[1] |
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Front Ecol Environ, 2011, 9(10): 552 − 560. |
[2] |
KIRWAN M L, GUNTENSPERGEN G R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh [J]. J Ecol, 2012, 100(3): 764 − 770. |
[3] |
KIRWAN M, TEMMERMAN S, SKEEHAN E, et al. Overestimation of marsh vulnerability to sea level rise [J]. Nat Clim Change, 2016, 6(3): 253 − 260. |
[4] |
KROEGER K D, CROOKS S, MOSEMAN-VALTIERRA S, et al. Restoring tides to reduce methane emissions in impounded wetlands: a new and potent Blue Carbon climate change intervention [J]. Sci Rep, 2017, 7(1): 11914. doi: 10.1038/s41598-017-12138-4. |
[5] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 2008, 320(5878): 889 − 892. |
[6] |
CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils [J]. Global Biogeochem Cycles, 2003, 17(4): 1111. doi: 10.1029/2002gb001917. |
[7] |
LI Juanyong, HAN Guangxuan, ZHAO Mingliang, et al. Nitrogen input weakens the control of inundation frequency on soil organic carbon loss in a tidal salt marsh [J]. Estuarine Coastal Shelf Sci, 2020, 243: 106878. doi: 10.1016/j.ecss.2020.106878. |
[8] |
HOBBIE S E, NADELHOFFER K J, HÖGBERG P. A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions [J]. Plant Soil, 2002, 242(1): 163 − 170. |
[9] |
TAO Baoxian, SONG Changchun, GUO Yuedong. Short-term effects of nitrogen additions and increased temperature on wetland soil respiration, Sanjiang Plain, China [J]. Wetlands, 2013, 33(4): 727 − 736. |
[10] |
LIU Jun, WU Nana, WANG Hui, et al. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter [J]. Ecology, 2016, 97(7): 1796 − 1806. |
[11] |
SONG Bing, SUN Jian, ZHOU Qingping, et al. Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes [J]. Biogeosciences, 2017, 14(17): 3947 − 3956. |
[12] |
WANG Jing, GAO Yingzhi, ZHANG Yunhai, et al. Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe [J]. Global Change Biol, 2019, 25(9): 2958 − 2969. |
[13] |
QU Wendi, HAN Guangxuan, ELLER F, et al. Nitrogen input in different chemical forms and levels stimulates soil organic carbon decomposition in a coastal wetland [J]. Catena, 2020, 194: 104672. doi: 10.1016/j.catena.2020.104672. |
[14] |
TRUMBORE S. Carbon respired by terrestrial ecosystems-recent progress and challenges [J]. Global Change Biol, 2006, 12(2): 141 − 153. |
[15] |
LUO Yiqi, KEENAN T F, SMITH M. Predictability of the terrestrial carbon cycle [J]. Global Change Biol, 2015, 21(5): 1737 − 1751. |
[16] |
曹磊, 宋金明, 李学刚, 等. 中国滨海盐沼湿地碳收支与碳循环过程研究进展[J]. 生态学报, 2013, 33(17): 5141 − 5152.
CAO Lei, SONG Jinming, LI Xuegang, et al. Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China [J]. Acta Ecol Sin, 2013, 33(17): 5141 − 5152. |
[17] |
MITSCH W J, GOSSELINK J G. Wetlands[M]. 4th ed. Hoboken: John Wiley & Sons, Inc., 2007. |
[18] |
WANG Dongqi, CHEN Zhenlou, XU Shiyuan. Methane emission from Yangtze estuarine wetland, China [J]. J Geophys Res, 2009, 114: G02011. doi: 10.1029/2008JG000857. |
[19] |
韩广轩. 潮汐作用和干湿交替对盐沼湿地碳交换的影响机制研究进展[J]. 生态学报, 2017, 37(24): 8170 − 8178.
HAN Guangxuan. Effect of tidal action and drying-wetting cycles on carbon exchange in a salt marsh: progress and prospects [J]. Acta Ecol Sin, 2017, 37(24): 8170 − 8178. |
[20] |
仝川, 鄂焱, 廖稷, 等. 闽江河口潮汐沼泽湿地CO2排放通量特征[J]. 环境科学学报, 2011, 31(12): 2830 − 2840.
TONG Chuan, E Yan, LIAO Ji, et al. Carbon dioxide emission from tidal marshes in the Min River Estuary [J]. Acta Sci Circumstantiae, 2011, 31(12): 2830 − 2840. |
[21] |
王玲玲, 孙志高, 牟晓杰, 等. 黄河口滨岸潮滩湿地CO2、CH4和N2O通量特征初步研究[J]. 草业学报, 2011, 20(3): 51 − 61.
WANG Lingling, SUN Zhigao, MOU Xiaojie, et al. A preliminary study on carbon dioxide, methane and nitrous oxide fluxes from intertidal flat wetlands of the Yellow River estuary [J]. Acta Pratacult Sin, 2011, 20(3): 51 − 61. |
[22] |
贺文君, 韩广轩, 宋维民, 等. 潮汐作用对黄河三角洲盐沼湿地甲烷排放的影响[J]. 生态学报, 2019, 39(17): 6238 − 6246.
HE Wenjun, HAN Guangxuan, SONG Weimin, et al. Effects of tidal action on methane emissions over a salt marsh in the Yellow River Delta, China [J]. Acta Ecol Sin, 2019, 39(17): 6238 − 6246. |
[23] |
POFFENBARGER H J, NEEDELMAN B A, MEGONIGAL J P. Salinity influence on methane emissions from tidal marshes [J]. Wetlands, 2011, 31(5): 831 − 842. |
[24] |
CHOI Y, WANG Yang. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements [J]. Global Biogeochem Cycles, 2004, 18: GB4016. doi: 10.1029/2004GB002261. |
[25] |
KAYRANLI B, SCHOLZ M, MUSTAFA A, et al. Carbon storage and fluxes within freshwater wetlands: a critical review [J]. Wetlands, 2010, 30(1): 111 − 124. |
[26] |
THORNTON S F, MCMANUS J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland [J]. Estuarine Coastal Shelf Sci, 1994, 38(3): 219 − 233. |
[27] |
VERNBERG F J. Salt-marsh processes: a review [J]. Environ Toxicol Chem, 1993, 12(12): 2167 − 2195. |
[28] |
SYED K H, FLANAGAN L B, CARLSON P J, et al. Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta [J]. Agric For Meteorol, 2006, 140(1): 97 − 114. |
[29] |
EXBRAYAT J F, PITMAN A J, ZHANG Q, et al. Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation [J]. Biogeosciences, 2013, 10(11): 7095 − 7108. |
[30] |
BRAGAZZA L, BUTTLER A, HABERMACHER J, et al. High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation [J]. Global Change Biol, 2012, 18(3): 1163 − 1172. |
[31] |
YUAN Zhiyou, CHEN H Y H. A global analysis of fine root production as affected by soil nitrogen and phosphorus [J]. Proc Biol Sci, 2012, 279(1743): 3796 − 3802. |
[32] |
YUAN Zhiyou, LI Linghao, HAN Xingguo, et al. Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China [J]. Oecologia, 2006, 148(4): 564 − 572. |
[33] |
BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis [J]. Ecol Appl, 2010, 20(1): 30 − 59. |
[34] |
KOOTTATEP T, POLPRASERT C. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics [J]. Water Sci Technol, 1997, 36(12): 1 − 8. |
[35] |
SUN Yuan, WANG Cuiting, CHEN H Y H, et al. Responses of C∶N stoichiometry in plants, soil, and microorganisms to nitrogen addition [J]. Plant Soil, 2020, 456(1/2): 277 − 287. |
[36] |
MOE S J, STELZER R S, FORMAN M R, et al. Recent advances in ecological stoichiometry: insights for population and community ecology [J]. Oikos, 2005, 109(1): 29 − 39. |
[37] |
HOUGHTON R. Terrestrial carbon sinks-uncertain explanations [J]. Biologist, 2002, 49: 155 − 60. |
[38] |
刘德燕, 宋长春. 湿地植物小叶章对外源氮输入的响应[J]. 应用生态学报, 2008, 19(12): 2599 − 2604.
LIU Deyan, SONG Changchun. Responses of marsh wetland plant Calamagrostis angustifolia to exogenous nitrogen input [J]. Chin J Appl Ecol, 2008, 19(12): 2599 − 2604. |
[39] |
彭琴, 董云社, 齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874 − 883.
PENG Qin, DONG Yunshe, QI Yuchun. Influence of external nitrogen input on key processes of carbon cycle in terrestrial ecosystem [J]. Adv Earth Sci, 2008, 23(8): 874 − 883. |
[40] |
NAKAJI T, TAKENAGA S, KUROHA M, et al. Photosynthetic response of Pinus densiflora seedlings to high nitrogen load [J]. Environ Sci, 2002, 9: 269 − 282. |
[41] |
张立新, 李生秀. 长期水分胁迫下氮、钾对夏玉米叶片光合特性的影响[J]. 植物营养与肥料学报, 2009, 15(1): 82 − 90.
ZHANG Lixin, LI Shengxiu. Effects of nitrogen and potassium on photosynthetic characteristics in summer maize leaves under long-term water stress [J]. Plant Nutr Fert Sci, 2009, 15(1): 82 − 90. |
[42] |
HUANGFU Chaohe, LI Huiyan, CHEN Xinwei, et al. Response of an invasive plant, Flaveria bidentis, to nitrogen addition: a test of form-preference uptake [J]. Biol Invasions, 2016, 18(11): 3365 − 3380. |
[43] |
LU Xiankai, VITOUSEK P M, MAO Qinggong, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest [J]. Proc Natl Acad Sci, 2018, 115(20): 5187 − 5192. |
[44] |
BREITBURG D, LEVIN L A, OSCHLIES A, et al. Declining oxygen in the global ocean and coastal waters [J]. Science, 2018, 359(6371): eaam7240. doi: 10.1126/science.aam7240. |
[45] |
ZHANG Yaohong, XU Xianju, LI Yang, et al. Effects of Spartina alterniflora invasion and exogenous nitrogen on soil nitrogen mineralization in the coastal salt marshes [J]. Ecol Eng, 2016, 87: 281 − 287. |
[46] |
LUO Min, HUANG Jiafang, ZHU Wenfeng, et al. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review [J]. Hydrobiologia, 2019, 827(1): 31 − 49. |
[47] |
MIN K, KANG H, LEE D. Effects of ammonium and nitrate additions on carbon mineralization in wetland soils [J]. Soil Biol Biochem, 2011, 43(12): 2461 − 2469. |
[48] |
EISENLORD S D, FREEDMAN Z, ZAK D R, et al. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition [J]. Appl Environ Microbiol, 2013, 79(4): 1191 − 1199. |
[49] |
LINDA T A, FREY S D, STHULTZ C M, et al. Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay [J]. Ecosphere, 2015, 6(10): 205. doi: 10.1890/ES15-00262.1. |
[50] |
PESCHEL A R, ZAK D R, CLINE L C, et al. Elk, sagebrush, and saprotrophs: indirect top-down control on microbial community composition and function [J]. Ecology, 2015, 96(9): 2383 − 2393. |
[51] |
KUZYAKOV Y, FRIEDEL J K, STAHR K. Review of mechanisms and quantification of priming effects [J]. Soil Biol Biochem, 2000, 32(11): 1485 − 1498. |
[52] |
程淑兰, 方华军, 徐梦, 等. 氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展[J]. 生态学报, 2018, 38(23): 8285 − 8295.
CHENG Shulan, FANG Huajun, XU Meng, et al. Regulation of plant-soil-microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: a review [J]. Acta Ecol Sin, 2018, 38(23): 8285 − 8295. |
[53] |
TAO Baoxian, LIU Chenyang, ZHANG Baohua, et al. Effects of inorganic and organic nitrogen additions on CO2 emissions in the coastal wetlands of the Yellow River Delta, China [J]. Atmos Environ, 2018, 185: 159 − 167. |
[54] |
HASSELQUIST N J, METCALFE D B, HÖGBERG P. Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest [J]. Global Change Biol, 2012, 18(12): 3596 − 3605. |
[55] |
XU Yehong, FAN Jianling, DING Weixin, et al. Characterization of organic carbon in decomposing litter exposed to nitrogen and sulfur additions: links to microbial community composition and activity [J]. Geoderma, 2017, 286: 116 − 124. |
[56] |
JIAN Siyang, LI Jianwei, CHEN Ji, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis [J]. Soil Biol Biochem, 2016, 101: 32 − 43. |
[57] |
YUAN Xia, QIN Wenkuan, XU Hao, et al. Sensitivity of soil carbon dynamics to nitrogen and phosphorus enrichment in an alpine meadow [J]. Soil Biol Biochem, 2020, 150: 107984. doi: 10.1016/j.soilbio.2020.107984. |
[58] |
BAUER J E, CAI Weijun, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean [J]. Nature, 2013, 504(7478): 61 − 70. |
[59] |
BIANCHI T S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect [J]. Proc Natl Acad Sci, 2011, 108(49): 19473. doi: 10.1073/pnas.1017982108. |
[60] |
MAJIDZADEH H, UZUN H, RUECKER A, et al. Extreme flooding mobilized dissolved organic matter from coastal forested wetlands [J]. Biogeochemistry, 2017, 136(3): 293 − 309. |
[61] |
HERRMANN M, NAJJAR R G, KEMP W M, et al. Net ecosystem production and organic carbon balance of U. S. East Coast estuaries: a synthesis approach [J]. Global Biogeochem Cycles, 2015, 29(1): 96 − 111. |
[62] |
NEUBAUER S C, ANDERSON I C. Transport of dissolved inorganic carbon from a tidal freshwater marsh to the York River estuary [J]. Limnol Oceanogr, 2003, 48(1): 299 − 307. |
[63] |
WANG Z A, KROEGER K D, GANJU N K, et al. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean [J]. Limnol Oceanogr, 2016, 61(5): 1916 − 1931. |
[64] |
CZAPLA K M, ANDERSON I C, CURRIN C A. Net ecosystem carbon balance in a north Carolina, USA, salt marsh [J]. J Geophys Res Biogeosci, 2020, 125(10): e2019JG005509. doi: 10.1029/2019JG005509. |
[65] |
MORRIS J T, SHAFFER G P, NYMAN J A. Brinson review: perspectives on the influence of nutrients on the sustainability of coastal wetlands [J]. Wetlands, 2013, 33(6): 975 − 988. |
[66] |
DAVIS J, CURRIN C, MORRIS J T. Impacts of fertilization and tidal inundation on elevation change in microtidal, low relief salt marshes [J]. Estuaries Coasts, 2017, 40(6): 1677 − 1687. |
[67] |
GRAHAM S A, MENDELSSOHN I A. Coastal wetland stability maintained through counterbalancing accretionary responses to chronic nutrient enrichment [J]. Ecology, 2014, 95(12): 3271 − 3283. |
[68] |
MENÉNDEZ M C, DELGADO A L, BERASATEGUI A A, et al. Seasonal and tidal dynamics of water temperature, salinity, chlorophyll-a, suspended particulate matter, particulate organic matter, and zooplankton abundance in a shallow, mixed estuary (Bahía Blanca, Argentina) [J]. J Coastal Res, 2015, 32(5): 1051 − 1061. |
[69] |
BLOESCH J. Mechanisms, measurement and importance of sediment resuspension in lakes [J]. Marine Freshwater Res, 1995, 46(1): 295 − 304. |
[70] |
ZHANG Yafei, LIANG Jie, ZENG Guangming, et al. How climate change and eutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: a review [J]. Sci Total Environ, 2020, 705: 135979. doi: 10.1016/j.scitotenv.2019.135979. |
[71] |
李长生. 生物地球化学的概念与方法:DNDC模型的发展[J]. 第四纪研究, 2001, 21(2): 89 − 99.
LI Changsheng. Biogeochemical concepts and methodologies: development of the DNDC model [J]. Quaternary Sci, 2001, 21(2): 89 − 99. |
[72] |
XU Wen, LUO X S, PAN Yuepeng, et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China [J]. Atmos Chem Phys Discuss, 2015, 15: 18365 − 18405. |
[73] |
张钊, 辛晓平. 生物地球化学模型DNDC的研究进展与碳动态模拟应用[J]. 草地学报, 2017, 25(3): 445 − 452.
ZHANG Zhao, XIN Xiaoping. Research progress of biogeochemistry model DNDC in carbon dynamic modeling [J]. Acta Agrestia Sin, 2017, 25(3): 445 − 452. |
[74] |
CHENG S J, HESS P G, WIEDER W R, et al. Decadal fates and impacts of nitrogen additions on temperate forest carbon storage: a data-model comparison [J]. Biogeosciences, 2019, 16(13): 2771 − 2793. |
[75] |
WANG Yingping, LAW R M, PAK B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere [J]. Biogeosciences, 2010, 7(7): 2261 − 2282. |
[76] |
ZAEHLE S, FRIEND A D, FRIEDLINGSTEIN P, et al. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance [J]. Global Biogeochem Cycles, 2010, 24: GB1006. doi: 10.1029/2009GB003522. |
[77] |
袁文平, 蔡文文, 刘丹, 等. 陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014, 29(5): 541 − 550.
YUAN Wenping, CAI Wenwen, LIU Dan, et al. Satellite-based vegetation production models of terrestrial ecosystem: an overview [J]. Adv Earth Sci, 2014, 29(5): 541 − 550. |
[78] |
MONTEITH J L. Solar radiation and productivity in tropical ecosystems [J]. J Appl Ecol, 1972, 9: 747 − 766. |
[79] |
POTTER C. The carbon budget of California [J]. Environ Sci Policy, 2010, 13(5): 373 − 383. |
[80] |
VETTER M, CHURKINA G, JUNG M, et al. Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly in Europe using seven models [J]. Biogeosci Discuss, 2008, 4: 1201 − 1240. |
[81] |
BALDOCCHI D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method [J]. Global Change Biol, 2014, 20(12): 3600 − 3609. |
[82] |
WANG Xiaoguo, ZHU Bo, LI Changsheng, et al. Dissecting soil CO2 fluxes from a subtropical forest in China by integrating field measurements with a modeling approach [J]. Geoderma, 2011, 161(1/2): 88 − 94. |
[83] |
BOHN T J, PODEST E, SCHROEDER R, et al. Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland [J]. Biogeosciences, 2013, 10(10): 6559 − 6576. |
[84] |
FRIEDLINGSTEIN P, ANDREW R M, ROGELJ J, et al. Persistent growth of CO2 emissions and implications for reaching climate targets [J]. Nat Geosci, 2014, 7(10): 709 − 715. |
[85] |
RUNNING S W, COUGHLAN J C. A general model of forest ecosystem processes for regional applications Ⅰ. hydrologic balance, canopy gas exchange and primary production processes [J]. Ecol Modelling, 1988, 42(2): 125 − 154. |
[86] |
BOND-LAMBERTY B, GOWER S T, AHL D E. Improved simulation of poorly drained forests using Biome-BGC [J]. Tree Physiol, 2007, 27(5): 703 − 715. |
[87] |
曾慧卿, 刘琪璟, 冯宗炜, 等. 基于BIOME-BGC模型的红壤丘陵区湿地松(Pinus elliottii)人工林GPP和NPP[J]. 生态学报, 2008, 28(11): 5314 − 5321.
ZENG Huiqing, LIU Qijing, FENG Zongwei, et al. GPP and NPP study of Pinus elliottii forest in red soil hilly region based on BIOME-BGC model [J]. Acta Ecol Sin, 2008, 28(11): 5314 − 5321. |
[88] |
马泽清, 刘琪璟, 王辉民, 等. 中亚热带人工湿地松林(Pinus elliottii)生产力观测与模拟[J]. 中国科学: 地球科学, 2008, 38(8): 1005 − 1015.
MA Zeqing, LIU Qijing, WANG Huimin, et al. Productivity observation and simulation of pine forest (Pinus elliottii) in subtropical constructed wetland [J]. Sci Sin Terrae, 2008, 38(8): 1005 − 1015. |
[89] |
LUO Zhongkui, SUN Osbert Jianxin, WANG Enli, et al. Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using Biome-BGC [J]. Ecosystems, 2010, 13(7): 949 − 965. |
[90] |
PARTON W J, STEWART J W B, COLE C V. Dynamics of C, N, P and S in grassland soils: a model [J]. Biogeochemistry, 1988, 5(1): 109 − 131. |
[91] |
CHIMNER R A, COOPER D J, PARTON W J. Modeling carbon accumulation in Rocky Mountain fens [J]. Wetlands, 2002, 22(1): 100 − 110. |
[92] |
LI Changsheng, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. model structure and sensitivity [J]. J Geophys Res Atmos, 1992, 97(D9): 9759 − 9776. |
[93] |
ZHANG Yu, LI Changsheng, TRETTIN C C, et al. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems [J]. Global Biogeochem Cycles, 2002, 16(4): 1061. doi: 10.1029/2001GB001838. |
[94] |
田展, 牛逸龙, 孙来祥, 等. 基于DNDC模型模拟气候变化影响下的中国水稻田温室气体排放[J]. 应用生态学报, 2015, 26(3): 793 − 799.
TIAN Zhan. NIU Yilong, SUN Laixiang, et al. China’s rice field greenhouse gas emission under climate change based on DNDC model simulation [J]. Chin J Appl Ecol, 2015, 26(3): 793 − 799. |
[95] |
GENG Xuemeng, YANG Meng, GRACE J, et al. Simulating methane emissions from the littoral zone of a reservoir by wetland DNDC Model [J]. J Resour Ecol, 2016, 7(4): 281 − 290. |
[96] |
CUI Jianbo, LI Changsheng, TRETTIN C. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model [J]. Global Change Biol, 2005, 11(2): 278 − 289. |
[97] |
DENG Jia, LI Changsheng, FROLKING S. Modeling impacts of changes in temperature and water table on C gas fluxes in an Alaskan peatland [J]. J Geophys Res Biogeosci, 2015, 120(7): 1279 − 1295. |
[98] |
JI Jinjun. A climate-vegetation interaction model: simulating physical and biological processes at the surface [J]. J Biogeogr, 1995, 22(2/3): 445 − 451. |
[99] |
JI Jinjun, HUANG Mei, LI Kerang. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century [J]. Sci China Ser D Earth Sci, 2008, 51(6): 885 − 898. |
[100] |
史学丽, 张芳, 周文艳, 等. CG-LTDR地表覆盖数据对BCC-AVIM1.0陆面温度模拟的影响研究[J]. 地球信息科学学报, 2015, 17(11): 1294 − 1303.
SHI Xueli, ZHANG Fang, ZHOU Wenyan, et al. Impacts of CG-LTDR land cover dataset updates on the ground temperature simulation with BCCAVIM 1.0 [J]. J Geo-Inf Sci, 2015, 17(11): 1294 − 1303. |
[101] |
WENG Ensheng, LUO Yiqi. Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: a modeling analysis [J]. J Geophys Res Biogeosci, 2008, 113: G03003. doi: 10.1029/2007JG000539. |
[102] |
LUO Yiqi, WHITE L W, CANADELL J G, et al. Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach [J]. Global Biogeochem Cycles, 2003, 17(1): 1021. doi: 10.1029/2002GB001923. |
[103] |
WHITE L W, LUO Yiqi. Modeling and inversion of net ecological exchange data using an Ito stochastic differential equation approach [J]. Appl Math Comput, 2008, 196(2): 686 − 704. |
[104] |
HUANG Yuanyuan, JIANG Jiang, MA Shuang, et al. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: constrained forecast with data assimilation [J]. J Geophys Res Biogeosci, 2017, 122(8): 2046 − 2063. |
[105] |
WU Y, BLODAU C. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands [J]. Geosci Model Dev, 2013, 6(4): 1173 − 1207. |
[106] |
WU Y, BLODAU C, MOORE T R, et al. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modelling analysis [J]. Biogeosciences, 2015, 12(1): 79 − 101. |
[107] |
HAN Guangxuan, CHU Xiaojing, XING Qinghui, et al. Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta [J]. J Geophys Res Biogeosci, 2015, 120(8): 1506 − 1520. |
[108] |
KANG Xiaoming, LI Yong, WANG Jinzhi, et al. Precipitation and temperature regulate the carbon allocation process in alpine wetlands: quantitative simulation [J]. J Soils Sediments, 2020, 20(9): 3300 − 3315. |
[109] |
CHENG S J, HESS P G, WIEDER W R, et al. Decadal impacts of nitrogen additions on temperate forest carbon sinks: a data-model comparison [J]. Biogeosci Discuss, 2018, doi: 10.5194/bg-2018-505. |
[110] |
JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nat Geosci, 2010, 3(5): 315 − 322. |
[111] |
FREY S D, OLLINGER S, NADELHOFFER K, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests [J]. Biogeochemistry, 2014, 121(2): 305 − 316. |
[112] |
SULMAN B N, BRZOSTEK E R, MEDICI C, et al. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association [J]. Ecol Lett, 2017, 20(8): 1043 − 1053. |
[113] |
WIEDER W R, BONAN G B, ALLISON S D. Global soil carbon projections are improved by modelling microbial processes [J]. Nat Clim Change, 2013, 3(10): 909 − 912. |
[114] |
ZHU Qing, RILEY W J, TANG Jinyun. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions [J]. Ecol Appl, 2017, 27(3): 875 − 886. |
[115] |
BINGHAM A H, COTRUFO M F. Organic nitrogen storage in mineral soil: implications for policy and management [J]. Sci Total Environ, 2016, 551/552: 116 − 126. |
[116] |
KEENAN T F, BAKER I, BARR A, et al. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange [J]. Global Change Biol, 2012, 18(6): 1971 − 1987. |
[117] |
de KAUWE M G, MEDLYN B E, ZAEHLE S, et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites [J]. Global Change Biol, 2013, 19(6): 1759 − 1779. |
[118] |
LUO Yiqi, RANDERSON J T, ABRAMOWITZ G, et al. A framework for benchmarking land models [J]. Biogeosciences, 2012, 9(10): 3857 − 3874. |
[119] |
RANDERSON J T, HOFFMAN F M, THORNTON P E, et al. Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models [J]. Global Change Biol, 2009, 15(10): 2462 − 2484. |
[120] |
SMITH M J, PURVES D W, VANDERWEL M C, et al. The climate dependence of the terrestrial carbon cycle, including parameter and structural uncertainties [J]. Biogeosciences, 2013, 10(1): 583 − 606. |
[121] |
HARARUK O, XIA Jianyang, LUO Yiqi. Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov chain Monte Carlo method [J]. J Geophys Res Biogeosci, 2014, 119(3): 403 − 417. |
[122] |
WARD N D, MEGONIGAL J P, BOND-LAMBERTY B, et al. Representing the function and sensitivity of coastal interfaces in Earth system models [J]. Nat Commun, 2020, 11(1): 2458. doi: 10.1038/s41467-020-16236-2. |
[123] |
PRENTICE I C, LIANG X, MEDLYN B E, et al. Reliable, robust and realistic: the three R’s of next-generation land-surface modelling [J]. Atmos Chem Phys, 2015, 15(10): 5987 − 6005. |
[124] |
SULMAN B N, MOORE J A M, ABRAMOFF R, et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics [J]. Biogeochemistry, 2018, 141(2): 109 − 123. |
[125] |
TANG Guoping, ZHENG Jianqiu, XU Xiaofeng, et al. Biogeochemical modeling of CO2 and CH4 production in anoxic arctic soil microcosms [J]. Biogeosciences, 2016, 13(17): 5021 − 5041. |
[126] |
ADAM L J, MOZDZER T J, SHEPARD K A, et al. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise [J]. Global Change Biol, 2013, 19(5): 1495 − 1503. |