[1] LI Yonghong, WANG Wei, LIU Zhongling, et al. Grazing gradient versus restoration succession of Leymus chinensis (Trin.) Tzvel. grassland in Inner Mongolia [J]. Restor Ecol, 2008, 16(4): 572-583.
[2] McNAUGHTON S J. Grazing as an optimization process: grass-ungulate relationships in the Serengeti [J]. Am Nat, 1979, 113(5):691-703.
[3] AKIYAMA T, KAWAMURA K. Grassland degradation in China: methods of monitoring, management and restoration[J]. Grassland Sci, 2007, 53(1): 1-17.
[4] HAN J G, ZHANG Y J, WANG C J, et al. Rangeland degradation and restoration management in China [J]. Rangeland J, 2008, 30(2): 233-239.
[5] 安钰, 沈应柏. 钙抑制剂对机械损伤胁迫下合作杨叶片活性氧代谢的影响[J]. 西北植物学报, 2011, 31(9): 1823-1827.

AN Yu, SHEN Yingbai. Effects of Calcium lnhibitors on reactive oxygen species metabolism in poplar leaves under mechanical damage stress [J]. Acta Bot Boreal-Occident Sin, 2011, 31(9): 1823-1827.
[6] 唐燕, 张继澍. 机械损伤对猕猴桃果实生理与膜脂过氧化的影响[J]. 中国食品学报, 2012, 12(4): 140-145.

TANG Yan, ZHANG Jishu. Influence of damages on kiwifruits of physiological index and membrane lipid peroxidation[J]. J Chin Inst Food Sci Technol, 2012, 12(4): 140-145.
[7] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12): 909-930.
[8] POLLE A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling: Computer simulations as a step towards flux analysis [J]. Plant Physiol, 2001, 126(1): 445-462.
[9] WU Yuexuan, von TIEDEMANN A. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone [J]. Environ Poll, 2002, 116(1): 37-47.
[10] HEATH R L. Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? [J]. Environ Poll, 2008, 155(3): 453-463.
[11] SHARMA P, JHA A B, DUBEY R S, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions [J]. J Bot, 2012, 2012: 1-26.
[12] RAO M V, HALE B A, ORMROD D P. Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide (role of antioxidant enzymes) [J]. Plant Physiol, 1995, 109(2): 421-432.
[13] ATHAR H R, KHAN A, ASHRAF M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat [J]. Environ Exp Bot, 2008, 63(1): 224-231.
[14] SHAH K, KUMAR R G, VERMA S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings [J]. Plant Sci, 2001, 161(6): 1135-1144.
[15] 王炜, 刘钟龄, 郝敦元, 等. 内蒙古草原退化群落恢复演替的研究(Ⅰ)退化草原的基本特征与恢复演替动力[J]. 植物生态学报, 1996, 20(5): 449-459.

WANG Wei, LIU Zhongling, HAO Duiyuan, et al. Research on the restoring succession of the degenerated grassland in Inner Mongolia(Ⅰ) Basic characteristics and driving force for restoration of the degenerated grassland [J]. Acta Phytoecol Sin, 1996, 20(5): 449-459.
[16] 汪诗平, 李永宏, 王艳芬, 等. 不同放牧率对内蒙古冷蒿草原植物多样性的影响[J]. 植物学报, 2001, 43(1): 89-96.

WANG Shiping, LI Yonghong, WANG Yanfen, et al. Influence of different stocking rates on plant diversity of Artemisia frigida community in Inner Mongolia steppe [J]. Acta Bot Sin, 2001, 43(1): 89-96.
[17] 王炜, 刘钟龄, 郝敦元, 等. 内蒙古草原退化群落恢复演替的研究(Ⅱ)恢复演替时间进程的分析[J]. 植物生态学报, 1996, 20(5): 460-471.

WANG Wei, LIU Zhongling, HAO Duiyuan, et al. Research on the restoring succession of the degenerated grassland in Inner Mongolia(Ⅱ)Analysis of the restoring processes [J]. Chin J Plant Ecol, 1996, 20(5): 460-471.
[18] 左照江, 张汝民, 王勇, 等. 冷蒿挥发性有机化合物主要成分分析及其地上部分结构研究[J]. 植物生态学报, 2010, 34(4): 462-468.

ZUO Zhaojiang, ZHANG Rumin, WANG Yong, et al. Analysis of main volatile organic compounds and study of aboveground structures in Artemisia frigida [J]. Chin J Plant Ecol, 2010, 34(4): 462-468.
[19] 赵康, 宝音陶格涛. 季节性放牧利用对典型草原群落生产力的影响[J]. 中国草地学报, 2014, 36(1): 109-115.

ZHAO Kang, Baoyintaogetao. Effect of seasonal grazing use on productivity of grassland community[J]. Chin J Grassland, 2014, 36(1): 109-115.
[20] 李衍青, 孙英杰, 张铜会, 等. 科尔沁沙地不同演替阶段冷蒿群落的结构特征[J]. 应用生态学报, 2011, 22(7): 1725-1730.

LI Yanqing, SUN Yingjie, ZHANG Tonghui, et al. Structural characteristics of Artemisia frigid community at different succession stages in Horqin Sandy Land [J]. Chin J Appl Ecol, 2011, 22(7): 1725-1730.
[21] 刘娜娜, 田秋英, 张文浩. 内蒙古典型草原优势种冷蒿和克氏针茅对土壤低磷环境适应策略的比较[J]. 植物生态学报, 2014, 38(9): 905-915.

LIU Nana, TIAN Qiuying, ZHANG Wenhao. Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol [J]. Chin J Plant Ecol, 2014, 38(9): 905-915.
[22] RAI A C, SINGH M, SHAH K. Effect of water withdrawal on formation of free radical, proline accumulation andactivities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants[J]. Plant Physiol Biochem, 2012, 61(4): 108-114.
[23] HODGES D M, DELONG J M, FORNEY C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds [J]. Planta, 1999, 207(4): 604-611.
[24] GIANNOPOLITIS C N, RIES S K. Superoxide dismutases(I)Occurrence in higher plants [J]. Plant physiol, 1977, 59(2): 309-314.
[25] KUMARI G J, REDDY A M, NAIK S T, et al. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings [J]. Biol Plant, 2006, 50(2): 219-226.
[26] RAI G K, RAI N P, RATHAUR S, et al. Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants [J]. Plant Physiol Biochem, 2013, 69: 90-100.
[27] NAKANO Y, ASADA K. HYDROGEN. Peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 1981, 22(5): 867-880.
[28] SCHAEDLE M, BASSHAM J A. Chloroplast glutathione reductase [J]. Plant Physiol, 1977, 59(5): 1011-1012.
[29] HOSSAIN M A, NAKANO Y, ASADA K. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide [J]. Plant Cell Physiol, 1984, 25(3): 385-395.
[30] DOULIS A G, DEBIAN N, KINGSTON-SMITH A H, et al. Differential localization of antioxidants in maize leaves[J]. Plant Physiol, 1997, 114(3): 1031-1037.
[31] 陈善娜, 梁斌, 张蜀君, 等. 云南高原水稻幼苗的抗冷性与其话性氧清除系统的关系[J]. 云南植物研究, 1995, 17(4):452-458.

CHEN Shanna, LIANG Bin, ZHANG Shujun, et al. The relationship between the cold resistance of rice seedlings in yunnan plateau and the scavenging systems of activated oxygen [J]. Acta Bot Yunnan, 1995, 17(4): 452-458.
[32] 高永生, 陈集双. 盐胁迫下镧对小麦幼苗叶片抗氧化系统活性的影响[J]. 中国稀土学报, 2005, 23(4):490-495.

GAO Yongsheng, CHEN Jishuang. Effects of La3+ on antioxidant system in wheat seedling leaves under salt stress[J]. J Chin Rare Earths, 2005, 23(4): 490-495.
[33] ZENG Bin, WANG Feijuan, ZHU Cheng, et al. Effect of ascorbate-glutathione (AsA-GSH) cycle on Hg2+-tolerance in rice mutant[J]. Acta Agron Sin, 2008, 34(5): 823-830.
[34] MAHALINGAM R, JAMBUNATHAN N, GUNJAN S K, et al. Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana [J]. Plant, Cell Environ, 2006, 29(7): 1357-1371.
[35] 罗娅, 汤浩茹, 张勇. 低温胁迫对草莓叶片 SOD 和 AsA-GSH 循环酶系统的影响[J]. 园艺学报, 2007, 34(6):1405-1410.

LUO Ya, THANG Haoru, ZHANG Yong. Efect of low temperature stress on activities of SOD and enzymes of ascorbate-glutathione cycle [J]. Acta Hortic Sin, 2007, 34(6): 1405-1410.
[36] 李晓云, 王秀峰, 吕乐福, 等. 外源 NO 对铜胁迫下番茄幼苗根系抗坏血酸-谷胱甘肽循环的影响[J]. 应用生态学报, 2013, 24(4):1023-1030.

LI Xiaoyun, WANG Xiufeng, LÜ Lefu, et al. Effects of exogenous nitric oxide on ascorbate-glutathione cycle in tomato seedlings roots under copper stress[J]. Chin J Appl Ecol, 2013, 24(4): 1023-1030.
[37] HERNÁNDEZ J A, FERRER M A, JIMÉNEZ A, et al. Antioxidant Systems and O2.-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in Minor Veins [J]. Plant Physiol, 2001, 127(3): 817-831.
[38] DING Shunhua, LU Qingtao, ZHANG Yan, et al. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state [J]. Plant Mol Biol, 2009, 69(5): 577-592.
[39] KU■NIAK E, SKLODOWSKA M. Differential implication of glutathione, glutathione-metabolizing enzymes and ascorbate in tomato resistance to pseudomonas syringae [J]. J Phytopathol, 2004, 152(10): 529-536.
[40] 单长卷, 韩蕊莲, 梁宗锁. 黄土高原冰草叶片抗坏血酸和谷胱甘肽合成及循环代谢对干旱胁迫的生理响应[J]. 植物生态学报, 2011, 35(6):653-662.

SHAN Changjuan, HAN Ruilian, LIANG Zongsuo. Responses to drought stress of the biosynthetic and recycling metabolism of glutathione and ascorbate in Agropyron cristatum leaves on the Loess Plateau of China [J]. Chin J Plant Ecol, 2011, 35(6): 653-662.
[41] FREI M, WISSUWA M, PARIASCA-TANAKA J, et al. Leaf ascorbic acid level-Is it really important for ozone tolerance in rice? [J]. Plant Physiol Biochem, 2012, 59: 63-70.
[42] WANG Shuncai, LIANG Dong, LI Chao, et al. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks [J]. Plant Physiol Biochem, 2012, 51(2): 81-89.