-
光照是影响植物生长的重要因素,光合作用通过影响植物的新陈代谢和次生代谢物的合成,调控植物的产量和活性成分积累[1−2]。通常,过强的光照会使叶绿体的光合反应中心失活或受损,引起光抑制,并可能抑制植物的生长。但长期的弱光环境可能会减少光能的吸收,并通过影响净光合速率来抑制植物的生长发育和代谢产物积累[3]。由此,适度光强可以促进光合作用,激活次生代谢产物的合成和积累过程,保障药用植物的正常生长和有效成分积累[4]。植物对光强的偏好性因物种而异,“光照-寒热药性”假说认为:延胡索Corydalis yanhusuo等热性中药偏好弱光环境[5]。郁闭度是影响林地光照强度的决定性因子,研究药用植物生长和有效成分含量对林冠郁闭度的响应特征,已成为林下药用植物种植管理和提质增效的重要问题。
凋落物分解是联系植物-土壤系统物质循环和能量流动的纽带[6],为林下药用植物的生长发育提供所需养分。研究表明:厚度过高的凋落物层由于遮荫、物理阻碍等可能对药用植物生长有负面效应,而适量的凋落物覆盖则有助于药用植物的生长[7]。目前,凋落物对药用植物生长的作用难以界定,它随着森林类型、凋落物量和药用植物的种类以及微生境的特征不同而存在差异[8]。延胡索名列“浙八味”道地药材之一,其块茎中含有的延胡索乙素在止痛、镇静和催眠等方面应用广泛。延胡索在浙江省栽培历史悠久,大盘山保护区内的杉木Cunninghamia lanceolata-延胡索群落是国内仅有的野生延胡索成片分布区域[9]。杉木是中国亚热带人工林的主要造林树种之一[10],其凋落物不易分解,纯林连栽后土壤中有效养分呈下降趋势,但亦有研究证实去除杉木凋落物会降低土壤养分含量[11]。然而,杉木林中凋落物输入如何影响林下延胡索的产量和有效成分却鲜有报道。
研究表明:延胡索只在母球茎下生根,不发达的根系,吸收水分较少,难以应对过强光照产生的蒸腾作用[12],过弱光照又不能满足生长所需要的能量,从而决定了延胡索对生长环境的要求较高[13]。但近年来,由于植被的过度保护,造成自然保护区内杉木林郁闭度较高,引起林内光照不足,以及林下凋落物层积累较厚等问题,这已严重阻碍了林下延胡索植株的萌发生长和开花结实。有研究表明:适度的遮荫和凋落物输入可满足野生药用植物的光照和养分需求[14−15]。然而,如何通过调节郁闭度和凋落物等改善林间光照和养分资源供应,促进林下药用植物产量和有效成分含量提升尚无研究报道。因此,本研究以杉木林林下种植的延胡索为研究对象,通过调控林冠郁闭度和移除凋落物等方式,研究营林措施对林下植株生物量分配、根区土壤养分特征以及延胡索块茎产量和延胡索乙素质量分数的影响,以期为块茎类药用植物的栽培提供理论支撑。
-
无论覆盖或去除凋落物,降低郁闭度均提高了延胡索生物量(图1)。在覆盖凋落物时,3个试验位点的植株生物量在低郁闭度处理中分别较中郁闭度和高郁闭度处理平均提高了67.3%和109.0%;在去除凋落物时,低郁闭度处理的植株生物量分别较中郁闭度和高郁闭度处理平均提高了59.0%和137.0%。此外,根生物量和净光合速率也表现出相似的趋势。
郁闭度、凋落物显著影响了延胡索的块茎产量和延胡索乙素质量分数(表1,P<0.05)。在3个试验位点,去除凋落物时(图2),低郁闭度处理下延胡索块茎产量分别比中郁闭度、高郁闭度处理平均增加了279.0%、320.0%;在覆盖凋落物时,白雨伞和大岩后2个位点延胡索产量随着郁闭度的降低而增加。去除凋落物时,延胡索乙素质量分数随着郁闭度的降低而降低。且在高郁闭度处理中,3个试验位点去除凋落物后延胡索乙素质量分数均显著(P<0.05)高于覆盖凋落物。
因素 块茎产量 延胡索乙素质量分数 F P F P 郁闭度 195.06 <0.001 44.44 <0.001 凋落物 5.69 <0.001 89.89 <0.001 位点 102.45 <0.001 0.83 >0.05 郁闭度×凋落物 10.81 <0.001 8.01 <0.05 郁闭度×位点 6.15 <0.05 1.11 >0.05 Table 1. Analysis of variance of canopy density and litter treatment on yield and tetrahydropyridine content of C. yanhusuo
-
利用雷达图综合评估不同处理对延胡索生长、产量和品质影响(图3)。结果表明:3个试验位点平均综合评价值得分最高的是低郁闭度+去除凋落物处理,其次为低郁闭度+覆盖凋落物处理。
-
去除凋落物时,土壤有机碳、全氮质量分数随着郁闭度的降低而升高(表2);保留凋落物时,白雨伞和大岩后试验位点可溶性氮质量分数随着郁闭度的降低而降低。在低郁闭度处理下,去除凋落物时的可溶性氮质量分数均低于覆盖凋落物处理。在去除凋落物时,白雨伞和毛坞孔试验位点可溶性碳质量分数随着郁闭度的降低而升高。保留凋落物时,3个试验位点低郁闭度处理下土壤真菌群落丰度比高郁闭度处理平均降低41.3%。覆盖凋落物时,大岩后和毛坞孔试验位点的细菌群落丰度在低郁闭度处理下比高郁闭度处理平均降低65.8%。
试验位点 处理 SOC/
(g·kg−1)TN/
( g·kg−1)TP/
( g·kg−1)DOC/
(mg·kg−1)DON/
(mg·kg−1)AVP/
(mg·kg−1)真菌数量/
(×109拷贝·g−1)细菌数量/
(×1010拷贝·g−1)白雨伞 -L 38.36±0.47 aA 3.13±0.08 aA 0.07±0.02 aA 57.31±3.70 aA 98.29±3.08 aB 1.63±0.52 bA 8.89±0.57 aA 4.96±1.08 aA -M 35.41±2.13 aA 3.44±0.29 aA 0.19±0.04 aA 39.54±2.85 bA 58.63±4.84 bA 3.76±0.70 aA 4.72±1.16 bA 4.77±1.02 aA -H 22.48±0.82 bB 2.36±0.13 bA 0.06±0.01 aB 30.33±4.26 cA 87.68±5.94 aA 1.68±0.10 bB 8.08±1.52 aA 3.20±0.16 aA +L 30.45±0.92 aB 3.33±0.20 aA 0.12±0.04 aA 39.69±7.19 aB 129.08±11.94 aA 2.64±0.76 aA 9.33±1.53 bA 5.60±0.88 aA +M 34.03±1.02 aA 2.73±0.10 aA 0.18±0.04 aA 42.56±4.83 aA 73.16±3.41 bA 2.52±0.44 aA 12.83±0.75 aA 5.73±0.99 aA +H 31.78±0.52 aA 2.56±0.11 aA 0.22±0.05 aA 37.57±8.07 aA 36.05±3.71 cA 2.25±0.62 aA 12.68±0.35 aA 4.47±0.54 aA 大岩后 -L 38.59±0.13 aA 3.28±0.21 aA 0.30±0.07 aB 16.74±4.78 bA 75.09±16.71 bB 2.25±0.86 bA 8.64±0.18 aA 3.54±0.50 bA -M 31.11±0.48 bA 2.75±0.13 bA 0.30±0.04 aA 28.32±3.20 aA 124.62±9.71 aA 8.31±0.07 aA 6.35±0.20 bB 1.46±0.10 aA -H 39.35±0.39 aA 2.19±0.16 cA 0.28±0.02 aB 21.47±3.18 abA 64.71±10.69 bA 7.75±0.61 aA 8.09±1.21 abA 2.74±0.32 aA +L 39.95±0.15 aA 2.95±0.10 aB 0.43±0.01 bA 27.08±1.15 aA 132.53±17.23 aA 1.34±0.31 bA 8.68±0.24 cA 3.76±0.39 bA +M 35.00±0.25 bA 3.13±0.06 aA 0.30±0.02 cA 27.39±1.05 aA 92.23±5.40 bA 4.98±1.01 aB 12.21±1.66 bA 4.68±1.01 bA +H 29.20±0.51 cA 2.49±0.23 bA 0.53±0.01 aA 31.27±3.44 aA 86.15±1.22 bA 5.00±0.74 aB 19.99±0.77 aA 13.69±0.75 aA 毛坞孔 -L 38.81±0.79 aA 2.89±0.06 aA 0.64±0.04 aA 36.59±0.76 aA 98.78±1.28 aA 5.28±0.63 aA 8.69±0.43 aA 4.29±0.11 bA -M 37.45±1.14 aA 2.87±0.07 aA 0.76±0.08 aA 30.02±5.20 aA 86.87±3.97 aB 3.11±0.43 bA 5.81±0.47 bA 3.51±0.91 bA -H 33.32±1.14 bA 2.41±0.10 bA 0.69±0.06 aA 29.37±0.93 aA 72.78±8.84 bB 2.88±0.33 bB 6.57±0.39 bA 12.31±1.84 aA +L 41.60±1.43 aA 3.23±0.23 aA 0.62±0.05 bA 18.39±2.90 aB 105.46±6.99 bA 2.23±0.38 cB 8.71±0.44 cA 6.49±1.00 bA +M 40.00±0.73 bA 3.01±0.09 abA 0.77±0.05 aA 33.55±4.22 aA 84.36±6.42 bA 4.21±0.46 bA 11.00±0.59 bA 7.04±1.44 bA +H 35.16±0.56 cA 2.65±0.08 bA 0.66±0.03 bA 23.93±3.14 bA 129.08±11.94 aA 6.84±0.30 aA 12.87±0.38 aA 16.21±2.09 aA 说明:H. 高郁闭度;M. 中郁闭度;L. 低郁闭度;-表示去除凋落物;+表示覆盖凋落物。SOC. 土壤有机碳;TN. 土壤全氮;TP. 土壤全磷;DOC. 土壤可溶性碳;DON. 土壤可溶性氮;AVP. 土壤速效磷。不同小写字母表示相同凋落物不同郁闭度之间差异显著(P<0.05),不同大写字母表示相同郁闭度不同凋落物之间差异显著(P<0.05)。 Table 2. Effects of different canopy density and litter treatment on soil nutrients and the abundance of bacteria and fungi in rhizosphere soil
-
从表3可见:延胡索块茎产量与土壤有机碳、土壤可溶性氮、植株生物量和植株净光合速率具有显著的回归关系(P<0.01);而延胡索乙素质量分数与土壤全氮、植株净光合速率具有显著的回归关系(P<0.01)。
因变量 延胡索产量 延胡索乙素质量分数 a b R2 P a b R2 P 土壤有机碳 0.970 −23.19 0.31 <0.01 −0.006 0.89 0.110 <0.05 土壤全氮 6.980 −8.97 0.10 <0.05 −0.120 1.02 0.310 <0.01 土壤全磷 14.370 5.29 0.17 <0.05 −0.020 0.69 0.003 >0.05 土壤可溶性碳 −0.004 11.09 −0.02 >0.05 0.000 0.69 0.002 >0.05 土壤可溶性氮 0.140 −1.89 0.21 <0.01 −0.001 0.77 0.110 <0.05 土壤速效磷 −0.530 12.98 0.02 >0.05 0.010 0.64 0.090 <0.05 植株生物量 16.160 0.46 0.41 <0.01 −0.110 0.75 0.180 <0.05 根生物量 73.960 5.85 0.12 <0.05 −0.910 0.74 0.180 <0.05 净光合速率 1.580 −0.14 0.36 <0.01 −0.010 0.78 0.310 <0.01 真菌数量 0.020 10.80 0.00 >0.05 −0.010 0.77 0.130 <0.05 细菌数量 0.290 9.40 0.02 >0.05 −0.010 0.72 0.090 >0.05 说明:R2表示拟合度;a表示系数;b表示截距。 Table 3. Regression analysis between the C. yanhusuo yield, tetrahydropalmatine content and various factor
为了进一步揭示主导延胡索块茎产量和延胡索乙素质量分数的影响因子,选取与两者显著(P<0.05)相关的土壤和植物因子与延胡索块茎产量和延胡索乙素质量分数构建多元回归方程(表4)。去除凋落物时,影响延胡索块茎产量的最主要因子是植株生物量,影响延胡索乙素质量分数的最主要因子是净光合速率。覆盖凋落物时,影响延胡索块茎产量的主要因子是根生物量、土壤有机碳和土壤可溶性氮质量分数;影响延胡索乙素质量分数的主要因子是净光合速率、土壤速效磷和土壤有机碳质量分数。
因变量 回归方程 R2 重要性排序 延胡索产量(Y) 去除凋落物 Y=27.83X植株−7.41
(X植株=0.79)0.63 植株生物量(X植株) 覆盖凋落物 Y=0.14XDON+1.47XSOC−69.49X根−33.22
(XDON=0.55,XSOC=0.77,X根=−0.41)0.71 从大到小依次为土壤有机碳(XSOC)、
土壤可溶性氮(XDON)、根生物量(X根)延胡索乙素质量分数(Y) 去除凋落物 Y=−0.021XPn+0.880
(XPn=−0.640)0.70 净光合速率($ X_{\mathrm{Pn}} $) 覆盖凋落物 Y=−0.018XPn +0.011XAVP−0.003XSOC+0.930
(XPn =−0.702,XAVP=0.320,XSOC=−0.220)0.79 从大到小依次为净光合速率($ X_{\mathrm{P}{\mathrm{n}}} $)、
速效磷(XAVP)、土壤有机碳(XSOC)Table 4. Multiple linear regression model between the C. yanhusuo yield, tetrahydropalmatine content and various factor
Response of yield and tetrahydropalmatine content of Corydalis yanhusuo to canopy density and litter treatment of Chinese fir forest
doi: 10.11833/j.issn.2095-0756.20240461
- Received Date: 2024-07-26
- Accepted Date: 2024-11-25
- Rev Recd Date: 2024-10-18
-
Key words:
- canopy density /
- litter /
- Corydalis yanhusuo /
- tuber yield /
- tetrahydropalmatine
Abstract:
Citation: | WANG Yuqi, ZHANG Qianqian, ZHANG Wenzhuo, YU Yefei, LÜ Qiangfeng, TENG Qiumei, LI Yongchun. Response of yield and tetrahydropalmatine content of Corydalis yanhusuo to canopy density and litter treatment of Chinese fir forest[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240461 |