Turn off MathJax
Article Contents

YING Xuebing, CHEN Pingmei, LI Luyao, WANG Hong, WU Haotian, ZHANG Yijun, ZHANG Xuerong, ZANG Yunxiang. Comprehensive evaluation of Solanum melongena cultivars[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240394
Citation: YING Xuebing, CHEN Pingmei, LI Luyao, WANG Hong, WU Haotian, ZHANG Yijun, ZHANG Xuerong, ZANG Yunxiang. Comprehensive evaluation of Solanum melongena cultivars[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240394

OnlineFirst articles are published online before they appear in a regular issue of the journal. Please find and download the full texts via CNKI.

Comprehensive evaluation of Solanum melongena cultivars

doi: 10.11833/j.issn.2095-0756.20240394
  • Received Date: 2024-06-10
  • Accepted Date: 2024-11-06
  • Rev Recd Date: 2024-10-30
  •   Objective  In order to establish a suitable evaluation methods for eggplant resources, the agronomic characters and quality indexes of different eggplant cultivars are analyzed, which will provide a theoretical reference for rapid screening of germplasm resources and eggplant breeding.   Method  10 eggplant varieties ‘Zilong No.5’ ‘Zilong No.7’ ‘Liangzi No.7’ ‘Zheqie No.10’ ‘Hangqie No.716’ ‘Hangqie No.718’ ‘Z1’ ‘Z2’ ‘Z3’ ‘Hangqie No.2020’ were used to determine 16 indicators relevant with plant growth and fruit characteristics. The principal component analysis method was used for comprehensive evaluation.   Result  There were differences among different eggplant cultivars. Plant of ‘Z2’ was the highest. The highest plant breadth and stem diameter was found in ‘Zilong No. 7’ and ‘Hangqie No. 716’, respectively. For fruit length, ‘Z1’ was the longest, while ‘Zilong No. 7’ was the shortest. The highest and lowest chroma value was found in fruit of ‘Z1’ and ‘Z3’, respectively. The hardness of fruit peel and pulp for ‘Hangqie No. 716’ was significantly higher than those of the other 9 cultivars (P<0.05). The pericarp toughness of ‘Liangzi No. 7’ was significantly higher than others (P<0.05). Soluble sugar and protein contents of ‘Z2’ were the highest. Fruits of ‘Liangzi No. 7’ and ‘Zilong No. 5’ showed the highest levels of amino acid. Principal component analysis extracted a total of 5 principal components with a cumulative contribution rate of 87.126%.   Conclusion  A comprehensive evaluation model of eggplant was constructed by taking the eigenvalues corresponding to the five principal components and the ratio of single principal component to the extracted principal components. The best comprehensive score was found from ‘Liangzi No. 7’, while the worst was found from ‘Zilong No. 7’. [Ch, 1 fig. 6 tab. 29 ref.]
  • [1] YUAN Zixin, GUO Qiuju, AI Xunru, YAO Lan, ZHU Jiang, WANG Lei, XIANG Qin.  Comprehensive evaluation of spatial structure of four typical forest stands in Jinzishan state-owned forest farm . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20240162
    [2] YANG Yu, WANG Yiguang, DONG Bin, XIAO Zheng, ZHAO Hongbo.  Identification and analysis of floral scent compounds of Prunus mume cultivars . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20230279
    [3] WANG Shuang, DONG Bin, WANG Yiguang, ZHAO Hongbo.  Analysis and evaluation of flower and fruit characteristics of different Prunus mume cultivars . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20230213
    [4] YANG Yan, TANG Jie, LI Yongjin, TANG Yuxi, LI Lei.  Analysis and evaluation of growth and wood fiber characters of seven poplar clones in southern China . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20210481
    [5] WU Haibing, HE Xiaoli, LIANG Jing.  Comprehensive evaluation of soil fertility in relocated land for landscaping . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20200753
    [6] SHANG Yangjuan, TAN Pengpeng, FAN Pinghua, KONG Deyi, PENG Fangren, LI Yongrong.  Evaluation of foliar spraying of zinc in Carya illinoensis . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20190687
    [7] TENG Zhiyan, CUI Yutong, YING Xuebing, ZHENG Weiwei, ZANG Yunxiang, ZHU Zhujun.  Comprehensive evaluation of pumpkin cultivars based on a principal component analysis . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2020.01.019
    [8] PENG Junjie, WU Jiangchong, PENG Xingmin, LI Kun, WANG Youqiong, ZHENG Yixing, ZHANG Yanping.  Stability of azadirachtin contents in neem cultivars based on SAS PROC MIXED . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2019.04.011
    [9] WANG Jianan, ZHAO Dexian, LIU Hui, LÜ Zhikun, WANG Haixun.  Selection of tree species in an urban green space by local participants . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2017.06.021
    [10] LI Gaozhi, ZHU Yajun, ZHOU Shengcai, LU Yunfeng, ZHANG Junhong, TONG Zaikang.  Physiological indices at low temperature stress for two types of Phoebe zhennan . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2017.02.015
    [11] DING Shaogang, ZHU Yanran.  Constructing a synthetic evaluation system of hospital out-door environment based on analytic hierarchy process and fuzzy synthetic evaluation . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2017.06.019
    [12] YU Chunlian, WANG Zhengjia, XIA Guohua, HUANG Jianqin, LIU Li.  Fat content and fatty acid composition of ten Carya illinoensis cultivars . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2013.05.012
    [13] ZHAO Gui, DING Xiao-dong, WANG Rong-ping, LIAO Xin-rong, LI Shu-yi.  Phosphorus absorption of two different Eucalyptus cultivars at different tree ages in the Leizhou Peninsula . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2012.03.013
    [14] DING Yan-fen, ZHANG Jia-ping.  Comprehensive evaluation of landscape exploitation and application of wild tree and shrub resources in Mount Yuntai of Jiangsu Province . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2012.04.012
    [15] GU Cui-hua, WANG Shou-xian, TIAN Miao.  Numerical classification of the Lagerstroemia indica cultivars . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2010.06.016
    [16] JIA Si-hen, FANG Wei-in, CHEN Fa-di, CHEN Su-mei, YANG Xue-meng.  Heat tolerance for summer blooming of Chrysanthemum . Journal of Zhejiang A&F University,
    [17] CHU Kai-jiang, PAN Qiu-xiang, LI Lin, CHEN Bin-long, HE Fu-ji.  A regional experiment of ‘Zheshu No.1’ and ‘Zheshu No.2’ cultivars of Atractylodes macrocephala in Zhejiang Province . Journal of Zhejiang A&F University,
    [18] ZHENG Ren-hua, CHEN Guo-jin, FU Zhong-hua, YU Bai-nan, YANG Zong-wu, FU Yu-shi, PAN Qiong-rong.  Genetic evaluation and selection of plus tree progeny of masson pine . Journal of Zhejiang A&F University,
    [19] Wu Yanxiong, Chen Meilan, Zhou Guomo, Guo Renjian.  Probing into synthetic appraisal of regional forest resources . Journal of Zhejiang A&F University,
    [20] Dai Wensheng, Wang BaiPo, Qian Yincai, Ding Xiaozhang.  Branch Drawing Influence on Growth and Fruit Setting for Young Tree of Pear Varieties. . Journal of Zhejiang A&F University,
  • [1]
    LIU Dan, CUI Yanling, QIAN Zongwei. Research advances in the seed industry and breeding of eggplant [J]. Northern Horticulture, 2019(1): 165 − 170.
    [2]
    ZHOU Baoli, ZHANG Qi, YE Xueling, et al. Different cultivars of eggplants: a comparative study of anthocyanidin content and stability in fruit skin [J]. Food Science, 2011, 32(1): 99 − 103.
    [3]
    KAUSHIK P, GRAMAZIO P, VILANOVA S, et al. Phenolics content, fruit flesh colour and browning in cultivated eggplant, wild relatives and interspecific hybrids and implications for fruit quality breeding [J]. Food Research International, 2017, 102: 392 − 401.
    [4]
    FRIEDMAN M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes [J]. Journal of Agricultural and Food Chemistry, 2015, 63(13): 3323 − 3337.
    [5]
    SHARMA M, KAUSHIK P. Biochemical composition of eggplant fruits: a review [J/OL]. Applied Sciences, 2021, 11 (15): 7078[2024-06-01]. doi: 10.3390/app11157078.
    [6]
    PEREIRA J A M, BERENGUER C V, ANDRADE C F P, et al. Unveiling the bioactive potential of fresh fruit and vegetable waste in human health from a consumer perspective [J/OL]. Applied Sciences, 2022, 12 (5): 2747[2024-06-01]. doi: 10.3390/app12052747.
    [7]
    BANWO K, OLOJEDE A O, ADESULU-DAHUNSI A T, et al. Functional importance of bioactive compounds of foods with potential health benefits: a review on recent trends [J/OL]. Food Bioscience, 2021, 43: 101320[2024-06-01]. doi: 10.1016/j.fbio.2021.101320.
    [8]
    CHEN Lingzhi, WANG Lanlan, WEI Bingqiang. Establishment of database of eggplant germplasm resource [J]. Journal of Changjiang Vegetables, 2010(10): 11 − 12.
    [9]
    WANG Jiahui. Identification and Evaluation of the Main Agronomic Traits on Foreign Eggplant Germplasm Resources [D]. Baoding: Hebei Agricultural University, 2012.
    [10]
    ZHANG Nian, WANG Zhimin, YU Xiaohu, et al. Establishment of database of eggplant germplasm resource [J]. China Vegetables, 2013(14): 46 − 52.
    [11]
    CHEN Xueping. Study on Genetic Diversity and Genetic Linkage Map Construction in Eggplant [D]. Baoding: Hebei Agricultural University, 2015.
    [12]
    QI Dongxia, ZHANG Ying, LIU Fuzhong, et al. Genetic diversity among Chinese and Russian eggplant (Solanum melongena) germplasm resources [J]. Journal of Plant Genetic Resources, 2017, 18(3): 404 − 412.
    [13]
    YAN Huiqin, NIU Wanhong, HAN Huili. Objective method for determination of index weight based on principal component analysis [J]. Journal of University of Jinan (Science and Technology), 2017, 31(6): 519 − 523.
    [14]
    VALIENTE-GONZÁLEZ J M, ANDREU-GARCÍA G, POTTER P, et al. Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis [J]. Biosystems Engineering, 2014, 117: 94 − 103.
    [15]
    BIAN Jiabin, SHI Lili, ZHANG Xin, et al. Correlation and principal component analysis on the major quality traits of rice lines [J]. Chinese Agricultural Science Bulletin, 2012, 28 (24): 8 − 12.
    [16]
    HE Wenzhu, YANG Qin, GAO Qiang, et al. Screening and evaluation for the silage maize inbred lines by using PCA [J]. Journal of Maize Sciences, 2008, 16(3): 26 − 29.
    [17]
    GUO Dufa, WANG Qiubing. Principal component analysis of relationship between various nutrients in albiudic cambosols profile and wheat yield [J]. Acta Pedologica Sinica, 2005, 42(3): 523 − 527.
    [18]
    TENG Zhiyan, CUI Yutong, YING Xuebing, et al. Comprehensive evaluation of pumpkin cultivars based on a principal component analysis [J]. Journal of Zhejiang A&F University, 2020, 37(1): 143 − 150.
    [19]
    BENIC G I, SCHERRER D, PUCHADES M S, et al. Spectrophotometric and visual evaluation of peri-implant soft tissue color [J]. Clinical Oral Implants Research, 2017, 28(2): 192 − 200.
    [20]
    NAGENDRA R, RAO S V. An improved colorimetric method for the estimation of lactulose in lactose-lactulose mixtures [J]. Food Chemistry, 1992, 43(5): 399 − 402.
    [21]
    HAN Ye, MA Yongqiang, WANG Xin, et al. Determination of soluble sugar from sweet corn cob by microtiter method of the anthrone-sulfuric acid colorimetric assay [J]. Food Science and Technology, 2019, 44(11): 327 − 334.
    [22]
    BRADFORD M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(1/2): 248 − 254.
    [23]
    HUANG Song, WU Yuena, LIU Mei, et al. Quantitative determination of total free-amino acid in Nervilia fordii (Hance) Schltr. by ninhydrin colorimetric method [J]. Chinese Journal of Information on TCM, 2010, 17(12): 50 − 52.
    [24]
    LI Peixuan, CHEN Fazhi, LI Xiuli, et al. Determination of in vitro antibacterial activity of antioxidant and the extraction of Fengdan peony polyphenols [J]. Hubei Agricultural Sciences, 2019, 58(24): 187 − 193.
    [25]
    YI Jinxin. A numerical classification on eggplant germplasm [J]. Acta Horticulturae Sinica, 2000, 27(5): 345 − 350.
    [26]
    LIAN Yong, LIU Fuzhong, CHEN Yuhui, et al. Chinese eggplant cultivars (Solanum melogena L.) distribution and germplasm resources research advancement [J]. China Vegetables, 2006(suppl.): 9 − 14.
    [27]
    FANG Chao, LI Yuejian, LIU Duchen, et al. SSR analysis of genetic diversity in eggplant [J]. Journal of Sichuan University, 2011, 48(1): 179 − 185.
    [28]
    ZHAO Dexin. Clustering Analysis of Genetic Diversity in Eggplant Based on Morphological and ISSR Marker [D]. Zhengzhou: Henan Agricultural University, 2009.
    [29]
    LI Wei, GAO Haiyan, CHEN Hangjun, et al. Evaluation of comprehensive quality of different varieties of bayberry based on principal components analysis [J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(6): 161 − 171.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)  / Tables(6)

Article views(118) PDF downloads(5) Cited by()

Related
Proportional views

Comprehensive evaluation of Solanum melongena cultivars

doi: 10.11833/j.issn.2095-0756.20240394

Abstract:   Objective  In order to establish a suitable evaluation methods for eggplant resources, the agronomic characters and quality indexes of different eggplant cultivars are analyzed, which will provide a theoretical reference for rapid screening of germplasm resources and eggplant breeding.   Method  10 eggplant varieties ‘Zilong No.5’ ‘Zilong No.7’ ‘Liangzi No.7’ ‘Zheqie No.10’ ‘Hangqie No.716’ ‘Hangqie No.718’ ‘Z1’ ‘Z2’ ‘Z3’ ‘Hangqie No.2020’ were used to determine 16 indicators relevant with plant growth and fruit characteristics. The principal component analysis method was used for comprehensive evaluation.   Result  There were differences among different eggplant cultivars. Plant of ‘Z2’ was the highest. The highest plant breadth and stem diameter was found in ‘Zilong No. 7’ and ‘Hangqie No. 716’, respectively. For fruit length, ‘Z1’ was the longest, while ‘Zilong No. 7’ was the shortest. The highest and lowest chroma value was found in fruit of ‘Z1’ and ‘Z3’, respectively. The hardness of fruit peel and pulp for ‘Hangqie No. 716’ was significantly higher than those of the other 9 cultivars (P<0.05). The pericarp toughness of ‘Liangzi No. 7’ was significantly higher than others (P<0.05). Soluble sugar and protein contents of ‘Z2’ were the highest. Fruits of ‘Liangzi No. 7’ and ‘Zilong No. 5’ showed the highest levels of amino acid. Principal component analysis extracted a total of 5 principal components with a cumulative contribution rate of 87.126%.   Conclusion  A comprehensive evaluation model of eggplant was constructed by taking the eigenvalues corresponding to the five principal components and the ratio of single principal component to the extracted principal components. The best comprehensive score was found from ‘Liangzi No. 7’, while the worst was found from ‘Zilong No. 7’. [Ch, 1 fig. 6 tab. 29 ref.]

YING Xuebing, CHEN Pingmei, LI Luyao, WANG Hong, WU Haotian, ZHANG Yijun, ZHANG Xuerong, ZANG Yunxiang. Comprehensive evaluation of Solanum melongena cultivars[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240394
Citation: YING Xuebing, CHEN Pingmei, LI Luyao, WANG Hong, WU Haotian, ZHANG Yijun, ZHANG Xuerong, ZANG Yunxiang. Comprehensive evaluation of Solanum melongena cultivars[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240394
  • 茄子Solanum melongena是茄科Solanaceae茄属Solanum的 1年生草本植物,以浆果为产品器官,作为重要的蔬菜,在中国南北方广泛栽培[1]。茄子果实营养丰富,其富含的多酚、花色苷和芦丁等营养物质,还具有较高的食用价值与医疗保健功效[27]。茄子种质资源十分丰富,中国目前已建立了较成熟的国家茄子种质资源数据库管理系统和地方茄子种质资源数据库[8]。王佳慧[9]基于表型性状对142份茄子进行遗传多样性分析,发现不同茄子种质资源农艺性状存在较大差异,并从中筛选出了品质佳、抗寒性强的优良种质。张念等[10]采用形态标记对76 份茄子种质资源进行遗传多样性分析,发现种质资源间形态性状差异明显,基于Pearson系数聚类将其分为3类7组。陈雪平[11]利用形态标记对133份茄子种质及其近缘种进行分析,发现茄子形态遗传变异丰富,可作为植物学分类的重要依据。齐东霞等[12]利用表型性状对105份中俄茄子种质材料进行分析,发现材料间表现出不同程度多样性,表型聚类发现类群划分与地理来源没有直接关系,但与茄子果实性状存在一定相关性。

    主成分分析法是通过降维方法将数量多且相关的变量重新组合,形成个数少、彼此独立并能尽量反映原变量相关信息的综合变量,简化了多个指标,为资源的评价和选择提供科学依据[13]。目前,主成分分析法被广泛应用于水稻Oryza sativa、玉米Zea mays、小麦Triticum aestivum、南瓜Cucurbita moschata等多种作物[1418],而中国在茄子农艺性状和品质评价方法及评价指标方面的研究较少,影响了茄子资源利用、新品种选育及市场竞争力。

    本研究以10份茄子种质资源为材料,通过测定并分析不同茄子品种农艺性状及果实品质等,采用主成分分析法对12个指标进行综合分析,构建科学的评价体系,以期为优质茄子资源或品种的快速筛选及新品种选育提供依据。

    • 试验在杭州市临安区清凉峰茄子基地进行。供试茄子品种有‘紫龙5号’‘紫龙7号’‘亮紫7号’‘浙茄10号’‘杭茄716’‘杭茄718’‘Z1’‘Z2’‘Z3’‘杭茄2020’等10个品种。日常栽培管理采用相同标准进行,2024年6月底采收每个品种盛果期果实,并立即运至浙江农林大学园艺学院实验室测定相关指标。

    • 每个品种材料随机选取10株,测定株高、株幅、茎粗等农艺性状。果实长度、横径、单果质量、果实颜色、果实硬度等指标测定均有10个生物学重复。采用色差仪(CR-10)测定茄子的果皮颜色[19],获得Lab值。L代表亮度,a代表红绿度,即颜色的红绿差异,b代表蓝黄度,即颜色的蓝黄差异。采用蒽酮比色法[2021]测定可溶性糖质量分数。采用G-250考马斯亮蓝法[22]测定可溶性蛋白质量分数。采用茚三酮比色法[23]测定游离氨基酸质量分数。采用福林酚法[24]测定总酚质量分数。采用物性测试仪(TA-XT plus)对茄子果实进行穿刺分析。试验中采用的探头为圆柱形P/2E探头,直径为2 mm,测试参数如下:测前速度为1 mm·s−1,测试速度为1 mm·s−1,测后上行速度为1 mm·s−1

    • 将茄子农艺性状和品质指标作为变量,导入SPSS 19.0进行标准化处理。利用软件中的因子分析对茄子性状进行主成分提取及相关性分析。采用方差贡献率作为主成分提取标准,计算主成分贡献率,根据特征向量,计算各主成分得分表达式,综合评价时对各指标进行无量纲化。

    • 茄子农艺性状测定重复10次,品质指标测定重复5次,采用Excel和SPSS 19.0对数据进行分析处理。文中数据均为平均值±标准差。

    • 表1可知:10个品种茄子的植株高度为91.00~114.00 cm,其中‘Z2’最高,其次是‘亮紫7号’,‘杭茄718’最矮。各品种间株幅差异较大,株幅最大的是‘紫龙7号’,为100.00 cm,其次是‘紫龙5号’‘浙茄10号’‘杭茄718’,这3个品种间无显著差异。‘亮紫7号’的株幅最小,只有‘紫龙7号’的62.67%。10个品种茄子的植株茎粗为1.74~2.42 cm,其中‘杭茄716’最粗,显著高于其他品种(P<0.05),茎粗最小的是‘Z3’。

      品种 株高/cm 株幅/cm 茎粗/cm 品种 株高/cm 株幅/cm 茎粗/cm
      紫龙5号 101.33±2.73 c 97.00±5.48 b 2.04±0.18 bcd 杭茄718 91.00±1.90 e 96.00±3.41 b 2.17±0.13 b
      紫龙7号 95.17±1.83 d 100.00±3.35 a 1.92±0.17 cde Z1 98.67±4.55 cd 82.17±3.49 c 1.86±0.14 de
      亮紫7号 112.33±4.63 a 62.67±3.33 f 2.13±0.25 bc Z2 114.00±7.97 a 73.50±3.02 e 2.00±0.13 bcd
      浙茄10号 107.33±3.72 b 97.00±1.90 b 1.97±0.21 bcd Z3 100.67±9.20 c 77.00±3.46 d 1.74±0.14 e
      杭茄716 102.33±2.25 c 83.67±4.97 c 2.42±0.37 a 杭茄2020 96.00±4.20 d 76.67±4.27 d 2.15±0.24 b
        说明:同列不同小写字母表示同一指标不同品种间差异显著(P<0.05)。

      Table 1.  Agronomic characteristics comparison of 10 eggplant cultivars

    • 10个茄子品种均为紫色品种。由表2可知:‘杭茄718’的L值最高,说明其果实表面光泽度最好,‘Z3’的L最低。10个茄子品种的a为9.20~14.33。‘Z1’果皮的a最大,色泽最深,达14.33, ‘杭茄718’次之,‘Z3’的a最小,只有‘Z1’的64.20%。b均为负数,说明所有果实都没有偏黄的。

      品种 皮色 长度/cm 横径/cm 单果质量/g
      L a b
      紫龙5号 −0.45±0.10 bc 10.20±1.48 ef −4.55±0.87 a 33.87±1.48 de 2.48±0.10 c 101.82±7.96 bcd
      紫龙7号 −0.35±0.13 b 13.25±0.50 bc −7.28±0.26 e 29.47±0.40 h 2.35±0.16 d 98.08±5.84 d
      亮紫7号 −0.40±0.12 bc 11.45±1.04 d −5.78±0.78 c 35.10±2.47 c 2.43±0.10 c 113.55±10.42 a
      浙茄10号 0.03±0.03 a 12.60±0.14 c −6.78±0.62 d 33.42±1.29 ef 2.30±0.15 d 103.99±5.10 bcd
      杭茄716 −0.40±0.08 bc 12.68±0.92 c −6.70±0.93 d 32.37±1.84 g 2.75±0.14 a 109.08±8.49 abc
      杭茄718 0.08±0.05 a 13.55±0.25 ab −7.03±0.46 de 34.67±2.25 cd 2.48±0.10 c 109.98±16.86 ab
      Z1 0.05±0.06 a 14.33±1.10 a −7.45±0.49 e 37.87±1.54 a 2.62±0.18 b 106.51±7.58 abcd
      Z2 −0.48±0.17 c 9.73±0.59 fg −5.53±0.94 bc 34.57±1.33 cd 2.70±0.09 a 105.65±4.20 abcd
      Z3 −0.63±0.10 d 9.20±0.84 g −4.48±0.46 a 36.47±1.12 b 2.70±0.18 a 105.90 ±2.29 abcd
      杭茄2020 −0.38±0.05 bc 10.90±0.60 de −5.15±0.44 b 32.80±2.60 fg 2.45±0.10 c 100.61 ±7.16 cd
        说明:同列不同字母表示同一指标不同品种间差异显著(P<0.05)。

      Table 2.  Comparison of fruit traits of 10 eggplant cultivars

      各茄子品种的果实长度为29.47~37.87 cm,其中‘Z1’果实最长,显著高于其他品种(P<0.05)。果实最短的品种是‘紫龙7号’,显著低于其他品种(P<0.05)。果实横径最大的3个品种是‘杭茄716’‘Z2’‘Z3’,显著高于其他品种(P<0.05)。果实最细的品种为‘浙茄10号’,仅为2.30 cm。不同品种茄子的单果质量存在一定差异,其中‘亮紫7号’单果质量最大,‘紫龙5号’单果质量最小。

    • 茄子果皮和果肉的穿刺试验发现(图1A):各品种间果皮硬度存在差异,‘杭茄716’果皮硬度最大,显著高于其他品种(P<0.05),‘杭茄2020’次之,‘Z3’果皮硬度最小,仅为‘杭茄716’果皮硬度的55.05%;‘紫龙5号’‘紫龙7号’‘亮紫7号’‘杭茄718’的果皮硬度相近,无显著差异。各茄子品种果肉硬度的变化规律跟果皮硬度一致(图1B)。‘杭茄716’果肉硬度最大,‘杭茄2020’次之,‘Z3’果肉硬度最小,仅为‘杭茄716’果肉硬度的53.97%;‘紫龙5号’‘紫龙7号’‘亮紫7号’‘杭茄718’的果肉硬度相近,无显著差异。‘浙茄10号’‘Z1’‘Z2’果肉硬度差异不大。不同茄子品种间果皮韧性差异较大(图1C)。‘亮紫7号’果皮韧性最大,‘杭茄718’和‘浙茄10号’果皮韧性最小。‘紫龙5号’‘Z1’‘Z2’的果皮韧性差异不大。‘杭茄716’和‘杭茄2020’的果皮韧性最小,且两者之间无显著差异。

      Figure 1.  Comparison of peel hardness, pulp hardness and pericarp toughness of 10 eggplant cultivars

    • 表3可知:茄子果实可溶性糖质量分数最高的品种为‘Z2’,达38.04 mg·g−1,其次是‘浙茄10号’,为35.35 mg·g−1,‘杭茄718’可溶性糖质量分数最低,只有25.01 mg·g−1,显著低于其他品种(P<0.05)。茄子果实可溶性蛋白质量分数较高的3个品种为‘Z1’‘Z2’‘Z3’,显著高于另外7个品种(P<0.05)。‘亮紫7号’和‘紫龙5号’果实游离氨基酸质量分数最高,达到1.7 mg·g−1,‘杭茄2020’游离氨基酸质量分数最低,仅为0.73 mg·g−1,显著低于其他品种(P<0.05)。‘紫龙7号’‘亮紫7号’‘杭茄718’‘杭茄2020’的总酚质量分数最高,显著高于其他品种(P<0.05),‘Z1’总酚质量分数最低,只有2.21 mg·g−1

      品种 可溶性糖/(mg·g−1) 可溶性蛋白/(mg·g−1) 游离氨基酸/(mg·g−1) 总酚/(mg·g−1)
      紫龙5号 30.04±2.59 cd 3.53±0.65 b 1.69±0.06 a 4.08±0.67 bc
      紫龙7号 34.53±2.91 abc 3.79±0.69 b 1.42±0.13 b 5.26±0.74 a
      亮紫7号 32.62±1.04 bcd 3.54±0.42 b 1.76±0.26 a 5.19±0.88 a
      浙茄10号 35.35±2.69 ab 3.66±0.27 b 1.09±0.15 c 3.60±0.91 bc
      杭茄716 33.88±2.65 abc 3.14±0.55 b 1.17±0.12 bc 2.94±0.38 cd
      杭茄718 25.01±1.03 e 3.90±0.65 b 1.36±0.13 bc 4.78±0.68 a
      Z1 35.19±2.67 ab 5.03±0.38 a 1.12±0.19 c 2.21±0.72 d
      Z2 38.04±2.73 a 4.68±0.25 a 1.19±0.23 bc 3.24±0.58 cd
      Z3 32.14±3.45 bcd 4.79±0.20 a 1.27±0.23 bc 4.44±0.62 ab
      杭茄2020 28.09±3.40 de 3.64±0.26 b 0.73±0.13 d 4.78±0.68 a
        说明:同列不同字母表示同一指标不同品种间差异显著(P<0.05)。

      Table 3.  Comparison of fruit quality of 10 eggplant cultivars

    • 对10个茄子品种的16个性状指标进行主成分分析,得到了特征值大于l的5个主成分,反映了总信息量的87.126% (表4)。第1主成分的方差贡献率为28.125%,其中可溶性蛋白、长度、株高、果皮韧性、可溶性糖、横径等具有较大的载荷值,综合反映了茄子产量、果实、品质等各方面的性状,因此,第1主成分能作为选择综合性状较好的优质茄子种质资源的有效指标。第2主成分的方差贡献率为21.098%,果肉硬度、果皮硬度、茎粗、株高等具有较大的载荷值,主要反映了茄子植株的生长性状。第3主成分的方差贡献率为16.474%,特征向量值较大的是单果质量、横径、色差a、茎粗等,主要反映了茄子的商品性状。第4主成分的方差贡献率为11.444%,特征向量值较大的是游离氨基酸、单果质量和果皮韧性。第5主成分特征向量值中较大的是长度和单果质量,其他指标的载荷值不突出,但增加了整个模型的信息表达量,更能全面反映茄子的综合性状。

      主成分特征值方差贡献率/%累计方差贡献率/%
      14.50028.12528.125
      23.37621.09849.224
      32.63616.47465.697
      41.83111.44477.141
      51.5989.98587.126

      Table 4.  Characteristic value and cumulative variance contribution rate of eggplant evaluation factors

      为了消除不同单位及数据量纲的影响,对各性状指标的原始数据进行了无量纲化处理。根据表5构建了主成分与茄子各生物学性状间的线性关系式:

      性状 主成分 性状 主成分
      1 2 3 4 5 1 2 3 4 5
      茎粗(X1) −0.663 0.56 0.407 0.132 0.052 b (X9) 0.431 0.589 −0.525 −0.21 0.253
      株高(X2) 0.573 0.402 0.18 0.254 −0.47 果皮硬度(X10) −0.755 0.579 0.237 −0.123 −0.025
      株幅(X3) −0.546 −0.573 −0.284 −0.096 −0.155 果皮韧性(X11) 0.509 0.311 0.144 0.422 −0.267
      长度(X4) 0.698 −0.168 0.377 0.083 0.529 果肉硬度(X12) −0.66 0.603 0.363 −0.208 −0.022
      横径(X5) 0.402 0.376 0.513 −0.443 0.21 可溶性糖(X13) 0.475 −0.05 0.3 −0.115 −0.797
      单果质量(X6) 0.191 0.261 0.585 0.539 0.404 可溶性蛋白(X14) 0.766 −0.457 0.125 −0.274 0.162
      L (X7) −0.328 −0.758 0.398 0.241 0.132 游离氨基酸(X15) 0.163 0.172 −0.246 0.787 −0.056
      a (X8) −0.531 −0.587 0.492 0.257 −0.078 总酚(X16) −0.261 0.178 −0.748 0.366 0.198

      Table 5.  Rotated component matrix of the principal component analysis

      在主成分分析基础上,以5个主成分和每个主成分对应特征值占提取主成分总特征值之和的比例作为权重,计算主成分综合模型:F=0.28F1+0.21F2+0.16F3+0.11F4+0.10F5,根据综合模型计算不同茄子品种的综合性状得分(表6)。结果表明,‘亮紫7号’的综合性状最好,其次是‘Z1’,‘紫龙7号’的综合性状最差。

      品种 F1 F2 F3 F4 F5 F 排名
      紫龙5号 0.08 0.66 −1.81 0.44 0.35 −0.05 6
      紫龙7号 −1.87 −1.36 −1.88 0.18 0.14 −1.08 10
      亮紫7号 1.19 1.54 0.2 3.08 2.45 1.27 1
      浙茄10号 −0.62 −1.72 −0.16 0.08 0.06 −0.55 7
      杭茄716 −2.58 2.68 2.64 −0.87 −0.69 0.1 5
      杭茄718 −2.19 −1.22 0.24 0.99 0.78 −0.64 8
      Z1 2.98 0.63 0.59 −0.75 −0.59 0.92 2
      Z2 2.96 0.47 −1.44 −1.29 −1.02 0.45 3
      Z3 −1.72 1.38 −0.94 −1.69 −1.34 −0.66 9
      杭茄2020 1.76 −3.06 2.57 −0.17 −0.13 0.23 4

      Table 6.  Characteristics prediction results of different eggplant varieties

    • 中国茄子种质资源一般采用形态学的方法进行分类。近年来,分子标记在茄子种质资源分类上开始广泛应用。易金鑫等[25]根据茄子形态学分类指标,将亚洲部分茄子种质资源分为野生茄、半栽培茄、栽培短茄(圆茄、卵茄)和栽培长茄。连勇等[26]根据各地区主要种植茄子果形、果色的差异,将中国蔬菜种质资源中期库保存的茄子及其近缘野生种资源分为7 个地方品种类型分布区,即圆果形茄子区(北京、河北、山东等)、紫色卵圆(高圆)形茄子区(新疆、宁夏、甘肃等)、黑紫色长棒形茄子区(黑龙江、辽宁、吉林等)、紫色棒形及卵圆形茄子区(云南、重庆、四川等)、紫红色长果形茄子区(广东、广西、海南等)、紫红色长棒形及卵圆形茄子区(安微、湖南、江西等)和紫红色长条形茄子区(浙江、上海、福建等)。本研究采用的10个茄子品种都是紫红色长条形茄子。对其农艺性状、果实性状及品质特性等进行测定,发现不同品种的株高、株幅、茎粗等农艺性状差异显著,果实长度、质地、果皮颜色等也存在较大差异,可溶性糖、可溶性蛋白、游离氨基酸等品质指标差异显著。这与前人研究结果一致[911]。房超等[27]采用简单重复序列(SSR)标记对83份茄子种质资源进行多样性和聚类分析,发现茄子栽培种和其近缘野生种存在明显差异,并将供试材料分为4大类群。赵德新等[28]对55份茄子种质材料进行形态标记和简单重复序列区间扩增(ISSR) 标记聚类分析,发现果形是茄子分类比较稳定的划分标准。本研究采用主成分分析也发现,第1主成分中果实长度和横径均具有较大的载荷值,说明果形可以作为选择综合性状较好的优质茄子种质资源的重要指标。

      果实质地特性可以反应产品的耐贮性。本研究发现‘杭茄716’的果实硬度和果皮硬度均显著高于其他品种,说明该品种的耐贮性比较好。主成分分析法能简化测定指标,提取主要因子,借助计算机软件对其进行综合分析与排序。李伟等[29]利用主成分分析法评价不同地区35个品种杨梅Myrica rubra的综合品质,筛选出了品质较佳的杨梅品种。滕芝妍等[18]对南瓜进行主成分分析,揭示了不同品种南瓜果实品质的差异。本研究对10个茄子品种进行主成分分析,得到5个主成分,影响力较大的是株高、果实长度、果皮韧性、可溶性糖质量分数等,综合反映了植株生长、果实性状、果实品质等方面性状,较客观地揭示茄子种质资源特征。不过,茄子生长发育受到生长环境和气候条件的影响,下一步可以基于主成分分析法针对不同季节、不同区域和不同栽培条件下的茄子品种进行综合评价。

    • 本研究测定了10个茄子品种的植株生长、果实商品性状及品质性状等16个相关指标,比较茄子品种间的差异,并在此基础上采用主成分分析法对不同茄子品种进行综合评价,确立了茄子评价综合得分模型。10个品种中,‘亮紫7号’的综合性状最好,其次是‘Z1’,而‘紫龙7号’的综合性状最差。该模型能够全面反映出不同茄子品种的综合性状差异,可为茄子种质资源筛选和新品种选育提供理论依据和技术支撑。

Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return