-
滨海湿地是土壤碳(C)的大型储存库,能够以高于陆地森林生态系统10~100倍的速率持续固定大气二氧化碳(CO2)[1]。尽管全球滨海湿地仅占地球海洋表面的2%,但碳储量却相当可观。据估计,全球滨海湿地每年碳储量约116 Tg,占海洋储碳总量的50%以上[2],这些碳储量和碳通量统称为滨海湿地“蓝碳”。滨海湿地的碳汇速率主要取决于其垂直沉积物的代谢速率和土壤碳汇密度[3],在海平面上升的影响下,这些蓝碳生态系统的土壤不会达到碳饱和[1],是显著区别于内陆生态系统的重要特征。只要土壤的增加量继续与海平面上升保持同步,沉积物的吸收速率就可以保持在一定水平,因此滨海湿地碳汇的寿命相比内陆碳汇的潜力更大,长时期内减缓气候变化能力也更强。目前,滨海湿地作为温室气体排放抵消工程的目标,受到了广泛的关注。然而,定量评估预测全球变化影响滨海湿地生态系统碳汇功能的研究较少,还需进一步分析滨海湿地对全球气候变化与人类干扰的响应机制,为滨海湿地的保护、管理及利用提供参考方向,以达到增加未来碳储存的目的[1, 4]。近代以来,人类活动向生态系统输入了大量的活性氮[5],大气氮富集量已超过工业革命前的2倍[6]。过剩的含氮化合物经由淋洗、径流以及挥发等途径进入江河湖海和大气中,使沿海近岸水体富营养化[7]。在潮汐作用下,富氮水体经由海水入侵进入滨海湿地,对滨海湿地生态系统的碳循环过程产生重要影响[8-10]。已有多项研究证实:氮输入对陆地碳循环过程的影响结果并不一致,由生态系统类型、覆被种类和其他多种环境因素共同决定[11-13]。如何在不同的环境背景下,评估和预测生态系统碳循环过程对氮输入的响应,目前未有定论。基于滨海湿地碳汇功能的重大生态价值,本研究系统阐述了氮输入对滨海湿地生态系统碳循环过程的影响,总结了几种常见的碳循环模型在湿地生态系统应用中的主要研究进展。一方面梳理过去相关研究,提高对氮输入下滨海湿地碳动态变化及碳循环模型领域发展态势的认识;另一方面总结碳循环模型在滨海湿地的应用和不足,为模型改进提供参考方向,有利于更精确地预测滨海湿地碳汇功能的未来发展。
-
碳循环有非常丰富的建模历史,目前已经提出了各种具有不同复杂程度和侧重方向的模型[81-82]。利用模型了解和确定生态系统的主要特征和机制,并对人类活动改变生态系统中碳循环的方式(如化石燃料燃烧、施肥和开发等)进行评估,再借助于真实的观测数据验证模型的拟合度[83]。代表大气与陆地生物圈之间碳交换的模型包括多个过程和机制,其复杂性在过去几十年中不断增加,主要表现在模型过程中的细节被不断增加和完善。由于各模型所代表的过程、应用范围以及运算方式各有不同,因此不同模型之间难以比较,只能以模型输出数值的准确度来评估模型的性能[82],而不能直接在模型中实现概念和数学的评价及比较。
滨海湿地碳循环过程主要由生物和非生物因素共同驱动,常见为基于点位的测量。而在较大空间尺度的研究中,则通常使用替代技术(如涡度协方差技术等)对长时间、大尺度的数据进行补充[84]。然而全球数据存在高度异质性,包括采样时间、试验持续时间和植被类型变化等,这些都进一步增加了滨海湿地碳交换估算的不确定性。由于滨海湿地生态系统的复杂性,经验和参数模型相比过程模型所受限制更多,因为过程模型还可通过增加相应模块建立子模型,达到对特定生态系统进行拟合的目的。同时,为了研究氮输入对滨海湿地生态系统的影响,碳循环模型中除了包含各碳库之间的相互交换,还应该包括水文、碳氮耦合过程的模块。目前在研究过程模型的领域中,满足以上要求且应用较为广泛的有DNDC(过程模型)、PEATBOG(过程模型)、TECO(过程模型)、Biome-BGC(过程模型)、AVIM(过程耦合模型)、TEM(遥感-过程耦合模型)和CENTURY(过程模型)等几种模型,或可应用于氮输入影响滨海湿地生态系统碳循环过程的模拟(表1)。
表 1 碳循环模型的开发及其在氮输入影响中的应用
Table 1. Development and application in wetland of carbon cycle models
模型名称 模型类型 模型概述 建立年份 时间步长 适用范围 应用案例 Biome-BGC[85] 过程模型(生物地球化学模型) 模拟生态系统中植被、凋落物、土壤碳、氮、水的储量和通量,模拟木本植物、C3/C4草本植物的碳、氮、水的循环过程与交互影响 1988 1 d 常绿/落叶、针叶/阔叶林、C3/C4草本植物和灌木林,点位、区域和全球尺度 增加了地下水、苔藓植被、土壤营养物质分解、土壤水分压力指数等作用机理的描述。应用于加拿大森林湿地、红壤丘陵区湿地、千烟洲人工湿地、中国南海湿地红树林等湿地生态系统净初级生产力(NPP)、生物量和土壤碳积累的模拟研究[86-89] CENTURY[90] 过程模型(生物地球化学模型) 基于土壤的结构功能,模拟碳、氮和磷的生物地球化学循环过程,同时结合气温、降水量等气候驱动因子,模拟生态系统生产力 1988 30 d 森林、草原生态系统 通过调整厌氧参数,用于泥炭湿地碳动态模拟[91] DNDC[92] 过程模型(生物地球化学模型) 增加了苔藓及草本植物的生长参数,开发了地下水位动态变化、厌氧条件下土壤生物地球化学过程等算法[93] 1992 1 d 森林、农田、草地、湿地生态系统,点位和区域尺度 最初建立用于描述农业生态系统,现可应用于水稻田、湿地、泥炭地等生态系统的碳氮循环研究[94-97] AVIM[98] 过程耦合模型(大气-植被耦合模型) 陆面物理-植被生理生态的有机耦合,包含植被-土壤-大气间热量和水分的交换以及植物光合-呼吸等CO2的交换,实现了大气和包括根圈在内的植物圈之间的动态相互作用 1995 1 h 森林、草地、农田、冰川、湿地、湖泊等生态系统 添加土壤碳氮动态模块[99],再与其他模块相结合,已应用于研究湿地覆被类型对模拟结果的影响[100] TECO[101] 过程模型(生物地球化学模型) 具有与目前大多数生物地球化学模型相似的碳池结构和参数。经过改进和完善,可用于模拟陆地生态系统中的碳、氮和水文循环 2008 冠层光合作用和土壤水分动态子模型:1 h;植物生长和土壤碳转移子模型:1 d 陆地生态系统 调节植物和生态系统对CO2升高、变暖和降水变化的交互响应的关键过程,已应用于Duke森林应对CO2升高的固碳过程的若干研究中[102-103]以及SPRUCE泥炭地的碳动力和土壤动力学的研究中[104] PEATBOG[105] 过程模型(生物地球化学模型) 强调了土壤固、水、气相与植被之间的物质流动,土壤组分的高空间分辨率,对碳、氮通量的化学计量控制,以及对植被和土壤中碳、氮反应活性的持续概念化 2013 1 d 泥炭地碳氮耦合循环的模拟 已应用于研究长期施氮对泥炭沼泽碳循环的影响分析,并模拟预测了未来80 a间各碳组分的动态趋势,以确定氮肥的潜在影响和影响模型行为的主要因素[106] -
滨海湿地显著区别于其他湿地的特征是周期性的潮汐作用,整个湿地在淹水-暴露中形成干湿交替的生境,土壤环境改变,最终影响湿地碳交换过程[19, 107]。同时,潮汐作用也使得富营养化的近岸水体将大量活性氮输入系统中。与单个影响因素的作用相比,2个过程的共同作用可能对湿地碳变化的影响结果有所不同。然而,已有碳循环模型对周期性潮汐水文过程的关注不足。碳循环机制取决于当前研究对碳循环过程认识的程度,一些机制性的问题依然利用经验模型解决,例如微生物分解碳速率、植物-土壤碳分配等。且碳循环模型简化了各碳库之间的交互关系,模拟相对静态的过程时效果较好,但无法解释和表达动态的过程,例如不同氮素种类或浓度对优势物种、微生物的选择等。碳动态预测要求考虑土壤、水文和植被等之间的相互作用,却很少有同时存在这些作用的且适用于湿地生态系统的综合型碳模型。虽然一些模型(如DNDC和BIOME-BGC模型)在改进过程中增加了描述湿地生态系统机理的模块[86, 108],然而,湿地生态系统碳循环过程较为复杂,兼有草本和木本植物,包括沼生植物、湿生植物和水生植物等,化学组分也存在较大差异,形成多种不同类型的湿地,改进后的模型适应性仍有待论证。例如,改良的Biome-BGC模型仍然无法模拟长期遭受洪水侵袭的真正湿地,因为它不会追踪有机土壤形成、地下水位变化、土壤氧化还原电位或厌氧过程[86]。
评估氮输入对碳储量的影响,可以通过测量固定量的氮输入下植物-土壤碳库的变化,还可追踪氮进入系统后通过氮损失途径减少的氮量及轨迹[109]。因此,氮与碳循环之间的相互作用还需进一步完善。例如在氮输入过程中,土壤碳储量的增加并不等同于植物凋落物产量的增加,还与分解速率的降低相关[110-111]。这种增加可以通过植物-土壤-微生物反馈的变化来解释,即激发效应是增加还是减少生态系统碳储量,取决于加速分解造成的土壤碳损失,以及与氮矿化增加促进的植被碳吸收之间的平衡[112]。此外,先前的建模研究证明微生物能够改善土壤碳储量预测[113],精确地估算植物和微生物生物量及其对无机氮的酶亲和力,可以更好地捕获生态系统中氮的轨迹[114]。部分模型具有隐含的微生物过程,这些过程构成了氮进入土壤有机质的主要途径[115],但模型没有明确微生物对氮的吸收和转化过程,在植物、土壤和氮素损失途径中的氮分配方面尚有不足。
目前,在提高模型预测能力方面研究依然进展缓慢,对初始条件差异的极端敏感性,以及对系统状态描述的不完备,从根本上限制了未来预测的精确度。建模领域已经采用了多种不同的方法来改善陆地碳模型,但仍未显著减少模型预测之间的差异[109]。常见的方法是将更多的已知过程纳入影响碳循环的过程,以使模型尽可能逼真。但是,包含的过程越多,模型就越复杂且难以处理。其他方法如模型比较,虽然可以有效揭示模型预测之间差异的程度[116-117],但通常对于其起源只提供了有限的解释。但迄今为止,基准分析能提供针对标准数据集的模型性能评估[118],仅限于短时间内发生的过程(例如数天至数年)[119]。数据同化可将简单模型或模型组件直接约束于观测值[120],作为1种集成多源空间数据,它能够高效利用多种数据,但不适用于系统性的复杂模型[121]。
Simulation research on the effects of nitrogen input on carbon cycle process in a coastal wetland: review and prospects
-
摘要: 滨海湿地碳循环是控制全球碳储量的关键过程之一,受近岸水体富营养化引起的氮输入影响显著。然而氮输入影响滨海湿地碳循环的过程复杂,利用碳循环模型是研究这些过程的有效手段,在全球气候变化下,评估滨海湿地碳储蓄功能具有重要意义。本研究介绍了滨海湿地碳组分在大气-植被-水体-土壤不同界面间的迁移和转化,总结了氮输入影响碳循环各阶段的规律,发现碳储蓄和碳通量对氮输入的响应受多个因素的共同作用。在此基础上,阐述了目前发展比较成熟且同时具有碳、氮、水相关模块的碳循环主流模型,以及模型为适应湿地而做出的改进及其在湿地的应用情况,为利用模型模拟氮输入影响滨海湿地生态系统碳循环的相关过程提供参考。探讨了将模型应用于湿地,应注意潮汐过程对氮输入影响等相关发展方向,同时就如何减少模型模拟的不准确性等问题展开讨论,对未来的研究方向提出展望。图1表1参126Abstract: As one of the key processes controlling global carbon storage, carbon cycle in coastal wetland is a process significantly affected by nitrogen input due to the inshore water eutrophication. Given the fact that nitrogen input affects the carbon cycle of coastal wetland in a rather complex way, carbon cycle model has been selected as an effective method to clarify the process with the ultimate purpose to evaluate the carbon storage function of coastal wetland under the global climate change. With an review conducted of the migration and transformation of carbon components in coastal wetlands at different interfaces of atmosphere, vegetation, water and soil and a summary made of the regulations of the response of carbon cycle on nitrogen, it was found that carbon storage and flux is affected by multiple factors. Also, on this basis, carbon cycle models with carbon, nitrogen and water related modules were introduced along with the efforts made to promote their adaptability to wetlands and their application on wetlands, which shall provide reference for the employment of the model in the description of the carbon exchange in coastal wetland under the influence of nitrogen input. Finally, it was concluded that, to further develop the model, closer attention should be focused on the tidal process with nitrogen input and the promotion of model simulation accuracy. [Ch, 1 fig. 1 tab. 126 ref.]
-
Key words:
- coastal wetland /
- nitrogen input /
- carbon cycle /
- model analysis
-
表 1 碳循环模型的开发及其在氮输入影响中的应用
Table 1. Development and application in wetland of carbon cycle models
模型名称 模型类型 模型概述 建立年份 时间步长 适用范围 应用案例 Biome-BGC[85] 过程模型(生物地球化学模型) 模拟生态系统中植被、凋落物、土壤碳、氮、水的储量和通量,模拟木本植物、C3/C4草本植物的碳、氮、水的循环过程与交互影响 1988 1 d 常绿/落叶、针叶/阔叶林、C3/C4草本植物和灌木林,点位、区域和全球尺度 增加了地下水、苔藓植被、土壤营养物质分解、土壤水分压力指数等作用机理的描述。应用于加拿大森林湿地、红壤丘陵区湿地、千烟洲人工湿地、中国南海湿地红树林等湿地生态系统净初级生产力(NPP)、生物量和土壤碳积累的模拟研究[86-89] CENTURY[90] 过程模型(生物地球化学模型) 基于土壤的结构功能,模拟碳、氮和磷的生物地球化学循环过程,同时结合气温、降水量等气候驱动因子,模拟生态系统生产力 1988 30 d 森林、草原生态系统 通过调整厌氧参数,用于泥炭湿地碳动态模拟[91] DNDC[92] 过程模型(生物地球化学模型) 增加了苔藓及草本植物的生长参数,开发了地下水位动态变化、厌氧条件下土壤生物地球化学过程等算法[93] 1992 1 d 森林、农田、草地、湿地生态系统,点位和区域尺度 最初建立用于描述农业生态系统,现可应用于水稻田、湿地、泥炭地等生态系统的碳氮循环研究[94-97] AVIM[98] 过程耦合模型(大气-植被耦合模型) 陆面物理-植被生理生态的有机耦合,包含植被-土壤-大气间热量和水分的交换以及植物光合-呼吸等CO2的交换,实现了大气和包括根圈在内的植物圈之间的动态相互作用 1995 1 h 森林、草地、农田、冰川、湿地、湖泊等生态系统 添加土壤碳氮动态模块[99],再与其他模块相结合,已应用于研究湿地覆被类型对模拟结果的影响[100] TECO[101] 过程模型(生物地球化学模型) 具有与目前大多数生物地球化学模型相似的碳池结构和参数。经过改进和完善,可用于模拟陆地生态系统中的碳、氮和水文循环 2008 冠层光合作用和土壤水分动态子模型:1 h;植物生长和土壤碳转移子模型:1 d 陆地生态系统 调节植物和生态系统对CO2升高、变暖和降水变化的交互响应的关键过程,已应用于Duke森林应对CO2升高的固碳过程的若干研究中[102-103]以及SPRUCE泥炭地的碳动力和土壤动力学的研究中[104] PEATBOG[105] 过程模型(生物地球化学模型) 强调了土壤固、水、气相与植被之间的物质流动,土壤组分的高空间分辨率,对碳、氮通量的化学计量控制,以及对植被和土壤中碳、氮反应活性的持续概念化 2013 1 d 泥炭地碳氮耦合循环的模拟 已应用于研究长期施氮对泥炭沼泽碳循环的影响分析,并模拟预测了未来80 a间各碳组分的动态趋势,以确定氮肥的潜在影响和影响模型行为的主要因素[106] -
[1] MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Front Ecol Environ, 2011, 9(10): 552 − 560. [2] KIRWAN M L, GUNTENSPERGEN G R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh [J]. J Ecol, 2012, 100(3): 764 − 770. [3] KIRWAN M, TEMMERMAN S, SKEEHAN E, et al. Overestimation of marsh vulnerability to sea level rise [J]. Nat Clim Change, 2016, 6(3): 253 − 260. [4] KROEGER K D, CROOKS S, MOSEMAN-VALTIERRA S, et al. Restoring tides to reduce methane emissions in impounded wetlands: a new and potent Blue Carbon climate change intervention [J]. Sci Rep, 2017, 7(1): 11914. doi: 10.1038/s41598-017-12138-4. [5] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 2008, 320(5878): 889 − 892. [6] CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils [J]. Global Biogeochem Cycles, 2003, 17(4): 1111. doi: 10.1029/2002gb001917. [7] LI Juanyong, HAN Guangxuan, ZHAO Mingliang, et al. Nitrogen input weakens the control of inundation frequency on soil organic carbon loss in a tidal salt marsh [J]. Estuarine Coastal Shelf Sci, 2020, 243: 106878. doi: 10.1016/j.ecss.2020.106878. [8] HOBBIE S E, NADELHOFFER K J, HÖGBERG P. A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions [J]. Plant Soil, 2002, 242(1): 163 − 170. [9] TAO Baoxian, SONG Changchun, GUO Yuedong. Short-term effects of nitrogen additions and increased temperature on wetland soil respiration, Sanjiang Plain, China [J]. Wetlands, 2013, 33(4): 727 − 736. [10] LIU Jun, WU Nana, WANG Hui, et al. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter [J]. Ecology, 2016, 97(7): 1796 − 1806. [11] SONG Bing, SUN Jian, ZHOU Qingping, et al. Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes [J]. Biogeosciences, 2017, 14(17): 3947 − 3956. [12] WANG Jing, GAO Yingzhi, ZHANG Yunhai, et al. Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe [J]. Global Change Biol, 2019, 25(9): 2958 − 2969. [13] QU Wendi, HAN Guangxuan, ELLER F, et al. Nitrogen input in different chemical forms and levels stimulates soil organic carbon decomposition in a coastal wetland [J]. Catena, 2020, 194: 104672. doi: 10.1016/j.catena.2020.104672. [14] TRUMBORE S. Carbon respired by terrestrial ecosystems-recent progress and challenges [J]. Global Change Biol, 2006, 12(2): 141 − 153. [15] LUO Yiqi, KEENAN T F, SMITH M. Predictability of the terrestrial carbon cycle [J]. Global Change Biol, 2015, 21(5): 1737 − 1751. [16] 曹磊, 宋金明, 李学刚, 等. 中国滨海盐沼湿地碳收支与碳循环过程研究进展[J]. 生态学报, 2013, 33(17): 5141 − 5152. CAO Lei, SONG Jinming, LI Xuegang, et al. Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China [J]. Acta Ecol Sin, 2013, 33(17): 5141 − 5152. [17] MITSCH W J, GOSSELINK J G. Wetlands[M]. 4th ed. Hoboken: John Wiley & Sons, Inc., 2007. [18] WANG Dongqi, CHEN Zhenlou, XU Shiyuan. Methane emission from Yangtze estuarine wetland, China [J]. J Geophys Res, 2009, 114: G02011. doi: 10.1029/2008JG000857. [19] 韩广轩. 潮汐作用和干湿交替对盐沼湿地碳交换的影响机制研究进展[J]. 生态学报, 2017, 37(24): 8170 − 8178. HAN Guangxuan. Effect of tidal action and drying-wetting cycles on carbon exchange in a salt marsh: progress and prospects [J]. Acta Ecol Sin, 2017, 37(24): 8170 − 8178. [20] 仝川, 鄂焱, 廖稷, 等. 闽江河口潮汐沼泽湿地CO2排放通量特征[J]. 环境科学学报, 2011, 31(12): 2830 − 2840. TONG Chuan, E Yan, LIAO Ji, et al. Carbon dioxide emission from tidal marshes in the Min River Estuary [J]. Acta Sci Circumstantiae, 2011, 31(12): 2830 − 2840. [21] 王玲玲, 孙志高, 牟晓杰, 等. 黄河口滨岸潮滩湿地CO2、CH4和N2O通量特征初步研究[J]. 草业学报, 2011, 20(3): 51 − 61. WANG Lingling, SUN Zhigao, MOU Xiaojie, et al. A preliminary study on carbon dioxide, methane and nitrous oxide fluxes from intertidal flat wetlands of the Yellow River estuary [J]. Acta Pratacult Sin, 2011, 20(3): 51 − 61. [22] 贺文君, 韩广轩, 宋维民, 等. 潮汐作用对黄河三角洲盐沼湿地甲烷排放的影响[J]. 生态学报, 2019, 39(17): 6238 − 6246. HE Wenjun, HAN Guangxuan, SONG Weimin, et al. Effects of tidal action on methane emissions over a salt marsh in the Yellow River Delta, China [J]. Acta Ecol Sin, 2019, 39(17): 6238 − 6246. [23] POFFENBARGER H J, NEEDELMAN B A, MEGONIGAL J P. Salinity influence on methane emissions from tidal marshes [J]. Wetlands, 2011, 31(5): 831 − 842. [24] CHOI Y, WANG Yang. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements [J]. Global Biogeochem Cycles, 2004, 18: GB4016. doi: 10.1029/2004GB002261. [25] KAYRANLI B, SCHOLZ M, MUSTAFA A, et al. Carbon storage and fluxes within freshwater wetlands: a critical review [J]. Wetlands, 2010, 30(1): 111 − 124. [26] THORNTON S F, MCMANUS J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland [J]. Estuarine Coastal Shelf Sci, 1994, 38(3): 219 − 233. [27] VERNBERG F J. Salt-marsh processes: a review [J]. Environ Toxicol Chem, 1993, 12(12): 2167 − 2195. [28] SYED K H, FLANAGAN L B, CARLSON P J, et al. Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta [J]. Agric For Meteorol, 2006, 140(1): 97 − 114. [29] EXBRAYAT J F, PITMAN A J, ZHANG Q, et al. Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation [J]. Biogeosciences, 2013, 10(11): 7095 − 7108. [30] BRAGAZZA L, BUTTLER A, HABERMACHER J, et al. High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation [J]. Global Change Biol, 2012, 18(3): 1163 − 1172. [31] YUAN Zhiyou, CHEN H Y H. A global analysis of fine root production as affected by soil nitrogen and phosphorus [J]. Proc Biol Sci, 2012, 279(1743): 3796 − 3802. [32] YUAN Zhiyou, LI Linghao, HAN Xingguo, et al. Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China [J]. Oecologia, 2006, 148(4): 564 − 572. [33] BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis [J]. Ecol Appl, 2010, 20(1): 30 − 59. [34] KOOTTATEP T, POLPRASERT C. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics [J]. Water Sci Technol, 1997, 36(12): 1 − 8. [35] SUN Yuan, WANG Cuiting, CHEN H Y H, et al. Responses of C∶N stoichiometry in plants, soil, and microorganisms to nitrogen addition [J]. Plant Soil, 2020, 456(1/2): 277 − 287. [36] MOE S J, STELZER R S, FORMAN M R, et al. Recent advances in ecological stoichiometry: insights for population and community ecology [J]. Oikos, 2005, 109(1): 29 − 39. [37] HOUGHTON R. Terrestrial carbon sinks-uncertain explanations [J]. Biologist, 2002, 49: 155 − 60. [38] 刘德燕, 宋长春. 湿地植物小叶章对外源氮输入的响应[J]. 应用生态学报, 2008, 19(12): 2599 − 2604. LIU Deyan, SONG Changchun. Responses of marsh wetland plant Calamagrostis angustifolia to exogenous nitrogen input [J]. Chin J Appl Ecol, 2008, 19(12): 2599 − 2604. [39] 彭琴, 董云社, 齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874 − 883. PENG Qin, DONG Yunshe, QI Yuchun. Influence of external nitrogen input on key processes of carbon cycle in terrestrial ecosystem [J]. Adv Earth Sci, 2008, 23(8): 874 − 883. [40] NAKAJI T, TAKENAGA S, KUROHA M, et al. Photosynthetic response of Pinus densiflora seedlings to high nitrogen load [J]. Environ Sci, 2002, 9: 269 − 282. [41] 张立新, 李生秀. 长期水分胁迫下氮、钾对夏玉米叶片光合特性的影响[J]. 植物营养与肥料学报, 2009, 15(1): 82 − 90. ZHANG Lixin, LI Shengxiu. Effects of nitrogen and potassium on photosynthetic characteristics in summer maize leaves under long-term water stress [J]. Plant Nutr Fert Sci, 2009, 15(1): 82 − 90. [42] HUANGFU Chaohe, LI Huiyan, CHEN Xinwei, et al. Response of an invasive plant, Flaveria bidentis, to nitrogen addition: a test of form-preference uptake [J]. Biol Invasions, 2016, 18(11): 3365 − 3380. [43] LU Xiankai, VITOUSEK P M, MAO Qinggong, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest [J]. Proc Natl Acad Sci, 2018, 115(20): 5187 − 5192. [44] BREITBURG D, LEVIN L A, OSCHLIES A, et al. Declining oxygen in the global ocean and coastal waters [J]. Science, 2018, 359(6371): eaam7240. doi: 10.1126/science.aam7240. [45] ZHANG Yaohong, XU Xianju, LI Yang, et al. Effects of Spartina alterniflora invasion and exogenous nitrogen on soil nitrogen mineralization in the coastal salt marshes [J]. Ecol Eng, 2016, 87: 281 − 287. [46] LUO Min, HUANG Jiafang, ZHU Wenfeng, et al. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review [J]. Hydrobiologia, 2019, 827(1): 31 − 49. [47] MIN K, KANG H, LEE D. Effects of ammonium and nitrate additions on carbon mineralization in wetland soils [J]. Soil Biol Biochem, 2011, 43(12): 2461 − 2469. [48] EISENLORD S D, FREEDMAN Z, ZAK D R, et al. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition [J]. Appl Environ Microbiol, 2013, 79(4): 1191 − 1199. [49] LINDA T A, FREY S D, STHULTZ C M, et al. Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay [J]. Ecosphere, 2015, 6(10): 205. doi: 10.1890/ES15-00262.1. [50] PESCHEL A R, ZAK D R, CLINE L C, et al. Elk, sagebrush, and saprotrophs: indirect top-down control on microbial community composition and function [J]. Ecology, 2015, 96(9): 2383 − 2393. [51] KUZYAKOV Y, FRIEDEL J K, STAHR K. Review of mechanisms and quantification of priming effects [J]. Soil Biol Biochem, 2000, 32(11): 1485 − 1498. [52] 程淑兰, 方华军, 徐梦, 等. 氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展[J]. 生态学报, 2018, 38(23): 8285 − 8295. CHENG Shulan, FANG Huajun, XU Meng, et al. Regulation of plant-soil-microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: a review [J]. Acta Ecol Sin, 2018, 38(23): 8285 − 8295. [53] TAO Baoxian, LIU Chenyang, ZHANG Baohua, et al. Effects of inorganic and organic nitrogen additions on CO2 emissions in the coastal wetlands of the Yellow River Delta, China [J]. Atmos Environ, 2018, 185: 159 − 167. [54] HASSELQUIST N J, METCALFE D B, HÖGBERG P. Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest [J]. Global Change Biol, 2012, 18(12): 3596 − 3605. [55] XU Yehong, FAN Jianling, DING Weixin, et al. Characterization of organic carbon in decomposing litter exposed to nitrogen and sulfur additions: links to microbial community composition and activity [J]. Geoderma, 2017, 286: 116 − 124. [56] JIAN Siyang, LI Jianwei, CHEN Ji, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis [J]. Soil Biol Biochem, 2016, 101: 32 − 43. [57] YUAN Xia, QIN Wenkuan, XU Hao, et al. Sensitivity of soil carbon dynamics to nitrogen and phosphorus enrichment in an alpine meadow [J]. Soil Biol Biochem, 2020, 150: 107984. doi: 10.1016/j.soilbio.2020.107984. [58] BAUER J E, CAI Weijun, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean [J]. Nature, 2013, 504(7478): 61 − 70. [59] BIANCHI T S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect [J]. Proc Natl Acad Sci, 2011, 108(49): 19473. doi: 10.1073/pnas.1017982108. [60] MAJIDZADEH H, UZUN H, RUECKER A, et al. Extreme flooding mobilized dissolved organic matter from coastal forested wetlands [J]. Biogeochemistry, 2017, 136(3): 293 − 309. [61] HERRMANN M, NAJJAR R G, KEMP W M, et al. Net ecosystem production and organic carbon balance of U. S. East Coast estuaries: a synthesis approach [J]. Global Biogeochem Cycles, 2015, 29(1): 96 − 111. [62] NEUBAUER S C, ANDERSON I C. Transport of dissolved inorganic carbon from a tidal freshwater marsh to the York River estuary [J]. Limnol Oceanogr, 2003, 48(1): 299 − 307. [63] WANG Z A, KROEGER K D, GANJU N K, et al. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean [J]. Limnol Oceanogr, 2016, 61(5): 1916 − 1931. [64] CZAPLA K M, ANDERSON I C, CURRIN C A. Net ecosystem carbon balance in a north Carolina, USA, salt marsh [J]. J Geophys Res Biogeosci, 2020, 125(10): e2019JG005509. doi: 10.1029/2019JG005509. [65] MORRIS J T, SHAFFER G P, NYMAN J A. Brinson review: perspectives on the influence of nutrients on the sustainability of coastal wetlands [J]. Wetlands, 2013, 33(6): 975 − 988. [66] DAVIS J, CURRIN C, MORRIS J T. Impacts of fertilization and tidal inundation on elevation change in microtidal, low relief salt marshes [J]. Estuaries Coasts, 2017, 40(6): 1677 − 1687. [67] GRAHAM S A, MENDELSSOHN I A. Coastal wetland stability maintained through counterbalancing accretionary responses to chronic nutrient enrichment [J]. Ecology, 2014, 95(12): 3271 − 3283. [68] MENÉNDEZ M C, DELGADO A L, BERASATEGUI A A, et al. Seasonal and tidal dynamics of water temperature, salinity, chlorophyll-a, suspended particulate matter, particulate organic matter, and zooplankton abundance in a shallow, mixed estuary (Bahía Blanca, Argentina) [J]. J Coastal Res, 2015, 32(5): 1051 − 1061. [69] BLOESCH J. Mechanisms, measurement and importance of sediment resuspension in lakes [J]. Marine Freshwater Res, 1995, 46(1): 295 − 304. [70] ZHANG Yafei, LIANG Jie, ZENG Guangming, et al. How climate change and eutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: a review [J]. Sci Total Environ, 2020, 705: 135979. doi: 10.1016/j.scitotenv.2019.135979. [71] 李长生. 生物地球化学的概念与方法:DNDC模型的发展[J]. 第四纪研究, 2001, 21(2): 89 − 99. LI Changsheng. Biogeochemical concepts and methodologies: development of the DNDC model [J]. Quaternary Sci, 2001, 21(2): 89 − 99. [72] XU Wen, LUO X S, PAN Yuepeng, et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China [J]. Atmos Chem Phys Discuss, 2015, 15: 18365 − 18405. [73] 张钊, 辛晓平. 生物地球化学模型DNDC的研究进展与碳动态模拟应用[J]. 草地学报, 2017, 25(3): 445 − 452. ZHANG Zhao, XIN Xiaoping. Research progress of biogeochemistry model DNDC in carbon dynamic modeling [J]. Acta Agrestia Sin, 2017, 25(3): 445 − 452. [74] CHENG S J, HESS P G, WIEDER W R, et al. Decadal fates and impacts of nitrogen additions on temperate forest carbon storage: a data-model comparison [J]. Biogeosciences, 2019, 16(13): 2771 − 2793. [75] WANG Yingping, LAW R M, PAK B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere [J]. Biogeosciences, 2010, 7(7): 2261 − 2282. [76] ZAEHLE S, FRIEND A D, FRIEDLINGSTEIN P, et al. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance [J]. Global Biogeochem Cycles, 2010, 24: GB1006. doi: 10.1029/2009GB003522. [77] 袁文平, 蔡文文, 刘丹, 等. 陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014, 29(5): 541 − 550. YUAN Wenping, CAI Wenwen, LIU Dan, et al. Satellite-based vegetation production models of terrestrial ecosystem: an overview [J]. Adv Earth Sci, 2014, 29(5): 541 − 550. [78] MONTEITH J L. Solar radiation and productivity in tropical ecosystems [J]. J Appl Ecol, 1972, 9: 747 − 766. [79] POTTER C. The carbon budget of California [J]. Environ Sci Policy, 2010, 13(5): 373 − 383. [80] VETTER M, CHURKINA G, JUNG M, et al. Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly in Europe using seven models [J]. Biogeosci Discuss, 2008, 4: 1201 − 1240. [81] BALDOCCHI D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method [J]. Global Change Biol, 2014, 20(12): 3600 − 3609. [82] WANG Xiaoguo, ZHU Bo, LI Changsheng, et al. Dissecting soil CO2 fluxes from a subtropical forest in China by integrating field measurements with a modeling approach [J]. Geoderma, 2011, 161(1/2): 88 − 94. [83] BOHN T J, PODEST E, SCHROEDER R, et al. Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland [J]. Biogeosciences, 2013, 10(10): 6559 − 6576. [84] FRIEDLINGSTEIN P, ANDREW R M, ROGELJ J, et al. Persistent growth of CO2 emissions and implications for reaching climate targets [J]. Nat Geosci, 2014, 7(10): 709 − 715. [85] RUNNING S W, COUGHLAN J C. A general model of forest ecosystem processes for regional applications Ⅰ. hydrologic balance, canopy gas exchange and primary production processes [J]. Ecol Modelling, 1988, 42(2): 125 − 154. [86] BOND-LAMBERTY B, GOWER S T, AHL D E. Improved simulation of poorly drained forests using Biome-BGC [J]. Tree Physiol, 2007, 27(5): 703 − 715. [87] 曾慧卿, 刘琪璟, 冯宗炜, 等. 基于BIOME-BGC模型的红壤丘陵区湿地松(Pinus elliottii)人工林GPP和NPP[J]. 生态学报, 2008, 28(11): 5314 − 5321. ZENG Huiqing, LIU Qijing, FENG Zongwei, et al. GPP and NPP study of Pinus elliottii forest in red soil hilly region based on BIOME-BGC model [J]. Acta Ecol Sin, 2008, 28(11): 5314 − 5321. [88] 马泽清, 刘琪璟, 王辉民, 等. 中亚热带人工湿地松林(Pinus elliottii)生产力观测与模拟[J]. 中国科学: 地球科学, 2008, 38(8): 1005 − 1015. MA Zeqing, LIU Qijing, WANG Huimin, et al. Productivity observation and simulation of pine forest (Pinus elliottii) in subtropical constructed wetland [J]. Sci Sin Terrae, 2008, 38(8): 1005 − 1015. [89] LUO Zhongkui, SUN Osbert Jianxin, WANG Enli, et al. Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using Biome-BGC [J]. Ecosystems, 2010, 13(7): 949 − 965. [90] PARTON W J, STEWART J W B, COLE C V. Dynamics of C, N, P and S in grassland soils: a model [J]. Biogeochemistry, 1988, 5(1): 109 − 131. [91] CHIMNER R A, COOPER D J, PARTON W J. Modeling carbon accumulation in Rocky Mountain fens [J]. Wetlands, 2002, 22(1): 100 − 110. [92] LI Changsheng, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. model structure and sensitivity [J]. J Geophys Res Atmos, 1992, 97(D9): 9759 − 9776. [93] ZHANG Yu, LI Changsheng, TRETTIN C C, et al. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems [J]. Global Biogeochem Cycles, 2002, 16(4): 1061. doi: 10.1029/2001GB001838. [94] 田展, 牛逸龙, 孙来祥, 等. 基于DNDC模型模拟气候变化影响下的中国水稻田温室气体排放[J]. 应用生态学报, 2015, 26(3): 793 − 799. TIAN Zhan. NIU Yilong, SUN Laixiang, et al. China’s rice field greenhouse gas emission under climate change based on DNDC model simulation [J]. Chin J Appl Ecol, 2015, 26(3): 793 − 799. [95] GENG Xuemeng, YANG Meng, GRACE J, et al. Simulating methane emissions from the littoral zone of a reservoir by wetland DNDC Model [J]. J Resour Ecol, 2016, 7(4): 281 − 290. [96] CUI Jianbo, LI Changsheng, TRETTIN C. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model [J]. Global Change Biol, 2005, 11(2): 278 − 289. [97] DENG Jia, LI Changsheng, FROLKING S. Modeling impacts of changes in temperature and water table on C gas fluxes in an Alaskan peatland [J]. J Geophys Res Biogeosci, 2015, 120(7): 1279 − 1295. [98] JI Jinjun. A climate-vegetation interaction model: simulating physical and biological processes at the surface [J]. J Biogeogr, 1995, 22(2/3): 445 − 451. [99] JI Jinjun, HUANG Mei, LI Kerang. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century [J]. Sci China Ser D Earth Sci, 2008, 51(6): 885 − 898. [100] 史学丽, 张芳, 周文艳, 等. CG-LTDR地表覆盖数据对BCC-AVIM1.0陆面温度模拟的影响研究[J]. 地球信息科学学报, 2015, 17(11): 1294 − 1303. SHI Xueli, ZHANG Fang, ZHOU Wenyan, et al. Impacts of CG-LTDR land cover dataset updates on the ground temperature simulation with BCCAVIM 1.0 [J]. J Geo-Inf Sci, 2015, 17(11): 1294 − 1303. [101] WENG Ensheng, LUO Yiqi. Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: a modeling analysis [J]. J Geophys Res Biogeosci, 2008, 113: G03003. doi: 10.1029/2007JG000539. [102] LUO Yiqi, WHITE L W, CANADELL J G, et al. Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach [J]. Global Biogeochem Cycles, 2003, 17(1): 1021. doi: 10.1029/2002GB001923. [103] WHITE L W, LUO Yiqi. Modeling and inversion of net ecological exchange data using an Ito stochastic differential equation approach [J]. Appl Math Comput, 2008, 196(2): 686 − 704. [104] HUANG Yuanyuan, JIANG Jiang, MA Shuang, et al. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: constrained forecast with data assimilation [J]. J Geophys Res Biogeosci, 2017, 122(8): 2046 − 2063. [105] WU Y, BLODAU C. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands [J]. Geosci Model Dev, 2013, 6(4): 1173 − 1207. [106] WU Y, BLODAU C, MOORE T R, et al. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modelling analysis [J]. Biogeosciences, 2015, 12(1): 79 − 101. [107] HAN Guangxuan, CHU Xiaojing, XING Qinghui, et al. Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta [J]. J Geophys Res Biogeosci, 2015, 120(8): 1506 − 1520. [108] KANG Xiaoming, LI Yong, WANG Jinzhi, et al. Precipitation and temperature regulate the carbon allocation process in alpine wetlands: quantitative simulation [J]. J Soils Sediments, 2020, 20(9): 3300 − 3315. [109] CHENG S J, HESS P G, WIEDER W R, et al. Decadal impacts of nitrogen additions on temperate forest carbon sinks: a data-model comparison [J]. Biogeosci Discuss, 2018, doi: 10.5194/bg-2018-505. [110] JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nat Geosci, 2010, 3(5): 315 − 322. [111] FREY S D, OLLINGER S, NADELHOFFER K, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests [J]. Biogeochemistry, 2014, 121(2): 305 − 316. [112] SULMAN B N, BRZOSTEK E R, MEDICI C, et al. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association [J]. Ecol Lett, 2017, 20(8): 1043 − 1053. [113] WIEDER W R, BONAN G B, ALLISON S D. Global soil carbon projections are improved by modelling microbial processes [J]. Nat Clim Change, 2013, 3(10): 909 − 912. [114] ZHU Qing, RILEY W J, TANG Jinyun. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions [J]. Ecol Appl, 2017, 27(3): 875 − 886. [115] BINGHAM A H, COTRUFO M F. Organic nitrogen storage in mineral soil: implications for policy and management [J]. Sci Total Environ, 2016, 551/552: 116 − 126. [116] KEENAN T F, BAKER I, BARR A, et al. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange [J]. Global Change Biol, 2012, 18(6): 1971 − 1987. [117] de KAUWE M G, MEDLYN B E, ZAEHLE S, et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites [J]. Global Change Biol, 2013, 19(6): 1759 − 1779. [118] LUO Yiqi, RANDERSON J T, ABRAMOWITZ G, et al. A framework for benchmarking land models [J]. Biogeosciences, 2012, 9(10): 3857 − 3874. [119] RANDERSON J T, HOFFMAN F M, THORNTON P E, et al. Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models [J]. Global Change Biol, 2009, 15(10): 2462 − 2484. [120] SMITH M J, PURVES D W, VANDERWEL M C, et al. The climate dependence of the terrestrial carbon cycle, including parameter and structural uncertainties [J]. Biogeosciences, 2013, 10(1): 583 − 606. [121] HARARUK O, XIA Jianyang, LUO Yiqi. Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov chain Monte Carlo method [J]. J Geophys Res Biogeosci, 2014, 119(3): 403 − 417. [122] WARD N D, MEGONIGAL J P, BOND-LAMBERTY B, et al. Representing the function and sensitivity of coastal interfaces in Earth system models [J]. Nat Commun, 2020, 11(1): 2458. doi: 10.1038/s41467-020-16236-2. [123] PRENTICE I C, LIANG X, MEDLYN B E, et al. Reliable, robust and realistic: the three R’s of next-generation land-surface modelling [J]. Atmos Chem Phys, 2015, 15(10): 5987 − 6005. [124] SULMAN B N, MOORE J A M, ABRAMOFF R, et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics [J]. Biogeochemistry, 2018, 141(2): 109 − 123. [125] TANG Guoping, ZHENG Jianqiu, XU Xiaofeng, et al. Biogeochemical modeling of CO2 and CH4 production in anoxic arctic soil microcosms [J]. Biogeosciences, 2016, 13(17): 5021 − 5041. [126] ADAM L J, MOZDZER T J, SHEPARD K A, et al. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise [J]. Global Change Biol, 2013, 19(5): 1495 − 1503. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210118