Leaf color variation in plants is a common and easily recognized phenomenon in nature, which affects the photosynthetic efficiency of plants and leads to poor growth, so it was once considered to be an undesirable variation and gradually eliminated. But in recent years, social advancements and increased demand for ornamental landscaping have brought renewed attention to leaf color mutants. Leaf color mutants are generally regulated at the molecular level, resulting in abnormal chloroplast structure, inhibited photosynthesis, and abnormal pigment synthesis and metabolic pathways. Therefore, they serve as ideal materials for studying pigment metabolism, chloroplast development and differentiation, photosynthesis, and related pathways, and can also provide important information for variety improvement. This paper reviews the research progress of leaf color mutants in recent years, and clarifies that leaf color mutants in higher plants mainly come from natural mutation and artificial mutation. Leaf color mutants can be divided into several types based on color, such as yellowing, yellow green, green yellow, green white, albino, light green, white emerald, stripe and so on. According to the way of leaf color change, leaf color mutants can be divided into monochromatic mutation, variegated mutation and stage chlorosis. Its inheritance mode is generally divided into nuclear inheritance, cytoplasmic inheritance and nucleocytoplasmic interaction inheritance. Compared with normal green leaf plants, the net photosynthetic rate, stomatal conductance, transpiration rate of most leaf color mutants decrease, so does the utilization rate of carbon dioxide. Mutations in genes related to synthesis and metabolism of chlorophyll, carotenoids, and flavonoids (particularly anthocyanins), as well as genes involved in chloroplast differentiation and development, can explain the molecular mechanism underlying leaf color mutants. Leaf color mutants can be applied in landscaping and widely used in basic research and breeding as excellent experimental materials. The findings of this review can provide theoretical reference for further research on leaf color variation. [Ch, 112 ref.]
Soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometric characteristics are indicators to characterize the composition of soil organic matter and nutrient availability, which play a key role in understanding the carbon, nitrogen and phosphorus cycle in soil and the balance of ecosystem. However, the current research on the specific effects of each driving factor on soil stoichiometric characteristics needs to be further strengthened. By analyzing the annual publications and research hotspots in the field of soil ecological stoichiometry home and abroad in the past 15 years, we discussed the changes of soil ecological stoichiometric characteristics in 4 parts: biological factors (plant, soil microorganism and soil animal), natural environmental factors (geological hazard, topography and soil parent material), global climate change factors (climate warming, extreme weather, nitrogen deposition, acid rain) and human activity (land use pattern). The driving factors of the change of soil ecological stoichiometric ratios were discussed, and the law and internal mechanism of the change of soil carbon, nitrogen and phosphorus stoichiometric ratios were expounded. The results showed that plant, soil microorganism, soil animal and their interactions jointly drive soil carbon, nitrogen and phosphorus cycle. Soil animals affect microbial community structure through feeding and thus influence soil carbon turnover. The complexity of microbial community regulates soil C-N-P coupling. Geological disasters disturb the balance of soil stoichiometry through nutrient loss and decreased microbial activity. Topography, climate warming and extreme climate indirectly affect soil stoichiometry by changing water and heat conditions, whereas the mineral composition and structure of parent material directly regulate soil C∶N∶P. Nitrogen deposition and acid rain affect plant growth and soil microbial activity through soil acidification and nutrient loss and thus change soil C-N-P stoichiometry. Land use patterns directly or indirectly affect soil stoichiometry through agricultural management and vegetation cover. Environmental factors affect soil C-N-P stoichiometry through biotic factors, directly or indirectly, but with uncertain direction and degree. Further study should pay attention to the synergistic effect of multiple factors and multi-path regulation mechanism so as to provide a reference for soil nutrient management and ecosystem stability in the context of global change. [Ch, 3 fig. 70 ref.]
Nitrous oxide (N2O) is the third most important greenhouse gas next to carbon dioxide and methane. Forest restoration may mediate the changes in plant-soil biological-physicochemical environment, and thereby significantly affect the dynamics of soil N2O emissions. It is of great scientific significance to explore the biotic and abiotic mechanisms of the impact of forest restoration on soil N2O emissions. In this study, four microbial pathways (autotrophic nitrification, heterotrophic nitrification, biological denitrification and nitrifying bacterial denitrification) of N2O produced from forest soil were reviewed. The regulation mechanisms of biotic factors (litter, root biomass, root exudates, soil microorganisms and animal communities) and abiotic factors (climate type, temperature, moisture, pH, carbon pool, as well as nitrogen, phosphorus and potassium pools) affecting soil N2O emissions during forest restoration were discussed. At present, research about the effect of forest restoration on soil N2O emissions mainly focuses on the analysis of single-factor mechanism, while there is a relative lack of research on the mechanism of multi-factor coupling in regulating the direction, intensity and dynamics of forest soil N2O emissions. Future research on the regulatory mechanism of greenhouse gas emissions from forest soil should focus on the synergistic direct or indirect effects of multiple factors of “plant-microbial-soil fauna-physicochemical environment” under the background of global climate change intensification, so as to provide key theoretical support for accurately predicting the impact of forest restoration on global climate change. [Ch, 91 ref.]
Calcium ion (Ca2+) is the important second messenger that plays a crucial role in plant growth and development and stress response. In recent years, with the continuous progress of biochemistry and molecular biology technology, the application of calcium signaling indicators in plant research has made remarkable progress. This paper reviewed the recent developments on calcium signal indicators in plant applications, including the classification of calcium indicators, the principles of calcium signal detection and their development in plant applications. The application of calcium signal indicators provide an effective means to visualize and observe the dynamic changes of calcium ion in plant cells, converting calcium concentrations in plant cells into fluorescent signals. With the development of indicators, gradual transition changing from the earliest chemical fluorescent indicators to genetically encoded calcium indicators, calcium signals can be observed more accurate, real-time and biologically friendly in plant cells, and have a more in-depth understanding of the means of stress at the molecular level when the plant responds to external stimuli, and became an important physiological indicator at the molecular level of the study of plant stress. Meanwhile, the challenges and future development directions of calcium signaling indicators in plant research were discussed, pointing out the specificity of plant calcium signaling research with the challenges of incubating calcium indicators in plant cells, with a view to providing references and insights to further promote research in this field. [Ch, 1 tab. 73 ref.]
Bimonthly, Start in 1984
Supervisor:Department of Education of Zhejiang Province
Sponsor:Zhejiang A&F University
Editor-in-Chief:SHEN Xi
Editor:Editorial Department of Journal of Zhejiang A&F University
Tel:0571-63732749
E-mail:zlxb@zafu.edu.cn
-
1
Carbon-fixing oriented management patterns of Phyllostachys pubescens and their benefits
WANG Xi-feng, SHEN Yue-qin, WANG Feng, ZHENG Xu-li, HU Zhong-ming -
2
Continuum removal based hyperspectral characteristic analysis of leaves of different tree species
DING Li-xia, WANG Zhi-hui, GE Hong-li -
3
Research progress on agronomic characteristics of Miscanthus
ZHAN Wei-jun, REN Jun-xia, JIN Song-heng, HUANG You-jun, PAN Yin-hui, ZHENG Bing-song -
4
Efficacy of three insecticides against Phenacoccus kaxinus and Eucryptorrhynchus brandti
CHU Jiamiao, ZHONG Tailin, HUANG Shanshan -
5
Application and prospect of organic biocides in timber preservation
SUN Fang-li, BAO Bin-fu, CHEN An-liang, ZHOU Yue-ying, YU Hong-wei, DU Chun-gui