[1] JOHNSON B L, DEROSA C T. Chemical mixtures released from hazardous waste sites:Implications for health risk assessment[J]. Toxicology, 1995, 105(2/3):145-156.
[2] BRAMMER H, RAVENSCROFT P. Arsenic in groundwater:a threat to sustainable agriculture in South and South-East Asia[J]. Environ Int, 2009, 35(3):647-654.
[3] ZHAO Fangjie, MA J F, MEHARG A A, et al. Arsenic uptake and metabolism in plants[J]. New Phytol, 2009, 181(4):777-794.
[4] SU Yuhong, McGRATH S P, ZHAO Fangjie. Rice is more efficient in arsenite uptake and translocation than wheat and barley[J]. Plant Soil, 2010, 328(1):27-34.
[5] 雷鸣, 曾敏, 王利红, 等. 湖南市场和污染区稻米中As, Pb, Cd污染及其健康风险评价[J]. 环境科学学报, 2010, 30(11):2314-2320.

LEI Ming, ZENG Min, WANG Lihong, et al. Arsenic lead and cadimium pollution in rice from Hunan markets and contaminated areas and their health risk assessment[J]. Acta Sci Circumst, 2010, 30(11):2314-2320.
[6] MEHARG A A, LOMBI E, WILLIAMS P N, et al. Speciation and localization of arsenic in white and brown rice grains[J]. Environ Sci Technol, 2008, 42(4):1051-1057.
[7] LIANG Feng, LI Yulan, ZHANG Guilin, et al. Total and speciated arsenic levels in rice from China[J]. Food Addit Contam Part A Chem Anal Control Exp Risk Ass, 2010, 27(6):810-816.
[8] 董飞, 卢瑛, 王兴祥, 等. 华南地区不同品系水稻积累砷特征及其影响因素[J]. 农业环境科学学报, 2011, 30(2):214-219.

DONG Fei, LU Ying, WANG Xingxiang, et al. Characteristics of arsenic accumulation in different rice (Oryza sativa L.) cultivars and its influencing factors in southern China[J]. J Agro-enviroment Sci, 2011, 30(2):214-219.
[9] 王林友, 竺朝娜, 王建军, 等. 水稻镉、铅、砷低含量基因型的筛选[J]. 浙江农业学报, 2012, 24(1):133-138.

WANG Linyou, ZHU Channa, WANG Jianjun, et al. Screening for rice (Oryza sativa L.) genotyeps with Cd Pb and As contents[J]. Acta Agric Zhejiang, 2012, 24(1):133-138.
[10] NORTON G J, PINSON S R M, ALEXANDER J, et al. Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites[J]. New Phytol, 2012, 193(3):650-664.
[11] RAI A, TRIPATHI P, DWIVEDI S, et al. Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system[J]. Chemosphere, 2011, 82(7):986-995.
[12] TRIPATHI R D, SRIVASTAVA S, MISHRA S, et al. Arsenic hazards:strategies for tolerance and remediation by plants[J]. Trends Biotechnol, 2007, 25(4):158-165.
[13] BHATTACHARYA P, WELCH A H, STOLLENWERK K G, et al. Arsenic in the environment:Biology and chemistry[J]. Sci Total Environ, 2007, 379(2/3):109-120.
[14] IWAKAWA H O, TOMARI Y. Molecular insights into microRNA-mediated translational repression in plants[J]. Mol Cell, 2013, 52(4):591-601.
[15] BARTEL D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[16] GUPTA O P, SHARMA P, GUPTA R K, et al. MicroRNA mediated regulation of metal toxicity in plants:present status and future perspectives[J]. Plant Mol Biol, 2014, 84(1/2):1-18.
[17] SRIVASTAVA S, SRIVASTAVA A K, SUPRASANNA P, et al. Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea[J]. J Exp Bot, 2013, 64(1):303-315.
[18] CAMPO S, PERIS-PERIS C, SIRÉC, et al. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6(Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance[J]. New Phytol, 2013, 199(1):212-227.
[19] LI Ting, LI Hui, ZHANG Yunxiao, et al. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica)[J]. Nucl Acid Res, 2011, 39(7):2821-2833.
[20] LIU Q, ZHANG H. Molecular identification and analysis of arsenite stress-responsive miRNAs in rice[J]. J Agric Food Chem, 2012, 60(26):6524-6536.
[21] PANDEY C, RAGHURAM B, SINHA A K, et al. miRNA plays a role in the antagonistic effect of selenium on arsenic stress in rice seedlings[J]. Met Int Biom Sci, 2015, 7(5):857-866.
[22] SHARMA D, TIWARI M, LAKHWANI D, et al. Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice[J]. Metallomics, 2015, 7(1):174-187.
[23] YU Lujun, LUO Yingfeng, LIAO Bin, et al. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa)[J]. New Phytol, 2012, 195(1):97-112.
[24] 张殿忠, 汪沛洪, 赵会贤. 测定小麦叶片游离脯氨酸含量的方法[J]. 植物生理学通讯, 1990(4):62-65.

ZHANG Dianzhong, WANG Peihong, ZHAO Huixian. Determination of the content of free proline in wheat leaves[J]. Plant Physiol Commu, 1990(4):62-65.
[25] GIANNOPOTITIS C N, RIES S K. Superoxide dismutase (Ⅰ) occurrence in higher plants[J]. Plant Physiol, 1977, 59(2):309-314.
[26] CAKMAK I, MARSCHNER H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiol, 1992, 98(4):1222-1227.
[27] PÜTTER J. Peroxidases[G]//BERGRNEYER H U. Methods of Enzymatic Analysis. New York:Academic Press, 1974:685-690.
[28] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880.
[29] HU Haicao, ZHANG Junting, WANG Hong, et al. Effect of silicate supplementation on the alleviation of arsenite toxicity in 93-11(Oryza sativa L. indica)[J]. Environ Sci Pollut Res, 2013, 20(12):8579-8589.
[30] KUMAR S, DUBEY R S, TRIPATHI R D, et al. Omics and biotechnology of arsenic stress and detoxification in plants:current updates and prospective[J]. Environ Int, 2015, 74(74):221-230.
[31] MOSA K A, KUMAR K, CHHIKARA S, et al. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants[J]. Transgenic Res, 2012, 21(6):1265-1277.
[32] TIWARI M, SHARMA D, DWIVEDI S, et al. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance[J]. Plant Cell Environ, 2014, 37(1):140-152.
[33] KOZOMARA A, GRIFFITHS-JONES S. miRBase:annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acid Res, 2014, 42:D68-D73.
[34] GIT A, DVINGE H, SALMON-DIVON M, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression[J]. RNA, 2010, 16(5):991-1006.
[35] LIU Qingpo. Noverl miRNAs in the control of arsenite levels in rice[J]. Funct Integr Genom, 2012, 12(4):649-658.
[36] TRIPATHI P, TRIPATHI R D, SINGH R P, et al. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids[J]. Environ Sci Pollut Res, 2013, 20(2):884-896.
[37] 彭志红, 彭克勤, 胡家金, 等. 渗透胁迫下植物脯氨酸积累的研究进展[J]. 中国农学通报, 2002, 18(4):80-83.

PENG Zhihong, PENG Keqin, HU Jiajin, et al. Research progress on accumulation of proline under osmotic stress in plants[J]. Chin Agric Sci Bull, 2002, 18(4):80-83.
[38] LIU Jiping, ZHU Jiankang. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis[J]. Plant Physiol, 1997, 114(2):591-596.
[39] SRIVASTAVA M, MA L Q, RATHINASABAPATHI B, et al. Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L.[J]. Bioresour Technol, 2009, 100(3):1115-1121.