留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄壳山核桃叶面喷锌效果的评价

尚杨娟 谭鹏鹏 范平桦 孔德仪 彭方仁 李永荣

尚杨娟, 谭鹏鹏, 范平桦, 孔德仪, 彭方仁, 李永荣. 薄壳山核桃叶面喷锌效果的评价[J]. 浙江农林大学学报, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687
引用本文: 尚杨娟, 谭鹏鹏, 范平桦, 孔德仪, 彭方仁, 李永荣. 薄壳山核桃叶面喷锌效果的评价[J]. 浙江农林大学学报, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687
SHANG Yangjuan, TAN Pengpeng, FAN Pinghua, KONG Deyi, PENG Fangren, LI Yongrong. Evaluation of foliar spraying of zinc in Carya illinoensis[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687
Citation: SHANG Yangjuan, TAN Pengpeng, FAN Pinghua, KONG Deyi, PENG Fangren, LI Yongrong. Evaluation of foliar spraying of zinc in Carya illinoensis[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687

薄壳山核桃叶面喷锌效果的评价

doi: 10.11833/j.issn.2095-0756.20190687
基金项目: “十三五”国家重点研发计划项目(2018YFD1000604);国家林业和草原局科学技术推广项目(〔2019〕14号);江苏省高校优势学科建设工程资助项目(PAPD)
详细信息
    作者简介: 尚杨娟,博士研究生,从事经济林培育研究。E-mail: shangyangjuan123@163.com
    通信作者: 彭方仁,教授,博士生导师,从事经济林培育研究。E-mail: frpeng@njfu.edu.cn
  • 中图分类号: S664.1;S718.5

Evaluation of foliar spraying of zinc in Carya illinoensis

  • 摘要:   目的  探明叶面喷锌肥对薄壳山核桃Carya illinoensis生长的影响,为果树施肥提供科学依据。  方法  以6年生薄壳山核桃‘波尼’‘Pawnee’为试材,设置乙二胺四乙酸锌钠(EDTA-Zn)、硫酸锌(ZnSO4·7H2O)、硝酸锌[Zn(NO3)2·6H2O]等3种锌肥和50、100、150 mg·L−1锌等3个质量浓度水平,共10个处理组(以不喷锌为对照组)进行叶面喷施,分析生长指标(叶长、叶宽、叶面积、含水率、比叶重、树高、胸径)和叶片矿质营养元素(氮、磷、钾、钙、镁、锌、铁、锰、铜)的质量分数变化,并采用主成分分析和加权隶属函数相结合的方法对叶面喷锌效果进行评价。  结果  随喷锌质量浓度递增,薄壳山核桃叶片及树高、胸径指标均有一定程度增大。与对照相比,150 mg·L−1硝酸锌处理的各项形态生长指标增长显著(P<0.05),特别是叶长、叶宽、叶面积和比叶重,分别超出对照26%、37%、25%、17%。随喷锌质量浓度递增,叶片氮、钾、锌、锰质量分数均呈上升趋势;磷、铁质量分数不断下降;钙、镁质量分数先升高后下降。相关分析表明:叶片中锌质量分数与叶长、叶宽和氮、钾质量分数呈显著正相关(P<0.05),与叶面积和钙、锰质量分数呈极显著正相关(P<0.01)。  结论  在一定范围内叶面喷锌肥能显著促进薄壳山核桃叶片生长(P<0.05),并促进叶片矿质营养元素的积累。因此,建议薄壳山核桃喷锌肥可选用150 mg·L−1硝酸锌或100 mg·L−1硫酸锌或100 mg·L−1乙二胺四乙酸锌钠。图2表4参30
  • 图  1  不同处理下薄壳山核桃生长指标的变化

    不同字母表示不同处理间差异显著(P<0.05)

    Figure  1  Changes of growth indexes of C. illinoensis under different treatments

    图  2  不同处理下薄壳山核桃叶片矿质营养元素的变化

    不同字母表示不同处理间差异显著(P<0.05)

    Figure  2  Changes of leaf mineral elements of C. illinoensis under different treatments

    表  1  锌肥2因素3水平试验设计方案

    Table  1.   Test design table of zinc fertilizer 2-factors 3-levels

    处理    锌肥种类锌肥质量浓度/(mg·L−1)
    对照 0
    1乙二胺四乙酸锌钠(EDTA-Zn) 50
    2乙二胺四乙酸锌钠(EDTA-Zn)100
    3乙二胺四乙酸锌钠(EDTA-Zn)150
    4硫酸锌(ZnSO4·7H2O) 50
    5硫酸锌(ZnSO4·7H2O)100
    6硫酸锌(ZnSO4·7H2O)150
    7硝酸锌[Zn(NO3)2·6H2O] 50
    8硝酸锌[Zn(NO3)2·6H2O]100
    9硝酸锌[Zn(NO3)2·6H2O]150
    下载: 导出CSV

    表  2  单项指标的相关系数矩阵

    Table  2.   Correlation matrix of each individual index

    指标叶长叶宽叶面积含水率比叶重树高胸径
    叶长  1
    叶宽  0.815** 1
    叶面积 0.917** 0.964** 1
    含水率 −0.003 0.155 0.122 1
    比叶重 0.085 0.363* 0.206 −0.228 1
    树高  0.517** 0.510** 0.532** −0.012 0.031 1
    胸径  0.147 0.007 0.067 −0.067 −0.291 0.133 1
    氮   0.437* 0.296 0.372* −0.050 0.074 0.330 0.089 1
    磷   −0.156 −0.169 −0.216 0.445* 0.080 −0.209 −0.003 0.090
    钾   −0.178 −0.090 −0.142 −0.151 0.234 −0.163 −0.325 0.034
    钙   0.359 0.446* 0.395* −0.101 0.586** 0.286 −0.293 0.243
    镁   0.033 0.222 0.132 −0.099 0.257 0.167 −0.142 0.065
    锌   0.474** 0.446* 0.483** −0.230 0.311 0.338 0.045 0.457*
    铁   0.072 −0.052 0.047 0.217 −0.328 −0.036 0.099 0.154
    铜   0.033 0.134 0.081 0.252 −0.012 −0.258 −0.076 −0.331
    锰   0.170 0.103 0.143 −0.240 0.023 0.237 0.187 −0.018
    指标
    1
    0.086 1
    0.009 0.461* 1
    0.077 0.585** 0.413* 1
    −0.151 0.401* 0.532** 0.259 1
    −0.107 −0.408* −0.195 −0.590** −0.126 1
    0.011 0.403* 0.244 0.202 −0.135 0.064 1
    −0.328 0.150 0.174 0.063 0.640** −0.039 −0.201 1
      说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)
    下载: 导出CSV

    表  3  各综合指标的系数及贡献率

    Table  3.   Coefficients of comprehensive indexes and proportion

    指标X1X2X3X4
    叶面积 0.855 −0.347 0.281 −0.133
    0.849 −0.214 0.344 −0.119
    0.803 −0.412 0.182 −0.075
    0.769 0.134 −0.353 0.047
    0.685 0.453 0.146 −0.008
    树高 0.622 −0.319 −0.102 0.126
    0.193 0.832 −0.038 −0.106
    0.382 0.649 0.052 0.055
    −0.175 −0.619 0.139 −0.190
    含水率 −0.128 −0.201 0.729 0.071
    0.374 −0.008 −0.641 −0.257
    −0.006 0.322 0.561 −0.648
    −0.215 0.192 0.476 0.623
    0.490 −0.228 −0.038 0.570
    胸径 −0.012 −0.465 −0.247 −0.015
    比叶重 0.435 0.468 0.052 0.202
    贡献率/% 27   18   12   8 
    下载: 导出CSV

    表  4  各处理组的综合指标值(Xi)、隶属函数值[μ(Xi)]、权重(Wi)、综合评价值(D)及排序

    Table  4.   Values of each treatment comprehensive index (Xi), subordinate function[μ(Xi)], index weight (Wi), comprehensiveassessment (D) and the order

    处理综合指标值Xi隶属函数值μ(Xi)综合评价值D综合排序
    X1X2X3X4μ(X1)μ(X2)μ(X3)μ(X4)
    对照 42.471 −7.373 2.475 12.065 0.000 0.344 0.313 0.427 0.205 10
    1 44.448 −6.157 2.468 11.856 0.139 0.478 0.311 0.334 0.287 9
    2 50.395 −3.930 3.534 11.103 0.558 0.725 0.633 0.000 0.544 3
    3 46.890 −1.926 2.382 11.446 0.311 0.946 0.285 0.152 0.456 6
    4 46.923 −6.048 2.696 12.500 0.313 0.490 0.380 0.620 0.412 7
    5 49.479 −4.093 2.828 12.448 0.493 0.707 0.420 0.597 0.550 2
    6 47.289 −1.443 1.437 12.727 0.339 1.000 0.000 0.721 0.502 5
    7 46.929 −7.807 3.215 12.232 0.314 0.296 0.537 0.501 0.374 8
    8 50.119 −8.164 3.252 13.356 0.538 0.256 0.548 1.000 0.523 4
    9 56.684 −10.477 4.751 12.503 1.000 0.000 1.000 0.622 0.683 1
    权重Wi 0.417 0.268 0.186 0.128
    下载: 导出CSV
  • [1] HAFEEZ B, KHANIF Y M, SALEEM M. Role of zinc in plant nutrition [J]. Am J Exp Agric, 2013, 3(2): 374 − 391.
    [2] CAKMAK I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? [J]. Plant Soil, 2008, 302(1/2): 1 − 17.
    [3] 陈艳龙, 熊仕娟, 董金琎, 等. 有机物料与锌肥配施对石灰性土壤锌有效性及形态转化的影响[J]. 应用生态学报, 2019, 30(8): 2737 − 2745.

    CHEN Yanlong, XIONG Shijuan, DONG Jinjin, et al. Effects of combined addition of organic materials with zinc fertilizer on zinc availability and transformation in calcareous soil [J]. Chin J Appl Ecol, 2019, 30(8): 2737 − 2745.
    [4] 王孝忠, 田娣, 邹春琴. 锌肥不同施用方式及施用量对我国主要粮食作物增产效果的影响[J]. 植物营养与肥料学报, 2014, 20(4): 998 − 1004.

    WANG Xiaozhong, TIAN Di, ZOU Chunqin. Yield responses of the main cereal crops to the application approaches and rates of zinc fertilizer in China [J]. J Plant Nutr Fert, 2014, 20(4): 998 − 1004.
    [5] 刘娟花, 国春慧, 陈艳龙, 等. 锌肥种类和施用方式对土壤锌形态及有效性的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(4): 149 − 159.

    LIU Juanhua, GUO Chunhui, CHEN Yanlong, et al. Effect of Zn source and application method on Zn form and availability in soil [J]. J Northwest A&F Univ Nat Sci Ed, 2017, 45(4): 149 − 159.
    [6] 赵丽, 王张民, 黄阳, 等. 土壤追施锌肥对水稻植株锌累积特征影响研究[J]. 中国科学技术大学学报, 2013, 43(8): 631 − 638.

    ZHAO Li, WANG Zhangmin, HUANG Yang, et al. Zinc accumulation in paddy rice (Oryza stavia L.) by agronomic biofortification through soil-applied zinc fertilizers [J]. J Univ Sci Technol China, 2013, 43(8): 631 − 638.
    [7] WALWORTH J L, POND A P, SOWER G J. Fall-applied foliar zinc for pecans [J]. Hortscience, 2006, 41(1): 275 − 276.
    [8] TORABIAN S, ZAHEDI M, KHOSHGOFTAR A H. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress [J]. J Plant Nutr, 2015, 39(2): 172 − 180.
    [9] MASROOR H M, ANJUM M A, HUSSAIN S, et al. Zinc ameliorates fruit yield and quality of mangoes cultivated in calcareous soils [J]. Erwerbs-Obstbau, 2015, 58(1): 49 − 55.
    [10] POLTRONIERI Y, MARTINEZ H E, CECON P R. Effect of zinc and its form of supply on production and quality of coffee beans [J]. J Sci Food Agric, 2011, 91(13): 2431 − 2346.
    [11] 彭方仁, 李永荣, 郝明灼, 等. 我国薄壳山核桃生产现状与产业化发展策略[J]. 林业科技开发, 2012, 26(4): 1 − 4.

    PENG Fangren, LI Yongrong, HAO Mingzhuo, et al. Pecan production status and development strategy of industry in China [J]. China For Sci Technol, 2012, 26(4): 1 − 4.
    [12] ZHANG Rui, PENG Fangren, LI Yongrong. Pecan production in China [J]. Sci Hortic, 2015, 197: 719 − 727.
    [13] 何国庆, 俞春莲, 饶盈, 等. 山核桃果实成熟过程中矿质元素及脂肪酸组分变化[J]. 浙江农林大学学报, 2019, 36(6): 1208 − 1216.

    HE Guoqing, YU Chunlian, RAO Ying, et al. Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity [J]. J Zhejiang A&F Univ, 2019, 36(6): 1208 − 1216.
    [14] WOOD B W, REILLY C C, NYCZEPIR A P. Mouse-ear of pecan(Ⅰ) symptomatology and occurrence [J]. Hortscience, 2004, 39(1): 87 − 94.
    [15] OJEDA-BARRIOS D L, PEREA-PORTILLO E, HERNANDEZ-RODRIGUEZ O A, et al. Foliar fertilization with zinc in pecan trees [J]. Hortscience, 2014, 49(5): 562 − 566.
    [16] ASHRAF N, ASHRAF M, HASSAN G, et al. Effect of foliar application of nutrients and biostimulant on nut quality and leaf nutrient status of pecan nut cv. ‘Western Schley’ [J]. Afr J Agric Res, 2013, 8(6): 559 − 563.
    [17] KESHAVARZ K, VAHDATI K, SAMAR M, et al. Foliar application of zinc and boron improves walnut vegetative and reproductive growth [J]. Hortscience, 2011, 21(2): 181 − 187.
    [18] 张婷, 赵林, 李刚波, 等. 用主成分分析和隶属函数法综合筛选苹果自根砧嫁接方式[J]. 江西农业学报, 2018, 30(9): 26 − 30.

    ZHANG Ting, ZHAO Lin, LI Gangbo, et al. Screening of best grafting pattern of apple self-rooted rootstock by using principal component analysis and membership function method [J]. Aata Agric Jiangxi, 2018, 30(9): 26 − 30.
    [19] 夏国华, 黄坚钦, 解红恩, 等. 山核桃不同器官矿质元素含量的动态变化[J]. 果树学报, 2014, 31(5): 854 − 862.

    XIA Guohua, HUANG Jianqin, XIE Hongen, et al. Dynamic changes of mineral elements in different organs of hickory (Carya cathayensis) [J]. J Fruit Sci, 2014, 31(5): 854 − 862.
    [20] 仝月澳. 果树营养诊断的初步探索[J]. 中国果树, 1980(1): 1 − 6.

    TONG Yueao. Preliminary study on the nutritional diagnosis of fruits [J]. China Fruits, 1980(1): 1 − 6.
    [21] 朱文勇, 薛新平, 黄军保. 苹果树锌营养失调及矫治新技术研究[J]. 山西果树, 1997(4): 3 − 5.

    ZHU Wenyong, XUE Xinping, HUANG Junbao. A new strategy of alleviated on the disorder of zinc nutrition in apple trees [J]. Shanxi Fruits, 1997(4): 3 − 5.
    [22] 王衍安, 范伟国, 张方爱, 等. 施肥方式对缺锌小叶病苹果树锌营养的影响[J]. 中国农业科学, 2002, 35(10): 1249 − 1253.

    WANG Yan’an, FAN Weiguo, ZHANG Fang’ai, et al. Effect of different fertilizing methods on zinc nutrition in Zn deficiency apple trees [J]. Sci Agric Sin, 2002, 35(10): 1249 − 1253.
    [23] ADRIANO D C, PAULSEN G M, MURPHY L S. Phosphorus-iron and phosphorus-zinc relationships in corn (Zea mays L.) seedlings as affected by mineral nutrition [J]. Agronomy J, 1971, 63(1): 36 − 39.
    [24] GIORDANO P M, NOGGLE J C, MORTVEDT J J. Zinc uptake by rice, as affected by metabolic inhibitors and competing cations [J]. Plant Soil, 1974, 41(3): 637 − 646.
    [25] ZHANG Fusuo, RÖMHELD V, MARSCHNER H. Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat [J]. Soil Sci Plant Nut, 1991, 37(4): 671 − 678.
    [26] 任富莉, 潘映红, 张笑笑, 等. 基于多重表型的高粱耐盐性综合评价方法[J]. 中国农业科技导报, 2019, 21(6): 152 − 162.

    REN Fuli, PAN Yinghong, ZHANG Xiaoxiao, et al. Comprehensive evaluation method for sorghum salt tolerance based on multilevel phenotypic analysis [J]. J Agric Sci Technol, 2019, 21(6): 152 − 162.
    [27] 刘勋, 张娇, 沈昱辰, 等. 基于光合系统参数建立马铃薯耐荫性综合评价体系[J]. 植物学报, 2019, 54(3): 360 − 370.

    LIU Xun, ZHANG Jiao, SHEN Yuchen, et al. Establishment of a comprehensive evaluation system for sha-ding tolerance of potato based on photosynthetic parameters [J]. Chin Bull Bot, 2019, 54(3): 360 − 370.
    [28] 张斌斌, 沈志军, 马瑞娟, 等. 基于果肉单体酚和总酚含量评价桃果实抗氧化能力[J]. 园艺学报, 2018, 45(5): 931 − 942.

    ZHANG Binbin, SHEN Zhijun, MA Ruijuan, et al. Antioxidant capacity evaluation of peach fruit based on flesh individual phenol and total phenol content [J]. Acta Hortic Sin, 2018, 45(5): 931 − 942.
    [29] 申文辉, 谭长强, 劳庆祥, 等. 红锥优树二代家系抗逆性苗期选择研究[J]. 西南林业大学学报(自然科学), 2019, 39(2): 11 − 17.

    SHEN Wenhui, TAN Zhangqiang, LAO Qingxiang, et al. Seedling selection of stress resistance in the 2nd superior families of Castanopsis hystrix [J]. J Southwest For Univ Nat Sci, 2019, 39(2): 11 − 17.
    [30] 刘翠玉, 闫明, 黄贤斌, 等. 石榴耐盐性研究与指标筛选[J]. 浙江农林大学学报, 2018, 35(5): 853 − 860.

    LIU Cuiyu, YAN Ming, HUANG Xianbin, et al. Salt tolerance and screening for identification indexes with pomegranate cuttings [J]. J Zhejiang A&F Univ, 2018, 35(5): 853 − 860.
  • [1] 周洁璐, 吴天昊, 巨云为, 杨旭涛, 梁甜, 朱海军.  薄壳山核桃叶斑病病原菌生物学特性及室内药剂毒力测定 . 浙江农林大学学报, 2023, 40(5): 1018-1025. doi: 10.11833/j.issn.2095-0756.20230029
    [2] 潘浪波, 段伟, 黄有军.  基于MaxEnt模型预测薄壳山核桃在中国的种植区 . 浙江农林大学学报, 2022, 39(1): 76-83. doi: 10.11833/j.issn.2095-0756.20210106
    [3] 伍海兵, 何小丽, 梁晶.  园林绿化用搬迁地土壤肥力综合评价 . 浙江农林大学学报, 2021, 38(5): 1076-1081. doi: 10.11833/j.issn.2095-0756.20200753
    [4] 黄元城, 郭文磊, 王正加.  薄壳山核桃全基因组LBD基因家族的生物信息学分析 . 浙江农林大学学报, 2021, 38(3): 464-475. doi: 10.11833/j.issn.2095-0756.20200454
    [5] 滕芝妍, 崔雨同, 应学兵, 郑伟尉, 臧运祥, 朱祝军.  不同南瓜品种的综合评价 . 浙江农林大学学报, 2020, 37(1): 143-150. doi: 10.11833/j.issn.2095-0756.2020.01.019
    [6] 严泽埔, 张佳琦, 梁璧, 魏广利, 张启香, 王正加.  外施赤霉素对薄壳山核桃幼苗生长及相关代谢基因表达的影响 . 浙江农林大学学报, 2020, 37(5): 922-929. doi: 10.11833/j.issn.2095-0756.20190566
    [7] 丁绍刚, 朱嫣然.  基于层次分析法与模糊综合评价法的医院户外环境综合评价体系构建 . 浙江农林大学学报, 2017, 34(6): 1104-1112. doi: 10.11833/j.issn.2095-0756.2017.06.019
    [8] 杨标, 刘壮壮, 彭方仁, 曹凡, 陈涛, 邓秋菊, 陈文静.  干旱胁迫和复水下不同薄壳山核桃品种的生长和光合特性 . 浙江农林大学学报, 2017, 34(6): 991-998. doi: 10.11833/j.issn.2095-0756.2017.06.004
    [9] 杨先裕, 黄坚钦, 徐奎源, 夏国华, 袁紫倩, 凌骅, 王正加.  薄壳山核桃‘马汉’雄蕊发育特性及花粉储藏活力 . 浙江农林大学学报, 2014, 31(4): 528-533. doi: 10.11833/j.issn.2095-0756.2014.04.006
    [10] 俞春莲, 王正加, 夏国华, 黄坚钦, 刘力.  10个不同品种的薄壳山核桃脂肪含量及脂肪酸组成分析 . 浙江农林大学学报, 2013, 30(5): 714-718. doi: 10.11833/j.issn.2095-0756.2013.05.012
    [11] 丁彦芬, 张佳平.  云台山野生乔灌木资源园林开发利用综合评价 . 浙江农林大学学报, 2012, 29(4): 558-565. doi: 10.11833/j.issn.2095-0756.2012.04.012
    [12] 杨建华, 李淑芳, 范志远, 习学良, 邹伟烈, 刘娇, 潘莉.  美国山核桃主要经济性状的主成分分析及良种选择 . 浙江农林大学学报, 2011, 28(6): 907-910. doi: 10.11833/j.issn.2095-0756.2011.06.011
    [13] 金志凤, 赵宏波, 李波, 李仁忠, 黄敬峰.  基于GIS的浙江山核桃栽植综合区划 . 浙江农林大学学报, 2011, 28(2): 256-261. doi: 10.11833/j.issn.2095-0756.2011.02.014
    [14] 王国霞, 曹福亮, 方炎明.  古银杏雄株花粉超微形态特征类型 . 浙江农林大学学报, 2010, 27(3): 474-477. doi: 10.11833/j.issn.2095-0756.2010.03.025
    [15] 吴令上, 斯金平, 蓝云龙, 诸燕, 吕达.  不同种源鱼腥草形态变异规律 . 浙江农林大学学报, 2009, 26(6): 797-801.
    [16] 贾思振, 房伟民, 陈发棣, 陈素梅, 杨雪萌.  夏菊耐热性指标筛选和综合评价 . 浙江农林大学学报, 2009, 26(1): 52-57.
    [17] 钱新标, 徐温新, 张圆圆, 窦春英, 叶正钱.  山核桃果仁微量元素分析初报 . 浙江农林大学学报, 2009, 26(4): 511-515.
    [18] 林夏珍, 卢婷.  遮光对窄头橐吾形态及光合特性的影响 . 浙江农林大学学报, 2008, 25(5): 614-618.
    [19] 何礼平, 杨云芳, 郑健民.  建筑文化的形态特征及发展状况 . 浙江农林大学学报, 2000, 17(1): 93-97.
    [20] 吴延熊, 陈美兰, 周国模, 郭仁鉴.  论区域森林资源的综合评价 . 浙江农林大学学报, 1999, 16(1): 80-84.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190687

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2020/6/1071

图(2) / 表(4)
计量
  • 文章访问数:  1367
  • HTML全文浏览量:  484
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-26
  • 修回日期:  2020-05-26
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2020-12-01

薄壳山核桃叶面喷锌效果的评价

doi: 10.11833/j.issn.2095-0756.20190687
    基金项目:  “十三五”国家重点研发计划项目(2018YFD1000604);国家林业和草原局科学技术推广项目(〔2019〕14号);江苏省高校优势学科建设工程资助项目(PAPD)
    作者简介:

    尚杨娟,博士研究生,从事经济林培育研究。E-mail: shangyangjuan123@163.com

    通信作者: 彭方仁,教授,博士生导师,从事经济林培育研究。E-mail: frpeng@njfu.edu.cn
  • 中图分类号: S664.1;S718.5

摘要:   目的  探明叶面喷锌肥对薄壳山核桃Carya illinoensis生长的影响,为果树施肥提供科学依据。  方法  以6年生薄壳山核桃‘波尼’‘Pawnee’为试材,设置乙二胺四乙酸锌钠(EDTA-Zn)、硫酸锌(ZnSO4·7H2O)、硝酸锌[Zn(NO3)2·6H2O]等3种锌肥和50、100、150 mg·L−1锌等3个质量浓度水平,共10个处理组(以不喷锌为对照组)进行叶面喷施,分析生长指标(叶长、叶宽、叶面积、含水率、比叶重、树高、胸径)和叶片矿质营养元素(氮、磷、钾、钙、镁、锌、铁、锰、铜)的质量分数变化,并采用主成分分析和加权隶属函数相结合的方法对叶面喷锌效果进行评价。  结果  随喷锌质量浓度递增,薄壳山核桃叶片及树高、胸径指标均有一定程度增大。与对照相比,150 mg·L−1硝酸锌处理的各项形态生长指标增长显著(P<0.05),特别是叶长、叶宽、叶面积和比叶重,分别超出对照26%、37%、25%、17%。随喷锌质量浓度递增,叶片氮、钾、锌、锰质量分数均呈上升趋势;磷、铁质量分数不断下降;钙、镁质量分数先升高后下降。相关分析表明:叶片中锌质量分数与叶长、叶宽和氮、钾质量分数呈显著正相关(P<0.05),与叶面积和钙、锰质量分数呈极显著正相关(P<0.01)。  结论  在一定范围内叶面喷锌肥能显著促进薄壳山核桃叶片生长(P<0.05),并促进叶片矿质营养元素的积累。因此,建议薄壳山核桃喷锌肥可选用150 mg·L−1硝酸锌或100 mg·L−1硫酸锌或100 mg·L−1乙二胺四乙酸锌钠。图2表4参30

English Abstract

尚杨娟, 谭鹏鹏, 范平桦, 孔德仪, 彭方仁, 李永荣. 薄壳山核桃叶面喷锌效果的评价[J]. 浙江农林大学学报, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687
引用本文: 尚杨娟, 谭鹏鹏, 范平桦, 孔德仪, 彭方仁, 李永荣. 薄壳山核桃叶面喷锌效果的评价[J]. 浙江农林大学学报, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687
SHANG Yangjuan, TAN Pengpeng, FAN Pinghua, KONG Deyi, PENG Fangren, LI Yongrong. Evaluation of foliar spraying of zinc in Carya illinoensis[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687
Citation: SHANG Yangjuan, TAN Pengpeng, FAN Pinghua, KONG Deyi, PENG Fangren, LI Yongrong. Evaluation of foliar spraying of zinc in Carya illinoensis[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1071-1079. doi: 10.11833/j.issn.2095-0756.20190687
  • 锌是植物生长发育必需的微量元素,影响植物的许多生理过程,如光合作用、呼吸作用、氮素代谢及生长素的合成与代谢等,对200多种酶有重要的作用[1]。然而近年来,锌缺乏的现象越来越普遍和严重,已经成为限制农林业健康可持续发展的重要因素之一。据统计,全世界50%的作物种植区土壤存在缺锌或潜在缺锌[2]。中国缺锌土壤面积达4 866.7 万hm2,占全国可利用面积的45.7%。这一方面是因为中国南方高分化的酸性土壤和北方石灰性土壤中有效锌含量均较低,极大限制了农林业的产量[3-4]。另一方面是因过量施用氮磷钾复合肥而缺乏有机肥的施用等管理问题,导致土壤缺锌[5-6]。因此,合理增施锌肥等微量元素肥料成为快速缓解缺锌现状的首选,生产中常采用春季叶面喷锌和秋季土壤条施或滴灌方式补充,而叶面喷锌是公认的可快速缓解缺锌症状的管理措施之一[7]。有学者表明:施锌可以提高作物产量,且以叶面喷锌效果最佳[8-10]。薄壳山核桃Carya illinoensis又名美国山核桃或长山核桃,是集果用、材用和油用于一身的优良果树,也常做景观观赏树种[11]。原产美国和墨西哥北部,引种至中国已有100多年的历史,并从最初的零星栽种到现如今的规模化、产业化载植,已在中国22个省(区)打开了市场[12-13]。WOOD等[14]发现:生产中,薄壳山核桃对锌元素高度敏感,当其叶片锌含量低于40 mg·g−1时,会表现出典型的缺锌症状:小叶病,顶端嫩叶卷曲,顶芽枯死,萌芽困难,叶脉间变黄或坏死,叶片变窄,叶片厚度降低。这些症状致使果树光合能力下降,从而限制果树生长、开花和结实,特别是果树处于快速生长期时,这种缺锌现象更为严重[15]。可见,缺锌已成为限制薄壳山核桃果园产量和果实品质的重要因子之一。国外学者在薄壳山核桃果园增施锌肥方面做了大量研究,常采用硝酸锌、硫酸锌、乙二胺四乙酸锌钠(EDTA-Zn)、二乙烯三胺五乙酸锌钠(DTPA-Zn)等作为锌肥来源,与尿素、硼酸、超氨基等组合进行配比喷施肥,已取得了一定的成果[15-17]。而中国薄壳山核桃产业还处于起步阶段,在果园管理中,对锌肥种类及浓度的需求规律并不清楚。为此,本研究以6年生薄壳山核桃‘波尼’‘Pawnee’为研究对象,通过叶面喷锌的试验方法,探讨不同锌肥种类及质量浓度对其生长和矿质营养元素的影响,并采用主成分分析和加权隶属函数相结合的方法对喷锌效果进行评价,科学筛选出叶面喷锌的适宜锌肥种类及质量浓度,旨在为薄壳山核桃果园的丰产管理提供技术及理论依据。

    • 研究区位于江苏省句容市后白镇张庙村,南京林业大学美国山核桃试验基地(31°52′45″N,119°09′06″E)。该区属北亚热带中部季风气候,年均气温15.6 ℃,年降水量1 018.6 mm,日平均气温大于10 ℃的天数为226 d,无霜期229 d。研究地属典型的低山丘陵地区,土壤为黄棕壤,中性偏酸。土壤铵态氮、有效磷和速效钾分别为22.65、3.07和25.31 mg·kg−1,pH 7.48。

    • 供试树种为6年生薄壳山核桃‘波尼’。喷锌前,果树生长良好且一致,株行距为8 m×6 m。锌肥种类分别为乙二胺四乙酸锌钠(EDTA-Zn,锌质量分数21.7%)、硫酸锌(ZnSO4·7H2O,锌质量分数22.6%)和硝酸锌[Zn(NO3)2·6H2O,锌质量分数21.9%]。

    • 试验采用2因素3水平试验设计方案,设10个处理(设锌肥种类与质量浓度2个因素,每因素设3水平,以不喷锌处理作为对照),3次重复,单株小区,完全随机区组分布,单株隔离保护(表1)。试验区内的土壤水分、肥力条件相对一致,且果园抚育管理措施一致。于2018年4月27日、5月8日、5月23日和6月4日,晴朗无风的清晨,用压缩背负式喷雾器将叶面喷施至微滴水,共喷施4次。

      表 1  锌肥2因素3水平试验设计方案

      Table 1.  Test design table of zinc fertilizer 2-factors 3-levels

      处理    锌肥种类锌肥质量浓度/(mg·L−1)
      对照 0
      1乙二胺四乙酸锌钠(EDTA-Zn) 50
      2乙二胺四乙酸锌钠(EDTA-Zn)100
      3乙二胺四乙酸锌钠(EDTA-Zn)150
      4硫酸锌(ZnSO4·7H2O) 50
      5硫酸锌(ZnSO4·7H2O)100
      6硫酸锌(ZnSO4·7H2O)150
      7硝酸锌[Zn(NO3)2·6H2O] 50
      8硝酸锌[Zn(NO3)2·6H2O]100
      9硝酸锌[Zn(NO3)2·6H2O]150
    • 2018年8月中旬,采集各处理树木的树冠外围中部长势一致的功能叶5片·株–1,各处理测定3株(3次重复),分别用于叶片生长及矿质营养元素的测定。

      样品采集后装入塑封袋置于冰盒带回,用自来水和纯水分别冲洗干净,晾干。采用YMJ-D型手持叶面积仪(浙江托普仪器公司生产)和千分之一天平分别测定叶面积和叶片鲜质量。随后将新鲜叶片放置100 ℃烘箱杀青10 min,然后60 ℃下烘干至恒量。千分之一天平测定叶片干质量。研磨干样至粉碎,过100目筛,密封保存待用。2018年11月中旬,待叶片全部脱落后测定树高和胸径。

      干样采用硝酸-高氯酸消煮,消煮液用来分析叶片矿质营养元素。单位质量叶片中的全磷质量分数用钼锑抗比色法测定,其他元素质量分数用原子吸收分光光度计(AES,英国PYE公司生产的SP9-400型)测定。单位质量叶片中的全氮质量分数(干样)用elementar MACRO cube元素分析仪(德国艾力蒙塔公司生产)测定。

    • 数据用均值±标准差表示。采用Excel 2016、SPSS 23.0等对数据进行相关性分析、主成分分析,用Duncan’s新复极差法进行差异显著性分析(P<0.05)。采用Origin 9.1进行图形绘制。根据张婷等[18]的方法,将主成分分析和加权隶属函数法相结合进行综合指标评价,从而计算出10个叶面喷锌处理组的综合评价值(D)。

    • 薄壳山核桃叶片及树高、胸径指标均随着喷锌质量浓度的递增而增大,且硝酸锌处理的增长趋势更明显(图1)。在150 mg·L−1硝酸锌处理下,叶长、叶宽、叶面积和比叶重增长显著(图1A图1B图1C图1E),分别超出对照的26%、37%、25%、17%(P<0.05)。喷锌质量浓度为50~100 mg·L−1时,叶片含水率最高(图1D),增长率并不受锌肥种类影响,均为4%。各处理组的树高和胸径增长均不显著。

      图  1  不同处理下薄壳山核桃生长指标的变化

      Figure 1.  Changes of growth indexes of C. illinoensis under different treatments

    • 随喷锌质量浓度递增,各处理组的单位质量叶片中氮、钾、锌、锰质量分数不断上升,钙、镁质量分数先升后降,磷、铁质量分数持续下降,铜质量分数维持稳定(图2)。喷锌质量浓度为150 mg·L−1时,乙二胺四乙酸锌钠、硫酸锌、硝酸锌处理组的单位质量叶片氮、钾、锌、锰质量分数均升至最高,分别超出对照1%、16%、19%;53%、74%、15%;47%、133%、127%;30%、73%、54%(图2A图2C图2F图2H),且硫酸锌、硝酸锌处理组差异显著(P<0.05),而乙二胺四乙酸锌钠处理组差异不显著。喷锌质量浓度为50~100 mg·L−1时,乙二胺四乙酸锌钠、硫酸锌、硝酸锌处理组的单位质量叶片中钙、镁质量分数达到最高拐点,拐点增幅分别为16%、15%、11%和97%、76%、97%(图2D图2E),差异显著(P<0.05)。喷锌质量浓度为150 mg·L−1时,乙二胺四乙酸锌钠、硫酸锌、硝酸锌处理组的单位质量叶片中磷、铁质量分数均降至最低,分别低于对照组38%、43%、43%和22%、43%、39%,且处理组之间差异不显著(图2B图2G)。

      图  2  不同处理下薄壳山核桃叶片矿质营养元素的变化

      Figure 2.  Changes of leaf mineral elements of C. illinoensis under different treatments

    • 薄壳山核桃叶片生长和矿质营养元素指标之间具有显著的相关性(表2)。叶长与氮、锌质量分数呈显著(P<0.05)、极显著(P<0.01)正相关,相关系数分别为0.437、0.474。叶宽与钙、锌质量分数呈显著正相关(P<0.05,相关系数为0.446、0.446)。叶面积与氮、钙、锌质量分数呈显著正相关(P<0.05,相关系数为0.372、0.395、0.483)。叶片含水率与磷质量分数呈显著正相关(P<0.05,相关系数为0.445)。比叶重则与钙质量分数呈极显著正相关(P<0.01,相关系数为0.586)。本研究中,叶片锌质量分数不仅与薄壳山核桃叶长、叶宽、叶面积等生长指标呈显著(P<0.05)、极显著(P<0.01)正相关,而且与叶片氮、钾、钙、锰质量分数也呈显著(P<0.05)、极显著(P<0.01)正相关。

      表 2  单项指标的相关系数矩阵

      Table 2.  Correlation matrix of each individual index

      指标叶长叶宽叶面积含水率比叶重树高胸径
      叶长  1
      叶宽  0.815** 1
      叶面积 0.917** 0.964** 1
      含水率 −0.003 0.155 0.122 1
      比叶重 0.085 0.363* 0.206 −0.228 1
      树高  0.517** 0.510** 0.532** −0.012 0.031 1
      胸径  0.147 0.007 0.067 −0.067 −0.291 0.133 1
      氮   0.437* 0.296 0.372* −0.050 0.074 0.330 0.089 1
      磷   −0.156 −0.169 −0.216 0.445* 0.080 −0.209 −0.003 0.090
      钾   −0.178 −0.090 −0.142 −0.151 0.234 −0.163 −0.325 0.034
      钙   0.359 0.446* 0.395* −0.101 0.586** 0.286 −0.293 0.243
      镁   0.033 0.222 0.132 −0.099 0.257 0.167 −0.142 0.065
      锌   0.474** 0.446* 0.483** −0.230 0.311 0.338 0.045 0.457*
      铁   0.072 −0.052 0.047 0.217 −0.328 −0.036 0.099 0.154
      铜   0.033 0.134 0.081 0.252 −0.012 −0.258 −0.076 −0.331
      锰   0.170 0.103 0.143 −0.240 0.023 0.237 0.187 −0.018
      指标
      1
      0.086 1
      0.009 0.461* 1
      0.077 0.585** 0.413* 1
      −0.151 0.401* 0.532** 0.259 1
      −0.107 −0.408* −0.195 −0.590** −0.126 1
      0.011 0.403* 0.244 0.202 −0.135 0.064 1
      −0.328 0.150 0.174 0.063 0.640** −0.039 −0.201 1
        说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)
    • 表3所示:第1、2、3、4主成分的累计贡献率达65%,表明前4个主成分能概括大多数数据信息,因此确定提取这4个主成分,将原来16个单项指标转换成4个相互独立的综合指标,分别用X1X2X3X4表示。

      表 3  各综合指标的系数及贡献率

      Table 3.  Coefficients of comprehensive indexes and proportion

      指标X1X2X3X4
      叶面积 0.855 −0.347 0.281 −0.133
      0.849 −0.214 0.344 −0.119
      0.803 −0.412 0.182 −0.075
      0.769 0.134 −0.353 0.047
      0.685 0.453 0.146 −0.008
      树高 0.622 −0.319 −0.102 0.126
      0.193 0.832 −0.038 −0.106
      0.382 0.649 0.052 0.055
      −0.175 −0.619 0.139 −0.190
      含水率 −0.128 −0.201 0.729 0.071
      0.374 −0.008 −0.641 −0.257
      −0.006 0.322 0.561 −0.648
      −0.215 0.192 0.476 0.623
      0.490 −0.228 −0.038 0.570
      胸径 −0.012 −0.465 −0.247 −0.015
      比叶重 0.435 0.468 0.052 0.202
      贡献率/% 27   18   12   8 
    • 每个处理各综合指标的隶属函数值计算公式为:

      $$ \mu \left( {{X_i}} \right) = \frac{{{X_i} - {X_ {\rm min}}}}{{{X_{\rm max}} - {X_{\rm min}}}},\;i = 1,\;2,\;3,\; \cdots ,\;n{\text{。}} $$ (1)

      式(1)中:µ(Xi)表示各处理组第i个综合指标的隶属函数值;Xi表示第i个综合指标;XminXmax分别表示第i个综合指标的最小值与最大值。

      各综合指标权重(Wi)的计算公式为:

      $$ {W_i} = {P_i}\Big /\sum\limits_{i = 1}^n {{P_i}} ,\;i = 1,\;2,\;3,\; \cdots ,\;n{\text{。}} $$ (2)

      式(2)中:Wi表示第i个综合指标在所有综合指标中的重要程度;Pi为各处理组第i个综合指标的贡献率。

      各处理组综合评价值(D)的计算公式为:

      $$ D = \sum\limits_{i = 1}^n {\left[ {\mu \left( {{X_i}} \right){W_i}} \right]} ,\;i = 1,\;2,\;3,\; \cdots ,\;n{\text{。}} $$ (3)

      式(3)中:D表示在喷锌处理下,计算所得各处理组的综合评价值。

      根据各综合指标的贡献率大小可以知道它们的相对重要性,同时根据16个单项指标的平均值及各综合指标的指标系数(表3)求出每个处理的4个综合指标值(表4)。各处理组的喷锌反应根据D排序,从大到小依次为处理9、处理5、处理2、处理8、处理6、处理3、处理4、处理7、处理1、对照。

      表 4  各处理组的综合指标值(Xi)、隶属函数值[μ(Xi)]、权重(Wi)、综合评价值(D)及排序

      Table 4.  Values of each treatment comprehensive index (Xi), subordinate function[μ(Xi)], index weight (Wi), comprehensiveassessment (D) and the order

      处理综合指标值Xi隶属函数值μ(Xi)综合评价值D综合排序
      X1X2X3X4μ(X1)μ(X2)μ(X3)μ(X4)
      对照 42.471 −7.373 2.475 12.065 0.000 0.344 0.313 0.427 0.205 10
      1 44.448 −6.157 2.468 11.856 0.139 0.478 0.311 0.334 0.287 9
      2 50.395 −3.930 3.534 11.103 0.558 0.725 0.633 0.000 0.544 3
      3 46.890 −1.926 2.382 11.446 0.311 0.946 0.285 0.152 0.456 6
      4 46.923 −6.048 2.696 12.500 0.313 0.490 0.380 0.620 0.412 7
      5 49.479 −4.093 2.828 12.448 0.493 0.707 0.420 0.597 0.550 2
      6 47.289 −1.443 1.437 12.727 0.339 1.000 0.000 0.721 0.502 5
      7 46.929 −7.807 3.215 12.232 0.314 0.296 0.537 0.501 0.374 8
      8 50.119 −8.164 3.252 13.356 0.538 0.256 0.548 1.000 0.523 4
      9 56.684 −10.477 4.751 12.503 1.000 0.000 1.000 0.622 0.683 1
      权重Wi 0.417 0.268 0.186 0.128
    • 外施锌肥可从形态和矿质营养元素累积变化中进行直观判断。本研究中,叶面喷锌使薄壳山核桃叶长、叶宽、叶面积和比叶重等有一定程度的增长;也使叶片氮、钾、钙、镁、锌、锰质量分数提高,而磷和铁质量分数降低,尤其以150 mg·L−1硝酸锌处理的增长明显,这与OJEDA-BARRIOS等[15]的结论一致。OJEDA-BARRIOS等[15]对8年生薄壳山核桃叶面喷施硝酸锌、乙二胺四乙酸锌钠、二乙烯三胺五乙酸锌钠表明:叶片锌质量分数提高,同时总叶面积和叶绿素(SPAD)也得到明显增加。ASHRAF等[16]也对薄壳山核桃进行尿素、硼酸、硫酸锌、超氨基等不同组合的叶面喷施表明:尿素、硼酸、硫酸锌、超氨基混合组合在开花前、坐果后可增加叶片氮、磷、钾、钙、镁、锌、锰和铜质量分数。KESHAVARZ等[17]通过对薄壳山核桃叶面混合配施锌肥和硼肥表明:施用174 mg·L−1硼肥和1 050 mg·L−1锌肥时效果最好,可增加叶片氮、磷、钾、铁、锌和硼质量分数。而本研究表明:叶面喷锌不仅促进了薄壳山核桃叶片氮、钾、钙、镁、锌、锰质量分数上升,也使磷、铁质量分数下降。这可能是因为配施比单施效果好,且能避免锌磷拮抗、锌铁拮抗现象[16-17]

      在本研究中,随叶片锌质量分数上升,磷、铁质量分数持续下降,可见,锌磷拮抗、锌铁拮抗现象非常明显。通常,锌磷拮抗主要表现为高磷可诱导锌缺乏症[19],有3个方面的原因:①高磷通过干扰锌的吸收转运从而引起锌的缺乏;②高磷可降低植物顶端锌的质量分数;③植物细胞内与磷有关的代谢紊乱造成磷锌失衡[1]。仝月澳[20]提出衡量苹果Malus domestica树锌营养用磷/锌指标进行判断,磷/锌>100易患小叶病,但取样测定时间限制在盛花后8~12周(即6−7月),否则无可比性。朱文勇等[21]通过细胞超微结构观察也发现:磷/锌>100时,苹果树易爆发小叶病。王衍安等[22]在此基础上采用根外喷施硫酸锌可大幅度提高苹果枝干锌储藏营养水平,有利于平衡锌在根、枝、叶间的分配,调节树体内磷、钾、锌间的平衡,提高锌运转能力和有效性,满足树体周年发育需求。锌铁拮抗在作物中研究较多,也表现为随铁质量分数升高,锌吸收受到抑制,从而影响作物的正常生长;反之,则促进作物生长。小麦Zea mays幼苗中,低浓度铁对锌吸收没有影响[23];水稻Oryza sativa幼苗中,高浓度铁则完全抑制锌的吸收[24];此外,缺铁还能增加双子叶植物和禾本科Gramineae植物嫩枝中锌的吸收[25]

    • 本研究建立了一套筛选薄壳山核桃施肥方式的方法,该方法全面、客观、准确,对于薄壳山核桃施肥效果的评价具有重要实践意义。首先采用主成分分析法把16个单项指标转换成4个综合指标,以此作为代表确定其权重,进一步利用加权隶属函数法求出各综合指标评价值(D),从而筛选出适宜的叶面喷锌处理。此方法在高粱Sorghum bicolor抗旱性[26]、马铃薯Solanum tuberosum耐荫性[27]、桃树Amygdalus persica抗氧化能力[28]、红锥Castanopsis hystrix良种引进[29]、苹果矮化砧的筛选[18]、石榴Punica granatum耐盐性[30]等方面多有报道。该方法可消除单项指标的片面性,能比较科学地筛选出适宜处理。通过筛选,薄壳山核桃适宜喷锌处理为150 mg·L−1硝酸锌或100 mg·L−1硫酸锌或100 mg·L−1乙二胺四乙酸锌钠。在生产实践中,硝酸锌成本较高,且不稳定、不易储存,因此多选用硫酸锌或锌的不同络合物,或进行多种微肥配施[16-17]

参考文献 (30)

目录

    /

    返回文章
    返回