANG Chao, GAO Qifei, et al. Calcium spikes, waves and oscillations in plant development and biotic interactions [J]. Nature Plants, 2020, 6(7): 750 − 759.
[7] LI Feng, WANG Jing, MA Chunli, et al. Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis [J]. Plant Physiology, 2013, 162(3): 1497 − 1509.
[8] HOLDAWAY-CLARKE T L, FEIJO J A, HACKETT G R, et al. Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed [J]. The Plant Cell, 1997, 9(11): 1999 − 2010.
[9] YANG Huimin, ZHANG Xiaoyan, WANG Genxuan. Cytosolic calcium oscillation signaling in guard cell [J]. Plant Science, 2004, 166(3): 549 − 556.
[10] DODD A N, LOVE J, WEBB A A. The plant clock shows its metal: circadian regulation of cytosolic free Ca2+ [J]. Trends in Plant Science, 2005, 10(1): 15 − 21.
[11] MONSHAUSEN G B, MESSERLI M A, GILROY S. Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis [J]. Plant Physiology, 2008, 147(4): 1690 − 1698.
[12] KEINATH N F, WAADT R, BRUGMAN R, et al. Live cell imaging with R-GECO1 sheds light on flg22- and chitin-induced transient [Ca2+]cyt patterns in Arabidopsis [J]. Molecular Plant, 2015, 8(8): 1188 − 1200.
[13] GRADOGNA A, CARPANETO A. Electrophysiology and fluorescence to investigate cation channels and transporters in isolated plant vacuoles [J/OL]. Stress Biology, 2022, 2 (1): 42[2024-05-01]. doi: 10.1007/s44154-022-00064-z.
[14] CARAFOLI E, SANTELLA L, NICOTERA P. Calcium signaling in the cell nucleus [J]. Cell Calcium, 1997, 22(5): 313 − 319.
[15] CORTESE E, MOSCATIELLO R, PETTITI F, et al. Monitoring calcium handling by the plant endoplasmic reticulum with a low-Ca2+-affinity targeted aequorin reporter [J]. The Plant Journal, 2022, 109(4): 1014 − 1027.
[16] MA Yun, DAI Xiaoyan, XU Yunyuan, et al. COLD1 confers chilling tolerance in rice [J]. Cell, 2015, 160 (6): 1209 − 1221.
[17] YUAN Fang, YANG Huimin, YAN Xue, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis [J]. Nature, 2014, 514(7522): 367 − 371.
[18] JIANG Zhonghao, ZHOU Xiaoping, TAO Ming, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx [J]. Nature, 2019, 572(7769): 341 − 346.
[19] LAOHAVISIT A, WAKATAKE T, ISHIHAMA N, et al. Quinone perception in plants via leucine-rich-repeat receptor-like kinases [J]. Nature, 2020, 587(7832): 92 − 97.
[20] WU Feihua, CHI Yuan, JIANG Zhongbao, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis [J]. Nature, 2020, 578(7796): 577 − 581.
[21] RINGER S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart [J]. The Journal of Physiology, 1883, 4(1): 29 − 42, 23.
[22] HEILBRUNN L V, WIERCINSKI F J. The action of various cations on muscle protoplasm [J]. Journal of Cellular and Comparative Physiology, 1947, 29(1): 15 − 32.
[23] KINOSITA H. Discovery of the role of Ca2+ in muscle contraction. My days with the late Professor Takeo Kamada [J]. Advances in Biophysics, 1984, 17: 1 − 4, 23.
[24] CHEUNG W. Cyclic 3′, 5′-nucleotide phosphodiesterase. Demonstration of an activator [J]. Biochemical and Biophysical Research Communications, 1970, 38(3): 533 − 538.
[25] NEHER E, SAKMANN B. Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibres [J]. The Journal of Physiology, 1976, 258(3): 705 − 729.
[26] TSIEN R Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures [J]. Biochemistry, 1980, 19(11): 2396 − 2404.
[27] TSIEN R Y, RINK T J, POENIE M. Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths [J]. Cell Calcium, 1985, 6(1/2): 145 − 157.
[28] MINTA A, KAO J P, TSIEN R Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores [J]. The Journal of Biological Chemistry, 1989, 264(14): 8171 − 8178.
[29] SHIMOMURA O, JOHNSON F H, SAIGA Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea [J]. Journal of Cellular and Comparative Physiology, 1962, 59: 223 − 239.
[30] LORO G, DRAGO I, POZZAN T, et al. Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells [J]. The Plant Journal, 2012, 71(1): 1 − 13.
[31] COSTA A, CANDEO A, FIERAMONTI L, et al. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy [J/OL]. PLoS One, 2013, 8 (10): e75646[2024-05-01]. doi: 10.1371/journal.pone.0075646.
[32] NAKAI J, OHKURA M, IMOTO K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein [J]. Nature Biotechnology, 2001, 19(2): 137 − 141.
[33] MCAINSH M R, NG C K. Measurement of cytosolic-free Ca²+ in plant tissue [J]. Methods in Molecular Biology, 2005, 312: 289 − 302.
[34] GRYNKIEWICZ G, POENIE M, TSIEN R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties [J]. The Journal of Biological Chemistry, 1985, 260(6): 3440 − 3450.
[35] 王永祥, 刘斌. 细胞内游离Ca2+的荧光指示剂研究进展[J]. 西安文理学院学报(自然科学版), 2006, 9(1): 21 − 24.

WANG Yongxiang, LIU Bin. Development of fluorescent indicators of intracellular free Ca2+ [J]. Journal of Xi’an University of Arts & Science (Natural Science Edition), 2006, 9(1): 21 − 24.
[36] BUSH D S, JONES R L. Measurement of cytoplasmic calcium in aleurone protoplasts using indo-1 and fura-2 [J]. Cell Calcium, 1987, 8(6): 455 − 472.
[37] CALDER G M, FRANKLIN-TONG V E, SHAW P J, et al. Ca2+ oscillations in plant cells: initiation by rapid elevation in cytosolic free Ca2+ levels [J]. Biochemical and Biophysical Research Communications, 1997, 234(3): 690 − 694.
[38] JOHNSON I. Just-right light: inherently adaptive for application-specific needs [J]. Laser Focus World, 2017, 53(2): 30 − 33.
[39] DIGONNET C, ALDON D, LEDUC N, et al. First evidence of a calcium transient in flowering plants at fertilization [J]. Development, 1997, 124(15): 2867 − 2874.
[40] 姚洁, 孙津歌, 史乐谦, 等. 细胞内自由钙离子的测定 ——荧光指示剂法[J]. 资源节约与环保, 2019(7): 136 − 137.

YAO Jie, SUN Jin’ge, SHI Leqian, et al. Determination of intracellular free calcium ions by fluorescence indicator method [J]. Resources Economization & Environmental Protection, 2019(7): 136 − 137.
[41] WILLIAMS D A, CODY S H, GEHRING C A, et al. Confocal imaging of ionised calcium in living plant cells [J]. Cell Calcium, 1990, 11(4): 291 − 297.
[42] WALCZYSKO P, WAGNER E, ALBRECHTOVÁ J T. Use of co-loaded fluo-3 and fura Red fluorescent indicators for studying the cytosolic Ca2+ concentrations distribution in living plant tissue [J]. Cell Calcium, 2000, 28(1): 23 − 32.
[43] QU Haiyong, JIANG Xueting, SHI Zebin, et al. Fast loading ester fluorescent Ca2+ and pH indicators into pollen of Pyrus pyrifolia [J]. Journal of Plant Research, 2012, 125(1): 185 − 195.
[44] ZHANG Mi, CAO Huizhen, HOU Lei, et al. In vivo imaging of Ca2+ accumulation during cotton fiber initiation using fluorescent indicator YC3.60 [J]. Plant Cell Reports, 2017, 36(6): 911 − 918.
[45] QIU Li’na, HUANG Daqing, WANG Yongzhang, et al. Staining the cytoplasmic Ca2+ with fluo-4/AM in apple pulp [J/OL]. Journal of Visualized Experiments, 2021(177): e62526[2024-05-01]. doi: 10.3791/62526.
[46] BEHERA S, KREBS M, LORO G, et al. Ca2+ imaging in plants using genetically encoded Yellow Cameleon Ca2+ indicators [J]. Cold Spring Harbor Protocols, 2013(8): 700 − 703.
[47] PALMER A E, QIN Yan, PARK J G, et al. Design and application of genetically encoded biosensors [J]. Trends in Biotechnology, 2011, 29(3): 144 − 152.
[48] GRENZI M, RESENTINI F, VANNESTE S, et al. Illuminating the hidden world of calcium ions in plants with a universe of indicators [J]. Plant Physiology, 2021, 187(2): 550 − 571.
[49] KNIGHT M R, CAMPBELL A K, SMITH S M, et al. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium [J]. Nature, 1991, 352(6335): 524 − 526.
[50] JOHNSON C H, KNIGHT M R, KONDO T, et al. Circadian oscillations of cytosolic and chloroplastic free calcium in plants [J]. Science, 1995, 269(5232): 1863 − 1865.
[51] CHANDRA S, STENNIS M, LOW P S. Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells [J]. The Journal of Biological Chemistry, 1997, 272(45): 28274 − 28280.
[52] MAZARS C, THION L, THULEAU P, et al. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts [J]. Cell Calcium, 1997, 22(5): 413 − 420.
[53] KIEGLE E, MOORE C A, HASELOFF J, et al. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root [J]. The Plant Journal, 2000, 23(2): 267 − 278.
[54] WOOD N T, HALEY A, VIRY-MOUSSAÏD M, et al. The calcium rhythms of different cell types oscillate with different circadian phases [J]. Plant Physiology, 2001, 125(2): 787 − 796.
[55] TRACY F E, GILLIHAM M, DODD A N, et al. NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition [J]. Plant Cell Environment, 2008, 31(8): 1063 − 1073.
[56] KNIGHT M R, READ N D, CAMPBELL A K, et al. Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins [J]. The Journal of Cell Biology, 1993, 121(1): 83 − 89.
[57] SEDBROOK J C, KRONEBUSCH P J, BORISY G G, et al. Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia and Arabidopsis thaliana seedlings [J]. Plant Physiology, 1996, 111(1): 243 − 257.
[58] ALLEN G J, KWAK J M, CHU S P, et al. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells [J]. The Plant Journal, 1999, 19(6): 735 − 747.
[59] MIYAWAKI A, GRIESBECK O, HEIM R, et al. Dynamic and quantitative Ca2+ measurements using improved cameleons [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 2135 − 2140.
[60] GRIESBECK O, BAIRD G S, CAMPBELL R E, et al. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications [J]. The Journal of Biological Chemistry, 2001, 276(31): 29188 − 29194.
[61] TANAKA K, SWANSON S J, GILROY S, et al. Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis [J]. Plant Physiology, 2010, 154(2): 705 − 719.
[62] IWANO M, ENTANI T, SHIBA H, et al. Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth [J]. Plant Physiology, 2009, 150(3): 1322 − 1334.
[63] RINCÓN-ZACHARY M, TEASTER N D, SPARKS J A, et al. Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations [J]. Plant Physiology, 2010, 152(3): 1442 − 1458.
[64] KREBS M, SCHUMACHER K. Live cell imaging of cytoplasmic and nuclear Ca2+ dynamics in Arabidopsis roots [J]. Cold Spring Harbor protocols, 2013, 2013(8): 776 − 780.
[65] BARBERINI M L, MUSCHIETTI J. Imaging of calcium dynamics in pollen tube cytoplasm [J]. Methods in Molecular Biology, 2015, 1242: 49 − 57.
[66] BARBERINI M L, SIGAUT L, HUANG Weijie, et al. Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor [J]. Plant Reproduction, 2018, 31(2): 159 − 169.
[67] LORO G, COSTA A. Imaging of mitochondrial and nuclear Ca2+ dynamics in Arabidopsis roots [J]. Cold Spring Harbor Protocols, 2013(8): 781 − 785.
[68] BEHERA S, WANG Nili, ZHANG Chunxia, et al. Analyses of Ca2+ dynamics using a ubiquitin-10 promoter-driven Yellow Cameleon 3.6 indicator reveal reliable transgene expression and differences in cytoplasmic Ca2+ responses in Arabidopsis and rice (Oryza sativa) roots [J]. New Phytologist, 2015, 206(2): 751 − 760.
[69] LORO G, RUBERTI C, ZOTTINI M, et al. The D3cpv Cameleon reports Ca2+ dynamics in plant mitochondria with similar kinetics of the YC3.6 Cameleon, but with a lower sensitivity [J]. Journal of Microscopy, 2013, 249(1): 8 − 12.
[70] AKERBOOM J, RIVERA J D, GUILBE M M, et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design [J]. The Journal of Biological Chemistry, 2009, 284(10): 6455 − 6464.
[71] TALLINI Y N, OHKURA M, CHOI B-R, et al. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2 [J]. Proceedings of the National Academy of Sciences, 2006, 103(12): 4753 − 4758.
[72] NAKAI J, OHKURA M, IMOTO K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein [J]. Nature Biotechnology, 2001, 19(2): 137 − 141.
[73] ZHANG Yachun, ZHANG Donghui, HUANG Shanjin, et al. Real-time calcium imaging in living plants [J]. Trends in Plant Science, 2023, 28(11): 1326 − 1327.
[74] CHOI W G, SWANSON S J, GILROY S. High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors [J]. The Plant Journal, 2012, 70(1): 118 − 128.