[1] GADELHA J R, ROCHA A C, CAMACHO C, et al. Persistent and emerging pollutants assessment on aquaculture oysters (Crassostrea gigas) from NW portuguese coast (ria de aveiro) [J]. Sci Total Environ, 2019, 666: 731 − 742.
[2] 陈溪, 刘梦遥, 曲世超, 等. 海产品、底泥、海水中扑草净药物残留量的液相色谱-串联质谱检测[J]. 化学通报, 2013, 76(2): 183 − 186.

CHEN Xi, LIU Mengyao, QU Shichao, et al. Determination of prometryne residues in seafood, sediment, seawater by liquid chromatography tandem mass spectrometry [J]. Chemistry, 2013, 76(2): 183 − 186.
[3] 中华人民共和国农业农村部. 中华人民共和国农业部公告1435号[EB/OL]. (2010-08-23)[2020-9-15]. http://www.moa.gov.cn/gk/tzgg_1/gg/201008/t20100823_1622639.htm.
[4] SAKA M, TADA N, KAMATA Y, et al. Chronic toxicity of 1,3,5-triazine herbicides in the postembryonic development of the western clawed frog Silurana tropicalis [J]. Ecotox Environ Safe, 2018, 147: 373 − 381.
[5] TIAN Yaya, LIU Minxuan, SANG Yaxin, et al. Degradation of prometryn in ruditapes philippinarum using ozonation: influencing factors, degradation mechanism, pathway and toxicity assessment [J]. Chemosphere, 2020, 248: 126018. doi: 10.1016/j.chemosphere.2020.126018.
[6] 桂英爱, 葛祥武, 孙程鹏, 等. 扑草净在环境和生物体内的降解代谢、毒性及安全性评价研究进展[J]. 大连海洋大学学报, 2019, 34(6): 846 − 852.

GUI Ying’ai, GE Xiangwu, SUN Chengpeng, et al. Research progress: degradation, metabolism, toxicity and safety evaluation of prometryne in environment and organisms [J]. J Dalian Ocean Univ, 2019, 34(6): 846 − 852.
[7] NEVADO J J B, CABANILLAS C G, LLERENA M J V, et al. Sensitive SPE GC-MS-SIM screening of endocrine-disrupting herbicides and related degradation products in natural surface waters and robustness study [J]. Microchem J, 2007, 87(1): 62 − 71.
[8] RHIND S M, KYLE C E, RUFFIE H, et al. Short- and long-term temporal changes in soil concentrations of selected endocrine disrupting compounds (EDCs) following single or multiple applications of sewage sludge to pastures [J]. Environ Pollut, 2013, 181: 262 − 270.
[9] 徐炜杰, 郭佳, 赵敏, 等. 重金属污染土壤植物根系分泌物研究进展[J]. 浙江农林大学学报, 2017, 34(6): 1137 − 1148.

XU Weijie, GUO Jia, ZHAO Min, et al. Research progress of soil plant root exudates in heavy metal contaminated soil [J]. J Zhejiang A&F Univ, 2017, 34(6): 1137 − 1148.
[10] 刘枭宏, 李铁, 谌芸, 等. 香根草植物篱带宽对紫色土坡地产流产沙的影响[J]. 水土保持学报, 2019, 33(4): 93 − 101.

LIU Xiaohong, LI Tie, CHEN Yun, et al. Effects of Vetiveria zizanioides L. hedgerow width on runoff and sediment yield on purple soil slope [J]. J Soil Water Conserv, 2019, 33(4): 93 − 101.
[11] BANERJEE R, GOSWAMI P, PATHAK K, et al. Vetiver grass: an environment clean-up tool for heavy metal contaminated iron ore mine-soil [J]. Ecol Eng, 2016, 90: 25 − 34.
[12] MATHEW M, ROSARY S C, SEBASTIAN M, et al. Effectiveness of vetiver system for the treatment of wastewater from an institutional kitchen [J]. Proc Technol, 2016, 24: 203 − 209.
[13] MARCACCI S, RAVETON M, RAVANEL P, et al. Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics [J]. Environ Exp Bot, 2006, 56(2): 205 − 215.
[14] ALENCAR B T B, RIBEIRO V H V, CABRAL C M, et al. Use of macrophytes to reduce the contamination of water resources by pesticides [J]. Ecol Indic, 2020, 109: 105785. doi: 10.1016/j.ecolind.2019.105785.
[15] LÜ Tao, CARVALHO P N, ZHANG Liang, et al. Functionality of microbial communities in constructed wetlands used for pesticide remediation: influence of system design and sampling strategy [J]. Water Res, 2017, 110: 241 − 251.
[16] 董静, 王立, 马放, 等. AMF对美人蕉修复水体除草剂污染的影响[J]. 哈尔滨工业大学学报, 2017, 49(2): 37 − 43.

DONG Jing, WANG Li, MA Fang, et al. Effects of arbuscular mycorrhizal fungi inoculation on the phytoremediation of herbicide by Canna indica L. var flava Roxb. in water [J]. J Harbin Ins Technol, 2017, 49(2): 37 − 43.
[17] GIKAS G D, PÉREZ-VILLANUEVA M, TSIORAS M, et al. Low-cost approaches for the removal of terbuthylazine from agricultural wastewater: constructed wetlands and biopurification system [J]. Chem Eng J, 2018, 335(1): 647 − 656.
[18] MOORE M T, TYLER H L, LOCKE M A. Aqueous pesticide mitigation efficiency of Typha latifolia (L.), Leersia oryzoides (L.) Sw., and Sparganium americanum Nutt. [J]. Chemosphere, 2013, 92(10): 1307 − 1313.
[19] NI J, SUN Shixian, ZHENG Yi, et al. Removal of prometryn from hydroponic media using marsh pennywort (Hydrocotyle vulgaris L.) [J]. Int J Phytoremediat, 2018, 20(9): 909 − 913.
[20] CHULUUN B, IAMCHATURAPATR J, RHEE J S. Phytoremediation of organophosphorus and organochlorine pesticides by Acorus gramineus [J]. Environ Eng Res, 2009, 14(4): 226 − 236.
[21] 贾继维, 张坤, 李鑫圆, 等. 腐植酸对香根草吸收和去除扑草净的影响[J]. 西南林业大学学报, 2019, 39(2): 121 − 126.

JIA Jiwei, ZHANG Kun, LI Xinyuan, et al. The effect of humic acid on the uptake and removal of prometryn by vetiver grass [J]. J Southwest For Univ, 2019, 39(2): 121 − 126.
[22] 莫凌, 张云, 林彰文, 等. 植物对卤代有机污染物吸收、迁移和代谢的研究进展[J]. 生态环境学报, 2015, 24(9): 1582 − 1590.

MO Ling, ZHANG Yun, LIN Zhangwen, et al. Absorption, translocation and metabolism of halogenated organic pollutants (HOPs) in plants: a review [J]. Ecol Environ Sci, 2015, 24(9): 1582 − 1590.
[23] 王庆海, 夏凡, 李翠, 等. 黄菖蒲对水中阿特拉津污染的去除贡献研究[J]. 农业环境科学学报, 2020, 39(11): 2613 − 2620.

WANG Qinghai, XIA Fan, LI Cui, et al. Contribution of Iris pseudacorus to atrazine dissipation in water: effects of initial atrazine concentrations [J]. J Agro-Environ Sci, 2020, 39(11): 2613 − 2620.
[24] JIN Zhenpeng, LUO Kai, ZHANG Shuang, et al. Bioaccumulation and catabolism of prometryne in green algae [J]. Chemosphere, 2012, 87(3): 278 − 284.
[25] SUN Shixian, LI Yongmei, ZHENG Yi, et al. Uptake of 2,4-bis(isopropylamino)-6-methylthio-s-triazine by vetiver grass (Chrysopogon zizanioides L.) from hydroponic media [J]. Bullet Environ Contam Toxicol, 2016, 96(4): 550 − 555.
[26] BAUMANN J, ANFT T, DOUGHTY K J, et al. Exposure to pesticide residues during manual removal of bolting sugar beets: determination of transfer coefficients for worker risk assessment [J]. J Consum Prot Food Safety, 2019, 14: 283 − 286.
[27] 何发林, 曹莹莹, 李冠群, 等. 氯虫苯甲酰胺拌种对玉米种子活力及幼苗生长的影响[J]. 中国农学通报, 2019, 35(15): 151 − 158.

HE Falin, CAO Yingying, LI Guanqun, et al. Effects on seed activity and seedling growth of maize by seed dressing with chlorantraniliprole [J]. Chin Agric Sci Bull, 2019, 35(15): 151 − 158.
[28] 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学, 2016, 49(22): 4323 − 4341.

WANG Xuehua, DAI Li. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots [J]. Sci Agric Sin, 2016, 49(22): 4323 − 4341.
[29] 宋清梅, 蔡信德, 吴颖欣, 等. 香根草对污染土壤水溶态重金属组分胁迫响应研究[J]. 农业环境科学学报, 2019, 38(12): 2715 − 2722.

SONG Qingmei, CAI Xinde, WU Yingxin, et al. Response of Vetiveria zizanioides to the stress of water-soluble components of heavy metals in contaminated soil [J]. J Agro-Environ Sci, 2019, 38(12): 2715 − 2722.
[30] 潘声旺, 雷志华, 吴云霄, 等. 苏丹草根分泌物在有机氯农药降解过程中的作用[J]. 中国环境科学, 2017, 37(8): 3072 − 3079.

PAN Shengwang, LEI Zhihua, WU Yunxiao, et al. Effect of exudates from Sorghum sudanense grass roots on degradation of organochlorine pesticides in soils [J]. China Environ Sci, 2017, 37(8): 3072 − 3079.
[31] 李珍玉, 王丽锋, 肖宏彬, 等. 香根草根系在公路边坡土体中的分布特征[J]. 应用基础与工程科学学报, 2017, 25(1): 102 − 112.

LI Zhenyu, WANG Lifeng, XIAO Hongbin, et al. Distribution characteristics of vetiver’s roots in highway slope [J]. J Basic Sci Eng, 2017, 25(1): 102 − 112.