[1] |
BOREK M, BACZEK-KWINTA R, RAPACZ M. Photosynthetic activity of variegated leaves of Coleus × hybridus hort. cultivars characterised by chlorophyll fluorescence techniques [J]. Photosynthetica, 2016, 54(3): 331−339. |
[2] |
LI Weixing, YANG Shunbo, LU Zhaogeng, et al. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L [J/OL]. Horticulture Research, 2018, 5 : 32[2024-05-09]. DOI: 10.1038/s41438-018-0039-9. |
[3] |
XU Binhua, ZHANG Chaoyang, GU Yan, et al. Physiological and transcriptomic analysis of a yellow leaf mutant in watermelon [J/OL]. Scientific Reports, 2023, 13 (1): 9647[2024-05-09]. DOI: 10.1038/s41598-023-36656-6. |
[4] |
BEALE S I, APPLEMAN D. Chlorophyll synthesis in Chlorella: regulation by degree of light limitation of growth [J]. Plant Physiology, 1971, 47(2): 230−235. |
[5] |
GRANICK S. Protoporphyrin Ⅸ as a precursor of chlorophyll [J]. Journal of Biological Chemistry, 1948, 172(2): 717−727. |
[6] |
CAO Zhe, DENG Zhanao. Morphological, cytological and molecular marker analyses of ‘Tapestry’ caladium variants reveal diverse genetic changes and enable association of leaf coloration pattern loci with molecular markers [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2020, 143(2): 363−375. |
[7] |
ZHAO Shaolu, LONG Wuhua, WANG Yihua, et al. A rice white-stripe leaf3 (wsl3) mutant lacking an HD domain-containing protein affects chlorophyll biosynthesis and chloroplast development [J]. Journal of Plant Biology, 2016, 59(3): 282−292. |
[8] |
PARK S Y, YU J W, PARK J S, et al. The senescence-induced staygreen protein regulates chlorophyll degradation [J]. The Plant Cell, 2007, 19(5): 1649−1664. |
[9] |
GUSTAFSSON Å. The plastid development in various types of chlorophyll mutations [J]. Hereditas, 2010, 28(3/4): 483−492. |
[10] |
AWAN M A, KONZAK C F, RUTGER J N, et al. Mutagenic effects of sodium azide in rice [J]. Crop Science, 1980, 20(5): 663−668. |
[11] |
WALLES B. The homozygous and heterozygous effects of an aurea mutation on plastid development in spruce (Picea abies L. ) [J]. Studia Forestalia Suecica, 1967, 60: 1−20. |
[12] |
QIN Dandan, DONG Jing, XU Fuchao et al. Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing [J/OL]. BMC Genomics, 2015, 16 : 838[2024-05-09]. DOI: 10.1186/s12864-015-2015-1. |
[13] |
SCHELBERT S, AUBRY S, BURLA B, et al. Pheophytin pheophorbide hydrolase (Pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis [J]. The Plant Cell, 2009, 21(3): 767−785. |
[14] |
RUNGNOI O, CHANPREM S, TOOJINDA T, et al. Characterization, inheritance, and molecular study of opaque leaf mutant in mungbean (Vigna radiata (L. ) Wilczek) [J]. Journal of Crop Science and Biotechnology, 2010, 13(4): 219−226. |
[15] |
ZHA Gaohui, YIN Juan, CHENG Feng, et al. Fine mapping of CscpFtsY, a gene conferring the yellow leaf phenotype in cucumber (Cucumis sativus L. ) [J/OL]. BMC Plant Biology, 2022, 22 (1): 570[2024-05-09]. DOI: 10.1186/s12870-022-03922-0. |
[16] |
PFALZ J, PFANNSCHMIDT T. Essential nucleoid proteins in early chloroplast development [J]. Trends in Plant Science, 2013, 18(4): 186−194. |
[17] |
LIN B Y, YU H J. Inheritance of a striped-leaf mutant is associated with the cytoplasmic genome in maize [J]. Theoretical and Applied Genetics, 1995, 91: 915−920. |
[18] |
LIU Cong, SHI Narong, WU Huiyu, et al. Cytogenetic analyses of PSL1 mutant, a novel low-temperature-sensitive purple-striped leaf color mutant in wheat [J]. Crop Science, 2018, 58(5): 1919−1931. |
[19] |
HERNÁNDEZ-VERDEJA T, VUORIJOKI L, STRAND Å. Emerging from the darkness: interplay between light and plastid signaling during chloroplast biogenesis [J]. Physiologia Plantarum, 2020, 169(3): 397−406. |
[20] |
SHIMIZU T, KACPRZAK S M, MOCHIZUKI N, et al. The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(49): 24900−24906. |
[21] |
ROCCA N L, RASCIO N, OSTER U, et al. Inhibition of lycopene cyclase results in accumulation of chlorophyll precursors [J]. Planta, 2007, 225(4): 1019−1029. |
[22] |
LIGUORI N, CROCE R, MARRINK S J, et al. Molecular dynamics simulations in photosynthesis [J]. Photosynthesis Research, 2020, 144(2): 273−295. |
[23] |
WANG Fenfen, CHEN Naizhi, SHEN Shihua. iTRAQ-based quantitative proteomics analysis reveals the mechanism of golden-yellow leaf mutant in hybrid paper mulberry [J/OL]. International Journal of Molecular Sciences, 2021, 23 (1): 127[2024-05-09]. DOI: 10.3390/ijms23010127. |
[24] |
GANG Huixin, LIU Guifeng, CHEN Su, et al. Physiological and transcriptome analysis of a yellow-green leaf mutant in birch (Betula platyphylla × B. pendula) [J/OL]. Forests, 2019, 10 (2): 120[2024-05-09]. DOI: 10.3390/f10020120. |
[25] |
CHANG Q S, ZHANG L X, HOU X G, et al. The anatomical, physiological, and molecular analysis of a chlorophyll-deficient mutant in tree peony (Paeonia suffruticosa) [J]. Photosynthetica, 2019, 57(3): 724−730. |
[26] |
MASUDA T, FUJITA Y. Regulation and evolution of chlorophyll metabolism [J]. Photochemical & Photobiological Sciences, 2008, 7(10): 1131−1149. |
[27] |
HUANG Mingshu, SLEWINSKI T L, BRAKER R F, et al. Camouflage patterning in maize leaves results from a defect in porphobilinogen deaminase [J]. Molecular Plant, 2009, 2(4): 773−789. |
[28] |
HUNG C Y, SUN Y H, CHEN Jianjun, et al. Identification of a Mg-protoporphyrin Ⅸ monomethyl ester cyclase homologue, EaZIP, differentially expressed in variegated Epipremnum aureum ‘Golden Pothos’ is achieved through a unique method of comparative study using tissue regenerated plants [J]. Journal of Experimental Botany, 2010, 61(5): 1483−1493. |
[29] |
KANG Shujing, FANG Yunxia, ZOU Guoxing, et al. White-green leaf gene encoding protochlorophyllide oxidoreductase B is involved in chlorophyll synthesis of rice [J]. Crop Science, 2015, 55(1): 284−293. |
[30] |
ZHAO Yonghui, HUANG Shengnan, ZHANG Meidi, et al. Mapping of a pale green mutant gene and its functional verification by allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J/OL]. Frontiers in Plant Science, 2021, 12 : 699308[2024-05-09]. DOI: 10.3389/fpls.2021.699308. |
[31] |
LONG Wuhua, LONG Sifang, JIANG Xue, et al. A rice Yellow-Green-Leaf 219 mutant lacking the divinyl reductase affects chlorophyll biosynthesis and chloroplast development [J]. Journal of Plant Growth Regulation, 2022, 41: 3233−3242. |
[32] |
ZHAO Yonghui, HUANG Shengnan, WANG Nan, et al. Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J/OL]. Scientific Reports, 2022, 12 : 7731[2024-05-09]. DOI: 10.1038/s41598-022-11825-1. |
[33] |
LU Wei, TENG Yantong, HE Fushou, et al. OsChlC1, a novel gene encoding magnesium-chelating enzyme, affects the content of chlorophyll in rice [J/OL]. Agronomy, 2023, 13 (1): 129[2024-05-09]. DOI: 10.3390/agronomy13010129. |
[34] |
HANSSON A, WILLOWS R D, ROBERTS T H, et al. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13944−13949. |
[35] |
MA Yangyang, SHI Jiancheng, WANG Danjuan, et al. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism [J]. Plant Physiology, 2023, 192(4): 2737−2755. |
[36] |
JUNG K H, HUR J, RYU C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system [J]. Plant & Cell Physiology, 2003, 44(5): 463−472. |
[37] |
FU Wei, YE Xueling, REN Jie, et al. Fine mapping of lcm1, a gene conferring chlorophyll-deficient golden leaf in Chinese cabbage (Brassica rapa ssp. pekinensis) [J/OL]. Molecular Breeding, 2019, 39 (4): 52[2024-05-09]. DOI: 10.1007/s11032-019-0945-z. |
[38] |
JENSEN P E, REID J D, HUNTER C N. Modification of cysteine residues in the Chl I and Chl H subunits of magnesium chelatase results in enzyme inactivation [J]. The Biochemical Journal, 2000, 352(2): 435−441. |
[39] |
LARKIN R M, ALONSO J M, ECKER J R, et al. GUN4, a regulator of chlorophyll synthesis and intracellular signaling [J]. Science, 2003, 299(5608): 902−906. |
[40] |
ADHIKARI N D, FROEHLICH J E, STRAND D D, et al. GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-Chelatase and promote chlorophyll biosynthesis in Arabidopsis [J]. The Plant Cell, 2011, 23(4): 1449−1467. |
[41] |
INAGAKI N, KINOSHITA K, KAGAWA T, et al. Phytochrome B mediates the regulation of chlorophyll biosynthesis through transcriptional regulation of ChlH and GUN4 in rice seedlings [J/OL]. PLoS One, 2015, 10 (8): e0135408[2024-05-09]. DOI: 10.1371/journal.pone.0135408. |
[42] |
RICHTER A S, HOCHHEUSER C, FUFEZAN C, et al. Phosphorylation of GENOMES UNCOUPLED 4 alters stimulation of Mg chelatase activity in Angiosperms [J]. Plant Physiology, 2016, 172(3): 1578−1595. |
[43] |
BEALE S I. Green genes gleaned [J]. Trends in Plant Science, 2005, 10(7): 309−312. |
[44] |
GRIMM B, PORRA R J, RÜDIGER W, et al. Chlorophylls and Bacteriochlorophylls [M]. Dordrecht: Springer Netherlands, 2006: 237−260. |
[45] |
SAKURABA Y, HAN S H, LEE S H, et al. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription [J]. Plant Cell Reports, 2016, 35 (1): 155−166. |
[46] |
CHEN Junyi, ZHU Xiaoyu, REN Jun, et al. Suppressor of overexpression of CO 1 negatively regulates dark-induced leaf degreening and senescence by directly repressing pheophytinase and other senescence-associated genes in Arabidopsis [J]. Plant Physiology, 2017, 173(3): 1881−1891. |
[47] |
ZHU Xiaoyu, CHEN Junyi, XIE Zuokun, et al. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes [J]. The Plant Journal, 2015, 84(3): 597−610. |
[48] |
ODA-YAMAMIZO C, MITSUDA N, SAKAMOTO S, et al. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves [J/OL]. Scientific Reports, 2016, 6: 23609 [2024-05-09]. DOI: 10.1038/srep23609. |
[49] |
ZHANG Yongqiang, LIU Zhongjuan, CHEN Yadi, et al. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis [J]. Plant Science, 2015, 237: 57−68. |
[50] |
SONG Yi, YANG Chuangwei, GAO Shan, et al. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5 [J]. Molecular Plant, 2014, 7(12): 1776−1787. |
[51] |
QIU Kai, LI Zhongpeng, YANG Zhen, et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis [J/OL]. PLoS Genetics, 2015, 11 (7): e1005399[2024-05-09]. DOI: 10.1371/journal.pgen.1005399. |
[52] |
SAKURABA Y, PARK S Y, KIM Y S, et al. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence [J]. Molecular Plant, 2014, 7(8): 1288−1302. |
[53] |
ZENG Zhaoqiong, LIN Tianzi, ZHAO Jieyu, et al. OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa) [J]. Journal of Integrative Agriculture, 2020, 19(3): 612−623. |
[54] |
JOHNSON J D. Do carotenoids serve as transmembrane radical channels [J]. Free Radical Biology and Medicine, 2009, 47(3): 321−323. |
[55] |
EZQUERRO M, BURBANO-ERAZO E, RODRIGUEZ-CONCEPCION M. Overlapping and specialized roles of tomato phytoene synthases in carotenoid and abscisic acid production [J]. Plant Physiology, 2023, 193(3): 2021−2036. |
[56] |
QIN Genji, GU Hongya, MA Ligeng, et al. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis [J]. Cell Research, 2007, 17(5): 471−482. |
[57] |
LU Shan, LI Li. Carotenoid metabolism: biosynthesis, regulation, and beyond [J]. Journal of Integrative Plant Biology, 2008, 50(7): 778−785. |
[58] |
SU Tongbing, YU Shuancang, ZHANG J W F, et al. Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. Plant Molecular Biology Reporter, 2015, 33(3): 648−659. |
[59] |
LI Peirong, ZHANG Shujiang, ZHANG Shifan, et al. Carotenoid identification and molecular analysis of carotenoid isomerase-encoding BrCRTISO, the candidate gene for inner leaf orange coloration in Chinese cabbage [J/OL]. Molecular Breeding, 2015, 35 (2): 72[2024-05-09]. DOI: 10.1007/s11032-015-0190-z. |
[60] |
CAZZONELLI C I, CUTTRISS A J, COSSETTO S B, et al. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8 [J]. The Plant Cell, 2009, 21(1): 39−53. |
[61] |
CAZZONELLI C I, ROBERTS A C, CARMODY M E, et al. Transcriptional control of set domain group 8 and carotenoid isomerase during Arabidopsis development [J]. Molecular Plant, 2010, 3(1): 174−191. |
[62] |
DONG Naiqian, LIN Hongxuan. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions [J]. Journal of Integrative Plant Biology, 2021, 63(1): 180−209. |
[63] |
SUN Chenglong, ZHANG Minmin, DONG Hongjing, et al. A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi [J/OL]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179 : 113014[2025-05-09]. DOI: 10.1016/j.jpba.2019.113014. |
[64] |
LIU Weixin, FENG Yi, YU Suhang, et al. The flavonoid biosynthesis network in plants [J/OL]. International Journal of Molecular Sciences, 2021, 22 (23): 12824[2024-05-09]. DOI: 10.3390/ijms222312824. |
[65] |
LI Wenji, LI Huigen, SHI Lisha, et al. Leaf color formation mechanisms in Alternanthera bettzickiana elucidated by metabolite and transcriptome analyses [J/OL]. Planta, 2022, 255 (3): 59[2024-05-09]. DOI: 10.1007/s00425-022-03840-3. |
[66] |
HERRAIZ A, STOKES L, TURNBULL C, et al. Developing a new variety of Kentia palms (Howea forsteriana): up-regulation of cytochrome b561 and Chalcone synthase is associated with red colouration of the stems [J]. Botany Letters, 2018, 165(2): 241−247. |
[67] |
STEYN W J, WAND S E, HOLCROFT D M, et al. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection [J]. The New Phytologist, 2002, 155(3): 349−361. |
[68] |
LI Yanjun, ZHOU Yang, CHEN Hong, et al. Transcriptomic analyses reveal key genes involved in pigment biosynthesis related to leaf color change of Liquidambar formosana Hance [J/OL]. Molecules, 2022, 27 (17): 5433[2024-05-09]. DOI: 10.3390/molecules27175433. |
[69] |
SUN Binmei, ZHU Zhangsheng, CAO Panrong, et al. Purple foliage coloration in tea (Camellia sinensis L. ) arises from activation of the R2R3-MYB transcription factor CsAN1 [J/OL]. Scientific Reports, 2016, 6 : 32534[2024-05-09]. DOI: 10.1038/srep32534. |
[70] |
AN Guanghui, CHEN Jiongjiong. Frequent gain- and loss-of-function mutations of the BjMYB113 gene accounted for leaf color variation in Brassica juncea [J/OL]. BMC Plant Biology, 2021, 21 (1): 301[2024-05-09]. DOI: 10.1186/s12870-021-03084-5. |
[71] |
GUAN Xiayu, WANG Wei, YE Qinghua, et al. De novo transcriptomic sequencing unraveled the molecular mechanisms of VvMybA1 underlying the alteration of Ficus lyrata leaf color [J/OL]. Acta Physiologiae Plantarum, 2019, 41 (1): 16[2024-05-09]. DOI: 10.1007/s11738-019-2809-x. |
[72] |
WANG Chongnan, JI Wenkai, LIU Yucheng, et al. The antagonistic MYB paralogs RH1 and RH2 govern anthocyanin leaf markings in Medicago truncatula [J]. The New Phytologist, 2021, 229(6): 3330−3344. |
[73] |
JENSEN R G, BASSHAM J A. Photosynthesis by isolated chloroplasts [J]. Proceedings of the National Academy of Sciences of the United States of America, 1966, 56(4): 1095−1101. |
[74] |
CHANG Qingshan, CHEN Sumei, CHEN Yu, et al. Anatomical and physiological differences and differentially expressed genes between the green and yellow leaf tissue in a variegated Chrysanthemum variety [J]. Molecular Biotechnology, 2013, 54(2): 393−411. |
[75] |
姬语潞, 杨维, 李涵, 等. 铁皮石斛叶色突变体的叶绿体超微结构、光合色素和叶绿素荧光特性的研究[J]. 植物科学学报, 2020, 38(2): 260−268 |
JI Yulu, YANG Wei, LI Han, et al. Study on chloroplast ultrastructure, photosynthetic pigment and chlorophyll fluorescence characteristics of Dendrobium candidum leaf color mutant [J]. Plant Science Journal, 2020, 38(2): 260−268. |
[76] |
许庆全, 杨凤玺, 叶庆生, 等. 墨兰‘达摩’叶艺品系光合色素质量分数、叶绿素荧光特性和叶绿体超微结构的比较[J]. 热带作物学报, 2017, 38(7): 1210−1215. |
XU Qingquan, YANG Fengxi, YE Qingsheng, et al. Comparison of photosynthetic pigment content, chlorophyll fluorescence characteristics and chloroplast ultrastructure of a leaf art strain of moran ‘dharma’ [J]. Chinese Journal of Tropical Crops, 2017, 38(7): 1210−1215. |
[77] |
LI Ji, WU Kunlin, LI Lin, et al. Cytological, biochemical, and transcriptomic analyses of a novel yellow leaf variation in a Paphiopedilum (Orchidaceae) SCBG COP15 [J/OL]. Genes, 2021, 13 (1): 71[2024-05-09]. DOI: 10.3390/genes13010071. |
[78] |
杨冲, 张扬勇, 方智远, 等. 甘蓝叶色黄化突变体 YL-1 的光合生理特性及其叶绿体的超微结构[J]. 园艺学报, 2014, 41(6): 1133−1144. |
YANG Chong, ZHANG Yangyong, FANG Zhiyuan, et al. Photosynthetic physiological characteristics and chloroplast ultrastructure of yellow leaf mutant YL-1 in cabbage [J]. Acta Horticulturae Sinica, 2014, 41(6): 1133−1144. |
[79] |
LUO Zhongxia, ZHANG Xiongjian, CHEN Jingyi, et al. Examination and genetic analysis of a yellow-green leaf mutant a269 of sweetpotato [J]. Plant Breeding, 2020, 139(2): 381−388. |
[80] |
ZHANG Lulu, ZHANG Junkang, MAO Yunfei, et al. Physiological analysis and transcriptome sequencing of a delayed-green leaf mutant ‘Duojiao’ of ornamental crabapple (Malus sp. ) [J]. Physiology and Molecular Biology of Plants, 2022, 28(10): 1833−1848. |
[81] |
GAO Linlin, HONG Zhenghui, WANG Yinsong, et al. Chloroplast proteostasis: a story of birth, life, and death [J/OL]. Plant Communications, 2023, 4 (1): 100424[2024-05-09]. DOI: 10.1016/j.xplc.2022.100424. |
[82] |
ZAGARI N, SANDOVAL-IBAÑEZ O, SANDAL N, et al. SNOWY COTYLEDON 2 promotes chloroplast development and has a role in leaf variegation in both Lotus japonicus and Arabidopsis thaliana [J]. Molecular Plant, 2017, 10(5): 721−734. |
[83] |
HAMMANI K, TAKENAKA M, MIRANDA R, et al. A PPR protein in the PLS subfamily stabilizes the 5'-end of processed rpl16 mRNAs in maize chloroplasts [J]. Nucleic Acids Research, 2016, 44(9): 4278−4288. |
[84] |
ZOSCHKE R, WATKINS K P, MIRANDA R G, et al. The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNAs in maize [J]. The Plant Journal: for Cell and Molecular Biology, 2016, 85(5): 594−606. |
[85] |
ZHANG Jian, XIAO Jianwei, LI Yuqian, et al. PDM3, a pentatricopeptide repeat-containing protein, affects chloroplast development [J]. Journal of Experimental Botany, 2017, 68(20): 5615−5627. |
[86] |
WANG Xinwei, ZHAO Lirong, MAN Yi, et al. PDM4 a pentatricopeptide repeat protein, affects chloroplast gene expression and chloroplast development in Arabidopsis thaliana [J/OL]. Frontiers in Plant Science, 2020, 11 : 1198[2024-05-09]. DOI: 10.3389/fpls.2020.01198. |
[87] |
LÜ Yang, WANG Yueying, ZHANG Qiang, et al. WAL3 encoding a PLS-type PPR protein regulates chloroplast development in rice [J/OL]. Plant Science, 2022, 323 : 111382[2024-05-09]. DOI: 10.1016/j.plantsci.2022.111382. |
[88] |
LAN Jie, LIN Qibing, ZHOU Chunlei, et al. Young Leaf White Stripe encodes a P-type PPR protein required for chloroplast development [J]. Journal of Integrative Plant Biology, 2023, 65(7): 1687−1702. |
[89] |
WANG Ying, REN Yulong, ZHOU Kunneng, et al. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development [J/OL]. Frontiers in Plant Science, 2017, 8 : 1116[2024-05-09]. DOI: 10.3389/fpls.2017.01116. |
[90] |
LEE K, PARK S J, des FRANCS-SMALL C C, et al. The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts [J]. The Plant Journal: for Cell and Molecular Biology, 2019, 100(6): 1193−1207. |
[91] |
YAN Junjie, ZHANG Qunxia, YIN Ping. RNA editing machinery in plant organelles [J]. Science China Life Sciences, 2018, 61(2): 162−169. |
[92] |
CUI Xuean, WANG Yanwei, WU Jinxia, et al. The RNA editing factor DUA1 is crucial to chloroplast development at low temperature in rice [J]. The New Phytologist, 2019, 221(2): 834−849. |
[93] |
ZHANG Qiang, WANG Yaliang, XIE Wei, et al. OsMORF9 is necessary for chloroplast development and seedling survival in rice [J/OL]. Plant Science, 2021, 307 : 110907[2024-05-09]. DOI: 10.1016/j.plantsci.2021.110907. |
[94] |
高贤明, 陈灵芝. 植物生活型分类系统的修订及中国暖温带森林植物生活型谱分析[J]. Acta Botanica Sinica, 1998, 40(6): 553−559. |
GAO Xianming, CHEN Lingzhi. The revision of plant life-form system and an analysis of the life-form spectrum of forest plants in the warm temperate zone of China [J]. Acta Botanica Sinica, 1998, 40(6): 553−559. |
[95] |
STERN D B, HANSON M R, BARKAN A. Genetics and genomics of chloroplast biogenesis: maize as a model system [J]. Trends in Plant Science, 2004, 9(6): 293−301. |
[96] |
GAO Tongmei, WEI Shuangling, CHEN Jing, et al. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L. ) mutant Siyl-1 with yellow-green leaf color [J]. Genes & Genomics, 2020, 42(1): 25−39. |
[97] |
TANG Yuhan, FANG Ziwen, LIU Mi, et al. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall. ) [J/OL]. 3 Biotech, 2020, 10 (2): 76[2024-05-09]. DOI: 10.1007/s13205-020-2063-3. |
[98] |
HAN Hongwei, ZHOU Yuan, LIU Huifang, et al. Transcriptomics and metabolomics analysis provides insight into leaf color and photosynthesis variation of the yellow-green leaf mutant of Hami melon (Cucumis melo L. ) [J/OL]. Plants, 2023, 12 (8): 1623[2024-05-09]. DOI: 10.3390/plants12081623. |
[99] |
BRESTIC M, ZIVCAK M, KUNDERLIKOVA K, et al. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines [J]. Photosynthesis Research, 2016, 130(1/3): 251−266. |
[100] |
RUAN Banpu, GAO Zhenyu, ZHAO Juan, et al. The rice YGL gene encoding an Mg2+-chelatase ChlD subunit is affected by temperature for chlorophyll biosynthesis [J]. Journal of Plant Biology, 2017, 60(4): 314−321. |
[101] |
ZHANG Haitao, LI Jinjie, YOO J H, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development [J]. Plant Molecular Biology, 2006, 62(3): 325−337. |
[102] |
DENG Xiaojuan, ZHANG Haiqing, WANG Yue, et al. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica) [J/OL]. PLoS One, 2014, 9 (6): e99564[2024-05-09]. DOI: 10.1371/journal.pone.0099564. |
[103] |
CHEN Ping, HU Haitao, ZHANG Yu, et al. Genetic analysis and fine-mapping of a new rice mutant, white and lesion mimic leaf [J]. Plant Growth Regulation, 2018, 85(3): 425−435. |
[104] |
王建玉, 王志鹏, 段祥坤. 甜瓜芽黄标记性状的发现与遗传分析[J]. 中国瓜菜, 2019, 32(2): 15−17. |
WANG Jianyu, WANG Zhipeng, DUAN Xiangkun. Discovery and genetic analysis of yellow markers in melon bud [J]. China Cucurbits and Vegetables, 2019, 32(2): 15−17. |
[105] |
WU Dianxing, SHU Qingyao, XIA Yingwu. In vitro mutagenesis induced novel thermo/photoperiod-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker [J]. Euphytica, 2002, 123: 195−202. |
[106] |
LIM S H, SOHN S H, KIM D H, et al. Use of an anthocyanin production phenotype as a visible selection marker system in transgenic tobacco plant [J]. Plant Biotechnology Reports, 2012, 6(3): 203−211. |
[107] |
LI Chuan, WANG Jingwen, HU Zhaoyong, et al. A valine residue deletion in ZmSig2A, a sigma factor, accounts for a revertible leaf-color mutation in maize [J]. The Crop Journal, 2021, 9(6): 1330−1343. |
[108] |
SIDDAPPA S, SHARMA N, SALARIA N, et al. CRISPR/Cas9-mediated editing of phytoene desaturase (PDS) gene in an important staple crop, potato [J/OL]. 3 Biotech, 2023, 13 (5): 129[2024-05-09]. DOI: 10.1007/s13205-023-03543-w. |
[109] |
NISHITANI C, HIRAI N, KOMORI S, et al. Efficient genome editing in apple using a CRISPR/Cas9 system [J/OL]. Scientific Reports, 2016, 6 : 31481[2024-05-09]. DOI: 10.1038/srep31481. |
[110] |
JEONG Y S, CHOI H, KIM J K, et al. Overexpression of OsMYBR22/OsRVE1 transcription factor simultaneously enhances chloroplast-dependent metabolites in rice grains [J]. Metabolic Engineering, 2022, 70: 89−101. |
[111] |
LIU Guofeng, HAN Zhuoxiao, FENG Lin, et al. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar ‘Yu-Jin-Xiang’ with an emphasis on catechin production [J/OL]. Scientific Reports, 2017, 7 : 45062[2024-05-09]. DOI: 10.1038/srep45062. |
[112] |
金笑雨, 王艺光, 赵宏波, 等. 彩叶桂叶色变化及生理特征分析[J]. 浙江农林大学学报, 2024, 41(5): 1056−1065. |
JIN Xiaoyu, WANG Yiguang, ZHAO Hongbo, et al. Color change and physiological characteristics in Osmanthus fragrans colour group [J]. Journal of Zhejiang A&F University, 2024, 41(5): 1056−1065. |