[1] |
ZHANG Xin, ZONG Jie, LIU Jianhua, et al. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar [J]. Journal of Integrative Plant Biology, 2010, 52(11): 1016 − 1026. |
[2] |
HAO Qingnan, ZHANG Ling, YANG Yanyan, et al. Genome-wide analysis of the WOX gene family and function exploration of GmWOX18 in soybean [J/OL]. Plants, 2019, 8(7): 215[2021-11-01]. doi: 10.3390/plants8070215. |
[3] |
GU Ran, SONG Xiaofei, LIU Xiaofeng, et al. Genome-wide analysis of CsWOX transcription factor gene family in cucumber (Cucumis sativus L. ) [J/OL]. Scientific Reports, 2020, 10: 6216[2021-11-01]. doi: 10.1038/s41598-020-63197-z. |
[4] |
HAECKER A, GROß-HARDT R, GEIGES B, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana [J]. Development, 2004, 131(3): 657 − 668. |
[5] |
BREUNINGER H, RIKIRSCH E, HERMANN M, et al. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo [J]. Developmental Cell, 2008, 14(6): 867 − 876. |
[6] |
DOLZBLASZ A, NARDMANN J, CLERICI E, et al. Stem cell regulation by Arabidopsis WOX genes [J]. Molecular Plant, 2016, 9(7): 1028 − 1039. |
[7] |
COSTANZO E, TREHIN C, VANDENBUSSCHE M. The role of WOX genes in flower development [J]. Annals of Botany, 2014, 114(7): 1545 − 1553. |
[8] |
LAUX T, MAYER K F, BERGER J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis [J]. Development, 1996, 122(1): 87 − 96. |
[9] |
BOUCHABKÉ-COUSSA O, OBELLIANNE M, LINDERME D, et al. Wuschel overexpression promotes somatic embryo genesis and induces organo genesis in cotton (Gossypium hirsutum L. ) tissues cultured in vitro [J]. Plant Cell Reports, 2013, 32(5): 675 − 686. |
[10] |
ZHAO Yu, HU Yongfeng, DAI Mingqiu, et al. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice [J]. The Plant Cell, 2009, 21(3): 736 − 748. |
[11] |
CHO S H, YOO S C, ZHANG Haitao, et al. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development [J]. New Phytologist, 2013, 198(4): 1071 − 1084. |
[12] |
OHMORI Y, TANAKA W, KOJIMA M, et al. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice [J]. The Plant Cell, 2013, 25: 229 − 241. |
[13] |
LIU Bobin, WANG Lin, ZHANG Jin, et al. WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation [J/OL]. BMC Genomics, 2014, 15: 296[2021-11-01]. doi: 10.1186/1471-2164-15-296. |
[14] |
XU Meng, XIE Wenfan, HUANG Minren. Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar [J]. Physiologia Plantarum, 2015, 155(4): 446 − 456. |
[15] |
LI Zheng, LIU Dan, XIA Yu, et al. Identification of the WUSCHEL-related Homeobox (WOX) gene family, and interaction and functional analysis of TaWOX9 and TaWUS in wheat [J/OL]. International Journal of Molecular Sciences, 2020, 21(5): 1581[2021-11-01]. doi: 10.3390/ijms21051581. |
[16] |
CHENG Saifeng, HUANG Yulan, ZHU Ning, et al. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response [J]. Gene, 2014, 549(2): 266 − 274. |
[17] |
CHENG Saifeng, ZHOU Daoxiu, ZHAO Yu. WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hair formation and root system development [J/OL]. Plant Signaling & Behavior, 2016, 11(2): e1130198[2021-11-01]. doi: 10.1080/15592324.2015.1130198. |
[18] |
WANG Liuqiang, LI Zhen, WEN Shuangshuang, et al. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar [J]. Journal of Experimental Botany, 2020, 71(4): 1503 − 1513. |
[19] |
WANG Liuqiang, WEN Shuangshuang, WANG Rui, et al. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar [J]. Plant Biotechnology Journal, 2021, 19(11): 2249 − 2260. |
[20] |
杜红岩. 中国杜仲图志[M]. 北京: 中国林业出版社, 2014.
DU Hongyan. Chinese Eucommia Pictorial [M]. Beijing: China Forestry Publishing House, 2014. |
[21] |
LI Zhenyu, GU Juan, YAN Jin, et al. Hypertensive cardiac remodeling effects of lignan extracts from Eucommia ulmoides Oliv. bark: a famous traditional Chinese medicine [J]. The American Journal of Chinese Medicine, 2013, 41(4): 801 − 815. |
[22] |
WU Dong, YU Danmeng, ZHANG Yujia, et al. Metabolite profiles, bioactivity, and HPLC fingerprint of different varieties of Eucommia ulmoides Oliv. : Towards the utilization of medicinal andcommercial chinese endemic tree [J/OL]. Molecules, 2018, 23(8): 1898[2021-11-01]. doi: 10.3389/molecules.23081898. |
[23] |
刘俊, 陈玉龙, 刘燕, 等. 杜仲TIFY转录因子鉴定与表达分析[J]. 中国实验方剂学杂志, 2021, 27(19): 165 − 174.
LIU Jun, CHEN Yulong, LIU Yan, et al. Identification and expression analysis of TIFY transcription factor in Eucommia ulmoides [J]. Chinese Journal of Experemental Traditional Medical Formulae, 2021, 27(19): 165 − 174. |
[24] |
TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology &Evolution, 2013, 30(12): 2725 − 2729. |
[25] |
LI Long, LIU Minhao, SHI Kan, et al. Dynamic changes in metabolite accumulation and the transcriptome during leaf growth and development in Eucommia ulmoides [J/OL]. International Journal of Molecular Sciences, 2019, 20(16): 4030[2021-11-01]. doi: 10.3390/ijms20164030. |
[26] |
YE Jing, HAN Wenjing, FAN Ruisheng, et al. Integration of transcriptomes, small RNAs, and degradome sequencing to identify putative miRNAs and their targets related to eu-rubber biosynthesis in Eucommia ulmoides [J/OL]. Genes, 2019, 10(8): 623[2021-11-01]. doi: 10.3390/genes10080623. |
[27] |
CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202. |
[28] |
LIU Jun, CHENG Zhanchao, XIE Lihua, et al. Multifaceted role of PheDof12-1 in the regulation of flowering time and abiotic stress responses in moso bamboo (Phyllostachys edulis) [J/OL]. International Journal of Molecular Sciences, 2019, 20(2): 424[2021-11-01]. doi: 10.3390/ijms20020424. |
[29] |
LI Xiangyu, LI Juan, CAI Miaomiao, et al. Identification and evolution of the WUSCHEL related homeobox protein family in Bambusoideae [J/OL]. Biomolecules, 2020, 10(5): 739[2021-11-01]. doi: 10.3390/biom10050739. |
[30] |
武强强, 张凤洁, 董浩欢, 等. 小麦WOX转录因子基因的全基因组鉴定与分析[J]. 激光生物学报, 2021, 30(1): 67 − 74.
WU Qiangqiang, ZHANG Fengjie, DONG Haohuan, et al. Genome-wide identification and analyses of WOX transcription factor genes in wheat [J]. Acta Laser Biology Sinica, 2021, 30(1): 67 − 74. |
[31] |
WANG Pengjie, GUO Yongchun, CHEN Xuejin, et al. Genome-wide identification of WOX genes and their expression patterns under different hormone and abiotic stress treatments in tea plant (Camellia sinensis) [J]. Trees, 2019, 33(4): 1129 − 1142. |
[32] |
YANG Zhaoen, GONG Qian, QIN Wenqiang, et al. Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses [J/OL]. BMC Plant Biology, 2017, 17(1): 113[2021-11-01]. doi: 10.1186/s12870-017-2015-8. |
[33] |
International Wheat Genome Sequencing Consortium. A chromosomebased draft sequence of the hexaploid bread wheat (Triticum aestivum) genome [J/OL]. Science, 2014, 345(6194): 1251788[2021-11-01]. doi: 10.1126/science.1251788. |
[34] |
WANG Guifeng, ZHONG Mingyu, WANG Jiajia, et al. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays) [J]. Journal of Experimental Botany, 2014, 65(4): 923 − 938. |
[35] |
PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nature Genetics, 2013, 45(4): 456 − 461. |
[36] |
WUYUN Tana, WANG Lin, LIU Huimin, et al. The hardy rubber tree genome provides insights into the evolution of polyisoprene biosynthesis [J]. Molecular Plant, 2018, 11(3): 429 − 442. |
[37] |
The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon [J]. Nature, 2009, 463: 763 − 768. |
[38] |
BURR B. Mapping and sequencing the rice genome [J]. The Plant Cell, 2002, 14(3): 521 − 523. |
[39] |
HOFMEISTER B T, DENKENA J, COLOMÉ-TATCHÉ M, et al. A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa [J/OL]. Genome Biology, 2020, 21: 259[2021-11-01]. doi: 10.1186/s13059-020-02162-5. |
[40] |
GUAN Chunmei, WU Binbin, YU Ting, et al. Spatial auxin signaling controls leaf flattening in Arabidopsis [J]. Current Biology, 2017, 27(19): 2940 − 2950. |
[41] |
TADEGE M, LIN Hao, BEDAIR M, et al. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris [J]. The Plant Cell, 2011, 23(6): 2125 − 2142. |
[42] |
KUCUKOGLU M, NILSSON J, ZHENG Bo, et al. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees [J]. New Phytologist, 2017, 215(2): 642 − 657. |
[43] |
BLEIN T, PAUTOT V, LAUFS P. Combinations of mutations sufficient to alter Arabidopsis leaf dissection [J]. Plants, 2013, 2: 230 − 247. |
[44] |
WANG Chaoqun, ZHAO Baolin, HE Liangliang, et al. The WOX family transcriptional regulator SlLAM1 controls compound leaf and floral organ development in Solanum lycopersicum [J]. Journal of Experimental Botany, 2021, 72(5): 1822 − 1835. |
[45] |
VANDENBUSSCHE M, HORSTMAN A, ZETHOF J, et al. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis [J]. The Plant Cell, 2009, 21(8): 2269 − 2283. |
[46] |
NAKATA M, MATSUMOTO N, TSUGEKI R, et al. Roles of the middle domain-specifific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis [J]. The Plant Cell, 2012, 24(2): 519 − 535. |
[47] |
HE Peng, ZHANG Yuzhou, LIU Hao, et al. Comprehensive analysis of WOX genes uncovers that WOX13 is involved in phytohormone-mediated fiber development in cotton [J/OL]. BMC Plant Biology, 2019, 19: 312[2021-11-01]. doi: 10.1186/s12870-019-1892-x. |
[48] |
MINH-THU P T, KIM J S, CHAE S, et al. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice [J]. Moleculer Cells, 2018, 41(8): 781 − 798. |
[49] |
LI Mengdi, WANG Ruihua, LIU Zhengyi, et al. Genome-wide identification and analysis of the WUSCHEL-related homeobox (WOX) gene family in allotetraploid Brassica napus reveals changes in WOX genes during polyploidization [J/OL]. BMC Genomics, 2019, 20: 317[2021-11-01]. doi: 10.1186/s12864-019-5684-3. |
[50] |
DEVEAUX Y, TOFFANO-NIOCHE C, CLAISSE G, et al. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis [J/OL]. BMC Evolutionary Biology, 2008, 8: 291[2021-11-01]. doi: 10.1186/1471-2148-8-291. |