[1] |
JOHNSON B L, DEROSA C T. Chemical mixtures released from hazardous waste sites:Implications for health risk assessment[J]. Toxicology, 1995, 105(2/3):145-156. |
[2] |
BRAMMER H, RAVENSCROFT P. Arsenic in groundwater:a threat to sustainable agriculture in South and South-East Asia[J]. Environ Int, 2009, 35(3):647-654. |
[3] |
ZHAO Fangjie, MA J F, MEHARG A A, et al. Arsenic uptake and metabolism in plants[J]. New Phytol, 2009, 181(4):777-794. |
[4] |
SU Yuhong, McGRATH S P, ZHAO Fangjie. Rice is more efficient in arsenite uptake and translocation than wheat and barley[J]. Plant Soil, 2010, 328(1):27-34. |
[5] |
雷鸣, 曾敏, 王利红, 等. 湖南市场和污染区稻米中As, Pb, Cd污染及其健康风险评价[J]. 环境科学学报, 2010, 30(11):2314-2320.
LEI Ming, ZENG Min, WANG Lihong, et al. Arsenic lead and cadimium pollution in rice from Hunan markets and contaminated areas and their health risk assessment[J]. Acta Sci Circumst, 2010, 30(11):2314-2320. |
[6] |
MEHARG A A, LOMBI E, WILLIAMS P N, et al. Speciation and localization of arsenic in white and brown rice grains[J]. Environ Sci Technol, 2008, 42(4):1051-1057. |
[7] |
LIANG Feng, LI Yulan, ZHANG Guilin, et al. Total and speciated arsenic levels in rice from China[J]. Food Addit Contam Part A Chem Anal Control Exp Risk Ass, 2010, 27(6):810-816. |
[8] |
董飞, 卢瑛, 王兴祥, 等. 华南地区不同品系水稻积累砷特征及其影响因素[J]. 农业环境科学学报, 2011, 30(2):214-219.
DONG Fei, LU Ying, WANG Xingxiang, et al. Characteristics of arsenic accumulation in different rice (Oryza sativa L.) cultivars and its influencing factors in southern China[J]. J Agro-enviroment Sci, 2011, 30(2):214-219. |
[9] |
王林友, 竺朝娜, 王建军, 等. 水稻镉、铅、砷低含量基因型的筛选[J]. 浙江农业学报, 2012, 24(1):133-138.
WANG Linyou, ZHU Channa, WANG Jianjun, et al. Screening for rice (Oryza sativa L.) genotyeps with Cd Pb and As contents[J]. Acta Agric Zhejiang, 2012, 24(1):133-138. |
[10] |
NORTON G J, PINSON S R M, ALEXANDER J, et al. Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites[J]. New Phytol, 2012, 193(3):650-664. |
[11] |
RAI A, TRIPATHI P, DWIVEDI S, et al. Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system[J]. Chemosphere, 2011, 82(7):986-995. |
[12] |
TRIPATHI R D, SRIVASTAVA S, MISHRA S, et al. Arsenic hazards:strategies for tolerance and remediation by plants[J]. Trends Biotechnol, 2007, 25(4):158-165. |
[13] |
BHATTACHARYA P, WELCH A H, STOLLENWERK K G, et al. Arsenic in the environment:Biology and chemistry[J]. Sci Total Environ, 2007, 379(2/3):109-120. |
[14] |
IWAKAWA H O, TOMARI Y. Molecular insights into microRNA-mediated translational repression in plants[J]. Mol Cell, 2013, 52(4):591-601. |
[15] |
BARTEL D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297. |
[16] |
GUPTA O P, SHARMA P, GUPTA R K, et al. MicroRNA mediated regulation of metal toxicity in plants:present status and future perspectives[J]. Plant Mol Biol, 2014, 84(1/2):1-18. |
[17] |
SRIVASTAVA S, SRIVASTAVA A K, SUPRASANNA P, et al. Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea[J]. J Exp Bot, 2013, 64(1):303-315. |
[18] |
CAMPO S, PERIS-PERIS C, SIRÉC, et al. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6(Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance[J]. New Phytol, 2013, 199(1):212-227. |
[19] |
LI Ting, LI Hui, ZHANG Yunxiao, et al. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica)[J]. Nucl Acid Res, 2011, 39(7):2821-2833. |
[20] |
LIU Q, ZHANG H. Molecular identification and analysis of arsenite stress-responsive miRNAs in rice[J]. J Agric Food Chem, 2012, 60(26):6524-6536. |
[21] |
PANDEY C, RAGHURAM B, SINHA A K, et al. miRNA plays a role in the antagonistic effect of selenium on arsenic stress in rice seedlings[J]. Met Int Biom Sci, 2015, 7(5):857-866. |
[22] |
SHARMA D, TIWARI M, LAKHWANI D, et al. Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice[J]. Metallomics, 2015, 7(1):174-187. |
[23] |
YU Lujun, LUO Yingfeng, LIAO Bin, et al. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa)[J]. New Phytol, 2012, 195(1):97-112. |
[24] |
张殿忠, 汪沛洪, 赵会贤. 测定小麦叶片游离脯氨酸含量的方法[J]. 植物生理学通讯, 1990(4):62-65.
ZHANG Dianzhong, WANG Peihong, ZHAO Huixian. Determination of the content of free proline in wheat leaves[J]. Plant Physiol Commu, 1990(4):62-65. |
[25] |
GIANNOPOTITIS C N, RIES S K. Superoxide dismutase (Ⅰ) occurrence in higher plants[J]. Plant Physiol, 1977, 59(2):309-314. |
[26] |
CAKMAK I, MARSCHNER H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiol, 1992, 98(4):1222-1227. |
[27] |
PÜTTER J. Peroxidases[G]//BERGRNEYER H U. Methods of Enzymatic Analysis. New York:Academic Press, 1974:685-690. |
[28] |
NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880. |
[29] |
HU Haicao, ZHANG Junting, WANG Hong, et al. Effect of silicate supplementation on the alleviation of arsenite toxicity in 93-11(Oryza sativa L. indica)[J]. Environ Sci Pollut Res, 2013, 20(12):8579-8589. |
[30] |
KUMAR S, DUBEY R S, TRIPATHI R D, et al. Omics and biotechnology of arsenic stress and detoxification in plants:current updates and prospective[J]. Environ Int, 2015, 74(74):221-230. |
[31] |
MOSA K A, KUMAR K, CHHIKARA S, et al. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants[J]. Transgenic Res, 2012, 21(6):1265-1277. |
[32] |
TIWARI M, SHARMA D, DWIVEDI S, et al. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance[J]. Plant Cell Environ, 2014, 37(1):140-152. |
[33] |
KOZOMARA A, GRIFFITHS-JONES S. miRBase:annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acid Res, 2014, 42:D68-D73. |
[34] |
GIT A, DVINGE H, SALMON-DIVON M, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression[J]. RNA, 2010, 16(5):991-1006. |
[35] |
LIU Qingpo. Noverl miRNAs in the control of arsenite levels in rice[J]. Funct Integr Genom, 2012, 12(4):649-658. |
[36] |
TRIPATHI P, TRIPATHI R D, SINGH R P, et al. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids[J]. Environ Sci Pollut Res, 2013, 20(2):884-896. |
[37] |
彭志红, 彭克勤, 胡家金, 等. 渗透胁迫下植物脯氨酸积累的研究进展[J]. 中国农学通报, 2002, 18(4):80-83.
PENG Zhihong, PENG Keqin, HU Jiajin, et al. Research progress on accumulation of proline under osmotic stress in plants[J]. Chin Agric Sci Bull, 2002, 18(4):80-83. |
[38] |
LIU Jiping, ZHU Jiankang. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis[J]. Plant Physiol, 1997, 114(2):591-596. |
[39] |
SRIVASTAVA M, MA L Q, RATHINASABAPATHI B, et al. Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L.[J]. Bioresour Technol, 2009, 100(3):1115-1121. |