-
十字花科Brassicaceae植物多为1年生或多年生的草本植物,包含小白菜Brassica rapa ssp. chinensis、甘蓝Brassica oleracea var. capitata、油菜Brassica napus、萝卜Raphanus sativus等蔬菜作物,还有二月兰Orychophragmus violaceus等观赏植物,以及板蓝根Isatis tinctoria等药用植物等。十字花科植物中富含叶绿素,且叶与茎中的叶绿素远高于其他色素,因此外观上呈现绿色,但在彩叶植物或者叶绿素缺失植物中,由于其他色素大幅增加或叶绿素大幅减少而呈现彩色或黄色等。植物中存在着数量巨大的各类突变体,常作为研究植物生理生化机制与基因组功能的重要材料[1-3]。其中一类叶绿素缺失,植株表型黄化的突变体,称为黄化突变体[4-5]。由于黄化性状易观察,可以直观呈现植物体内叶绿素的多寡,且影响植物光合作用及生长发育,因此黄化突变体是研究叶绿素合成代谢的优良材料。本研究对十字花科植物中发现的黄化突变进行分类,总结黄化突变体形态结构及光合色素含量的变化规律,探求黄化形成原因与分子机制,归纳黄化性状遗传模式,为十字花科植物的叶绿素代谢及叶绿体发育等研究提供参考。
-
十字花科植物中已发现多个叶绿素缺失导致的黄化突变体。小白菜自交系‘564’和品种‘寒青’‘Hanqing’、‘华冠’‘Huaguan’中均发现黄化突变体[6-8]。杨冲等[9]从意大利引进的甘蓝杂交种Hosom自交分离后代中发现叶色黄化、植株矮小的突变体YL-1。杜江涛[10]和侯爱琳[11]对大白菜Brassica rapa ssp. pekinensis DH系‘FT’进行甲基磺酸乙酯(EMS)诱变,分别获得了稳定的黄化突变体lcm2、lcm3。通过自发突变、EMS诱变、氮离子束处理等方式,甘蓝型油菜中也获得了多个黄化突变体,如ny、bnaC.ygl等[12-15]。杨胜洪等[16]发现:抽薹期的油菜黄化突变体叶片的叶绿素含量和叶绿素与蛋白质比值只有野生型的一半。此外,FRICK等[17]发现:拟南芥Arabidopsis thaliana的porB-1porC-1双突变体在子叶期只含有少量的叶绿素a,形成了一个幼苗致死的黄色表型。
通过转基因技术也可获得黄化突变体。BANG等[18]研究发现:拟南芥CHL27-T敲除突变体生长迟缓,并且伴随着由叶绿体光系统Ⅱ的反应中心损坏引起的发育缺陷。PRIVAT等[19]发现:反义表达质体SIG2转录因子的拟南芥植物表现出叶绿素缺失的表征,并且只表现在子叶中。KUMAR等[20]通过反义表达HEMA基因,获得了表现出不同程度叶绿素缺失性状的拟南芥转基因植株,如叶片斑块状黄化和全株黄化。以上研究表明:黄化突变表现为植株全株黄化或部分黄化,且黄化性状可稳定遗传。
-
叶绿素是植物生长必不可少的光合色素,如果叶绿素缺失突变导致叶绿素完全不可合成,或叶绿素含量无法保证植株最低程度的光合作用,植株表现出白化,则易发生致死性突变。KOBAYASHI等[21]报道了1种类囊体膜脂质单氨基半乳糖二酰甘油(MGDG)合成酶1完全缺陷的拟南芥突变体,只在蔗糖存在的情况下才能萌发为细小的白化植株,且幼苗缺乏半乳糖,光合膜被破坏,光合能力受损严重。拟南芥白化突变体cfl1的真叶有白色坏死斑点,叶片发育畸形且不对称,叶边缘缺刻严重,生长缓慢,植株矮小,结实率低[22]。白化突变植株与黄化突变植株相比,叶绿素缺失更为严重,植株生长受到的影响也更大,甚至导致植株无法存活。
-
在目前发现的黄化突变体中,部分黄化突变体在生长过程中黄化性状减弱,植株随时间延长逐渐复绿。郭士伟等[7]发现小白菜黄化突变体在6叶龄前子叶和真叶均呈淡黄色,在6叶龄后又逐渐复绿,且不受环境影响。甘蓝型油菜黄化突变体ny在苗期前期叶片黄化明显,其后叶色缓慢转变,中后期及衰老期叶片复绿[23]。黄化突变体复绿原因现在还未完全探明,需要进一步深入研究。
-
多数黄化突变体表现出营养生长缓慢,生殖发育迟缓等现象。拟南芥CHL27敲除后的黄化突变体植株矮小,叶片均匀呈浅绿色,莲座叶弯曲,开花较晚,角果弯曲[18];lzf1突变体幼苗叶绿体发育延迟[24]。青梗菜是小白菜中一类束腰亮绿的优质品种,其564y突变体播种后5 d出现叶色差异,叶片黄化,下胚轴伸长,伴随植株细弱易倒,大部分生长指标明显低于野生型[6]。在甘蓝型油菜和芥菜Brassica juncea型油菜中发现的黄化突变体性状表现相似,均出现初花期推迟,花期较短等特点[8, 25]。甘蓝黄化突变体yl-1,虽然仍能结球,但单球质量只有对照的39.0%[9]。甘蓝型油菜黄化突变体Bnchd1,苗期叶脉间黄化,抽薹期薹叶呈淡绿色,整个生命周期内植株矮化,叶绿体形态异常并伴随着叶绿素提早降解现象,种子产量极低[12]。这些研究表明:黄化突变后植株的生长及发育阶段转变都受到不同程度的影响。
-
叶绿体由被膜、类囊体和基质3部分构成,若叶绿体的类囊体受到破坏,植物的光合作用及其他生理过程都会受到不同程度的影响。多数黄化突变体具有类囊体结构变异和基粒片层数减少等特征[26]。拟南芥FZL基因敲除突变体中类囊体形态异常,基粒堆叠杂乱,基粒和基质类囊体的相对比例发生改变[27]。烟草Nicotiana tabacum黄化突变体中叶绿体体积变小,数目减少并缺乏大部分类囊体膜,部分叶绿体表现出双重形态[28]。甘蓝型油菜的bnaC.ygl突变体与正常植株T6的叶绿体形状都呈正常纺锤状,但突变体叶绿体的基粒垛叠较少,类囊体膜也明显减少[14]。部分黄化突变体叶绿体中的嗜锇颗粒及淀粉粒含量也会发生变化。青梗菜564y突变体中叶绿体垛叠数明显变少,基粒片层结构难以观测,叶绿体淀粉粒数目较多[6]。甘蓝型油菜黄化突变体中,叶绿体的数量、形状、膜结构均受影响,且类囊体缺失,叶绿体内无淀粉粒,嗜锇颗粒较多,而复绿的叶片细胞内则与正常叶片表现相近[13],甘蓝型油菜突变体cr3529中也有类似特征[26]。吴砚农[29]对小白菜黄化突变体BcL14y-1和BcL14y-2研究发现:BcL14y-1黄化程度较轻,其叶绿体内类囊体垛叠数量有所减少,BcL14y-2黄化程度较重,叶绿体形状不规则,除类囊体垛叠数大量减少外,基粒片层排列混乱,嗜锇颗粒聚集,有过量淀粉粒囤积。拟南芥arc突变体的每个叶肉细胞只有2~15个较大的叶绿体,虽然叶绿体个数减少,但作为补偿,单个质体体积增大,从而保持叶肉细胞体积恒定[30]。OKAZAKI等[31]研究发现:拟南芥过表达质体分裂蛋白(plastid division proteins,PDV)后,叶绿体数量增加但体积减小,而PDV表达水平降低则出现相反结果。正常绿色植物的叶绿体成纺锤状紧贴细胞壁,基粒垛叠数较多且片层结构规整,有少量淀粉粒和嗜锇颗粒分布,而黄化突变植株的叶绿体则会出现不同程度的变异,导致这些变异的原因及分子机制需要进一步深入研究。
-
多数表现出黄化性状的突变体中,叶绿素含量显著低于野生型,而类胡萝卜素发挥了主导作用,因此叶片呈现出黄色表型。叶绿素包括叶绿素a和叶绿素b,在不同的黄化突变体中,两者质量下降幅度有所不同。陈艳丽[14]发现甘蓝型油菜黄化突变体bnaC.ygl中,叶绿素a和叶绿素b的质量分数分别下降了40.3%和57.7%,叶绿素a/b相较非突变品系T6显著提高,在其他不同的芥菜型油菜黄化突变体和甘蓝型油菜黄化突变体中也有类似表现[9, 18, 22-23]。在青梗菜黄化突变体pylm中,叶绿素a、叶绿素b质量分数分别下降了62.0%和75.0%,类胡萝卜素质量分数也下降了58.0%[8],叶片中的血红素显著上升[32]。大白菜黄化突变体lcm2的叶绿素a、叶绿素b质量分数分别下降了60.25%和70.91%[10],而lcm3的叶绿素a、叶绿素b质量分数则分别降低了33.0%和53.0%[11]。从前人研究结果可以看出:在各类黄化突变体中,叶绿素a和叶绿素b显著下降,尤其是叶绿素b,因此,叶绿素a和叶绿素b在光系统反应中的功能差异及其机制值得进一步研究。
-
光合作用的能力强弱与植物的生长发育及生殖阶段转变有关。在逆境条件下,叶绿素荧光参数也是衡量光合能力的重要指标[33],黄化突变通常缺失叶绿素,意味着光合能力降低。与野生型相比,青梗菜564y黄化突变体净光合速率显著降低,气孔导度、蒸腾速率稍低,胞间二氧化碳摩尔分数稍高,同时各项荧光动力学参数均降低[6]。油菜黄化突变体ny五叶期的净光合速率,心叶仅为野生型的57.96%,平展叶也只有69.62%,同时各项荧光参数显著低于野生型[23]。甘蓝黄化突变体yl-1在苗期时,净光合速率显著低于野生型,而随着植株生长,突变体逐渐恢复部分光合能力,但仍差异显著[9]。由于叶绿体结构改变及叶绿素含量降低,黄化植株的光合能力总体低于野生型植株。
-
黄化突变体的叶绿素合成或叶绿体组成受到影响,多由核基因突变造成的。黄化突变中显性突变较少。TSANG等[34]构建的谷氨酸1-半醛氨基转移酶(GSA-AT)甘蓝型油菜反义构建体(GSA),T1代转基因株系中叶绿素含量减少,T2代转基因株系的幼苗分离为深绿色、浅绿色和黄色3种不同的表型,这表明GSA反义基因为显性遗传。
多数黄化突变为隐性突变,包括单核隐性突变和多核隐性突变2种类型。甘蓝型油菜黄化突变体bnaC.ygl的黄化性状由1对隐性核基因控制,为单核隐性突变[14-15]。芥菜型油菜突变体l638-y的黄化性状由2对隐性核基因GR1与GR2控制[25, 35];甘蓝型油菜叶绿素缺失突变体Bnchd1的黄化性状由2个隐性基因BnChd1-1和BnChd1-2控制[12];青梗菜黄化突变体pylm由2对隐性重叠基因(PY1和PY2)互作控制[8]。
-
黄化突变直接原因为叶绿素缺失,因叶绿素合成途径受阻所致。参考吴自明等[36]对被子植物叶绿素合成途径及反应所需酶的总结,整理出以谷氨酸和α-酮戊二酸为原料,依次合成L-谷氨酰-tRNA、谷氨酸酯-1-半醛、δ-氨基酮戊酸、胆色素原、羟甲基胆后色素原、尿卟琳Ⅲ、粪卟啉原Ⅲ、原卟啉原Ⅸ、原卟啉Ⅸ、镁原卟啉Ⅸ、镁原卟啉Ⅸ单甲酯、二乙烯原叶绿素酸酯、原叶绿素酸酯、叶绿素酸酯,最终合成叶绿素a和叶绿素b的途径。
这些中间产物由20多个基因编码的15种酶参与合成[37]。甘蓝型油菜叶绿素b缺失突变体cr3529的叶绿素合成受阻于胆色素原合成尿卟啉Ⅲ的反应步骤[38]。芥菜型油菜黄化突变体l638-y的黄化性状主要由叶绿素合成途径中粪卟啉原Ⅲ-原卟啉Ⅸ位点受阻引起[39]。拟南芥镁原卟啉Ⅸ甲基转移酶(CHLM)敲除突变体,由于镁原卟啉Ⅸ下游的阻断,导致叶绿素生物合成中间物质的积累[40]。LARKIN[41]使用除草剂Norflurazon阻止叶绿体发育,利用LHCB报告基因在叶绿体没有正常发育的情况下,鉴定了5个LHCB受抑制的突变体(gun1~gun5),其中gun2、gun3、gun4、gun5影响质体酶合成所需的4种物质以及叶绿素前体物质镁原卟啉Ⅸ的水平。KOBAYASHI等[42]通过拟南芥叶绿素缺失突变体研究了类囊体脂基质主要物质MgdG、GgdG合成的关键酶MGD1和DGD1在拟南芥中的表达谱,发现MGD1和DGD1的表达受光诱导,其中细胞分裂素信号转导和长下胚轴5介导的光信号转导都起着关键作用。HUANG等[43]发现镁螯合酶(CHLI)的I亚基由拟南芥中的2个基因CHLI1和CHLI2编码,CHLI1和CHLI2的双敲除突变体为白化性状,而CHLI1单敲除突变体为淡绿色,这表明CHLI2在一定程度上可以替代CHLI1。镁原卟啉Ⅸ是血红素和叶绿素的生物合成途径中的最后1个共同中间体,因此血红素合成途径出现突变,也会影响叶绿素的合成。青梗菜pylm黄化突变体的叶片血红素含量显著高于对照,说明血红素具有反馈调节作用,血红素过量积累反馈抑制谷氨酰-tRNA还原酶的活性,抑制δ-氨基酮戊酸的合成[32]。
-
叶绿体的合成是一个复杂的过程,多数叶绿体蛋白由核基因编码,再通过细胞质的加工处理,最终在叶绿体内发挥功能[44]。光调节锌指蛋白1(LZF1)在拟南芥脱黄化过程中起正调节作用[45]。拟南芥Dynamin超家族新成员FZL,为类似FZO的1种膜重塑蛋白,其过表达后导致类囊体组织缺陷,但其表达水平不影响叶绿体的形态及超微结构[27]。沉默氨酰还原酶(ARSs)后,GluRS和SerRS无法正常表达,导致叶绿体异常,类囊体发育不全,表现出严重的黄化性状,但许多编码叶绿体或线粒体靶向蛋白的核基因表达以及叶绿素的生物合成没有改变[28]。
甘蓝型油菜cr3529突变体中,类囊体膜蛋白LHCⅡ的组成未发生改变,但捕光色素蛋白复合物含量明显减少[46]。MIURA等[47]对拟南芥叶斑突变体var2进行了研究,认为蛋白质合成和降解之间的平衡是导致拟南芥叶色表型的决定因素之一。GUN2和GUN3是已知光致变种hy1和hy2的等位基因,是从血红素合成植物嗜铬蛋白所必需的,而GUN5与另一个镁螯合酶亚基(ChlI)突变体表型的比较表明:ChlH蛋白在质体信号转导途径中具有特定的功能[48]。拟南芥VAR3基因突变后,体细胞区域的叶绿体缺失或发育迟缓,栅栏细胞数量大量减少[49],在SAKAMOTO[50]的研究中也有类似报道。SJOGREN等[51]研究证明了拟南芥CLP蛋白酶对叶绿体发育和功能起到至关重要的作用。ZALTSMAN等[52]研究发现:FTSH蛋白酶在叶绿体生物合成和类囊体的维持中起重要作用,且其中部分FTSH基因可能存在冗余,不同的FTSH基因突变体之间的杂交会出现白化、不育等多种新的表型。
-
叶绿素是植物进行光合作用的主要色素,在光合作用的光吸收中起核心作用。目前模式植物拟南芥中叶绿素合成代谢、叶绿体结构功能已经了解得比较清楚。在此基础上,利用其他十字花科植物黄化突变体,研究十字花科植物黄化形成的分子机制,将为十字花科植物的相关研究奠定坚实基础。首先增加叶绿素含量,提高光合效率从而达到增产目的;其次将叶色变异应用于高光能育种研究,避免强光下光系统受到伤害,提高植物对强光的耐受性;再次利用叶色突变体植物具有的特殊利用价值,为创造叶色丰富的观赏品种提供宝贵资源。十字花科植物黄化突变不论在理论研究还是实践应用方面都将是重要的研究方向。
Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae
-
摘要: 十字花科Brassicaceae植物多数生长发育时间短,生长过程中自然发生,或使用物理或化学方法诱导,常会出现一些颜色较淡或金黄的突变个体即黄化突变体。这些突变体表型直观,表现为植株矮小,叶绿素较低,植株光合作用受抑制,产量降低,因此黄化突变常被视为有害突变。但近20 a来黄化突变体日益受到研究者们的重视与青睐,被用于研究植物叶绿体结构、叶绿素合成代谢等方面。本研究简要介绍了十字花科植物常见的黄化突变类型及其主要的外观特征,综述了十字花科植物黄化突变体的叶绿体超微结构、光合色素及其光合性能,并对十字花科植物黄化突变的遗传特性、分子机制进行了讨论,为十字花科植物叶色突变研究及新品种选育提供理论基础。参52Abstract: During their short growth period, most Brassicaceae plants have some light-green or golden-colored mutants, named as yellow mutants, either naturally grown or induced physically or chemically. Such mutants, with intuitive phenotypes, such as shortness, low chlorophyll content and suppressed photosynthesis usually result in the reduction of yield, thus considered as harmful. In the past two decades, the phenomenon of yellowing mutation has attracted an increasing amount of attention from scholors with the research results applied in the study of plant chloroplast structure and chlorophyll metabolism. This review, with a brief introduction to the common types, phenotype characteristics, chloroplast ultrastructure, photosynthetic pigments and photosynthetic properties of yellowing mutants in Brassicaceae plants, is aimed at a discussion of the genetic characteristics and molecular mechanism of the yellowing mutation in the hope of providing a theoretical basis for the study of leaf color mutations and selection of new varieties in Brassicaceae plants. [Ch, 52 ref.]
-
Key words:
- botany /
- Brassicaceae /
- yellowing mutation /
- chlorophyll /
- chloroplast /
- molecular mechanism /
- review
-
磷是植物生长和发育的必需营养元素,通过多种途径参与植物的代谢过程,对植物的生长发育起到关键作用[1]。在植物生长发育过程中,植物体所需的养分、水分主要通过植物根部进行吸收和运输供应。根部作为直接接触土壤或基质的器官,在低磷逆境中最先受到胁迫[2]。为了适应低磷环境,植物根在进化过程中形成了多种调节磷的吸收以及平衡策略。例如,植物根系会分泌大量的酸性磷酸酶与有机酸,其通过根系,降低土壤的pH,使植物在低磷的土壤中能够活化、动员有机磷[3],进而提高了有效磷质量分数,促进了植物对土壤中磷的吸收;并且,酸性磷酸酶还可以促进植物体内的磷脂化合物发生水解,并促进植物体内磷的循环,促进有机磷的重复利用[4]。
在正常情况下,植物体细胞内活性氧(ROS)的产生和清除处于一种相对稳定的平衡状态[5],但在低磷胁迫时,ROS原有的状态被打破,其过量产生会使植物细胞发生膜脂过氧化,并且生成有害物质,破坏细胞膜的结构并影响其功能[6]。ROS的增加导致丙二醛(MDA)过量生产,MDA作为植物细胞膜脂过氧化的产物之一,其含量高低可以反映膜脂过氧化的水平以及细胞膜的损伤程度,可视为植物抗逆性的重要指标。为了消除活性氧对植物造成的伤害,植物自身进化出了一系列措施,包括超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等主要的抗氧化酶等协同作用的抗氧化体系,从而维持了植物细胞膜的稳定性,提高了植物低磷胁迫下的生理抗性;同时,植物还会通过提高根系活力等共同参与调节,以应对低磷胁迫所带来的损伤[7]。
马尾松Pinus massoniana是重要的用材树种,主要分布在中国的亚热带和热带地区,占中国森林总面积的3.6%,是中国亚热带地区荒坡造林的主要先锋树种。马尾松适应能力强,具有耐干旱、耐瘠薄、速生丰产等特点,同时在保持水土、涵养水源、维持区域生态平衡等方面发挥巨大作用[8−9]。然而,在中国南方热带和亚热带地区的酸性土壤中,磷易与铁、铝等金属元素及土壤黏粒等通过吸附、固定等方式保持不溶形式,使土壤中有效磷转化为难溶性磷,最终加重土壤磷对植物的限制[10],因此,中国南方黄红壤普遍存在pH低、有效磷缺乏等问题[11]。近年来,大气氮沉降逐渐加剧,土壤环境中的氮素有效性随之增加,造成原有低磷土壤中的有效磷水平相对更低,这不但扰乱了土壤的养分平衡,还使得植物对土壤有限磷素的吸收和利用受到影响[12−14]。
结合全国土壤调查和全国第2次土壤普查养分分级标准得知:土壤磷素在马尾松人工林中存在严重亏缺,马尾松林地土壤有效磷在0~20和20~40 cm土层中分别处于缺和极缺状态[15−16]。对全国马尾松林调查发现:大部分地区马尾松并未表现出缺磷症状并且生长依旧良好,这说明马尾松对低磷胁迫的适应有应对机制[17]。而马尾松幼苗对低磷胁迫研究所设置的磷质量分数多高于马尾松生长的实际磷质量分数,如谢钰容等[18]对不同种源的马尾松盆栽低磷胁迫的研究中设置0~100 mg·kg−1的有效磷添加;唐敏[19]对不同种源马尾松种子及幼苗的低磷胁迫响应中设置磷质量分数为0~20 mg·kg−1;徐向华等[17]对马尾松低磷胁迫下生理生化响应研究中设置磷质量分数为0~31 mg·kg−1。以上研究相较于大量样地调查(马尾松分布区14个省32个研究地点113个样地)和文献资料分析所得的磷质量分数(2.250 0 mg·kg−1)要高很多[16]。鉴于此,本研究选择易控制的马尾松幼苗为对象,通过研究幼苗根系生理变化和根抗氧化酶系统的响应,探究马尾松应对低磷胁迫的生理生化特征,以期为阐明其耐低磷的机制提供支持。
1. 材料与方法
1.1 材料及试验设计
研究地点位于湖北省宜昌市秭归县湖北长江三峡库区(秭归)森林生态系统国家定位观测研究站(30°53′N,110°54′E,海拔296 m),该区属亚热带大陆性季风气候,年均气温为19.0 ℃。
2021年5月1日,选择苗高、地径长势基本一致的2年生马尾松幼苗(苗高为61.0 cm,地径为5.4 mm)移栽入直径16.5 cm,高17.0 cm的花盆中,按m(石英砂)∶m(蛭石)∶m(珍珠岩)=7∶2∶1的比例混合作为幼苗培养基质。移栽后的马尾松幼苗放入透明遮雨棚中,1个月内用Hoagland营养液培养,进行缓苗处理,1个月后对苗木进行不同磷处理。根据中国马尾松林土壤肥力特征调查所获得的马尾松林0~20 cm土层土壤有效磷质量分数的中位数(2.250 0 mg·kg−1)作为对照(ck)[16],将磷酸二氢钾(KH2PO4)配制成不同浓度的溶液,用氯化钾(KCl)调整使钾离子(K+)浓度一致,用稀盐酸(HCl)调整氯离子(Cl−)浓度,使营养液pH为5.5,并保持其他营养元素浓度相同。每隔3 d,将40 mL营养液沿基质表层幼苗茎干浇下,共浇灌5次,营养液浇灌完成时间为6月15日。使马尾松幼苗盆栽基质中的有效磷质量分数分别为:0 (P0)、0.562 5 (P1)、1.125 0 (P2)、2.250 0 (ck)、4.500 0 (P3)、9.000 0 mg·kg−1 (P4),每个处理15盆,进行相同光照和水分条件管理。
1.2 样品采集及指标测定
1.2.1 样品采集
在磷处理完成后,结合马尾松生长季节(3月下旬至10月上旬)[20],分别于处理后1.5个月(8月1日)和3个月(9月16日),从每个处理中随机选取3株马尾松整株幼苗,共计收获36株。采集时,将植株用剪刀从根茎交界处剪取地上部、地下部,取根系用清水冲洗干净并轻轻擦去表面水分,以备后续生理生化指标测定。
1.2.2 生理生化指标测定
采用北京索莱宝科技有限公司生产的试剂盒对酸性磷酸酶(ACP)活性、丙二醛(MDA)质量摩尔浓度、过氧化物酶(POD)活性、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性进行测定。取根鲜样剪碎混匀,用万分之一天平称取0.100 0 g的样品,将样品放入研钵中,加入1 mL提取液在冰上研磨至匀浆,4 ℃下离心10 min,ACP离心转速为10 000 r·min−1,MDA、SOD、POD、CAT离心转速为8 500 r·min−1,取上清液处理后于酶标仪并计算,酶活性单位为16.67 nkat·g−1,MDA质量摩尔浓度单位为nmol·g−1。根系活力采用氯化三苯基四氮唑(TTC)法测定[21],有机酸采用酸碱滴定法测定[22]。
1.3 数据处理与分析
数据采用Excel 2016和SPSS 26统计分析软件进行处理。运用双因素方差分析比较不同磷质量分数和不同采样时间及其交互作用对马尾松幼苗根系的ACP酶活性、有机酸质量摩尔浓度、根系活力、MDA质量摩尔浓度、SOD活性、POD活性、CAT活性的影响;用单因素(ANOVA)和多重比较(LSD, α=0.05)分析不同磷质量分数处理间生理生化指标的差异;用t检验比较2个采样时间生理生化指标的差异;用Pearson相关系数分析各生理生化指标间的相关性。所有处理在SPSS 26中进行,用Origin 2022软件作图。
2. 结果与分析
2.1 不同磷质量分数下马尾松幼苗根ACP活性与有机酸质量摩尔浓度的变化
由图1A可知:不同磷质量分数处理下马尾松幼苗根ACP活性在不同采样时间差异极显著(P<0.01)。2个采样时间的马尾松幼苗根ACP活性随磷质量分数的增加而降低。在8月,P1、P2、P3处理的ACP活性与ck相比均无显著差异;P0处理的ACP活性显著高于ck (P<0.05),是ck的1.45倍;P4处理的ACP活性显著低于ck (P<0.05),相较ck降低了60.92%。而随着胁迫处理时间的增加,9月P3和P4处理的ACP活性均显著低于ck (P<0.05),而P0、P1、P2处理与ck无显著差异。
由图1B可知:不同磷质量分数下马尾松幼苗根有机酸质量摩尔浓度存在显著差异(P<0.05),而不同采样时间差异不显著,且磷质量分数与采样时间对有机酸质量摩尔浓度无交互影响。其中,P2、P3处理的根有机酸质量摩尔浓度与ck差异不显著;P0、P1处理的有机酸质量摩尔浓度显著高于ck (P<0.05),分别是ck的1.25、1.14倍,P4处理的有机酸质量摩尔浓度显著低于ck (P<0.05),相比于ck降低了12.53%。整体而言,根系有机酸总量随着磷质量分数的增加呈下降趋势。说明在低磷条件下,马尾松幼苗根系可通过自身调节提高ACP活性,增加有机酸质量摩尔浓度以提高对磷的利用效率,从而适应低磷胁迫环境。
2.2 不同磷质量分数下马尾松幼苗根系活力的变化
由图2可见:不同磷质量分数处理间的马尾松幼苗根系活力在不同采样时间下存在极显著差异(P<0.01)。其中:在8月,ck处理的马尾松幼苗根系活力与P2处理无显著差异;P0、P1、P3、P4处理的根系活力显著高于ck (P<0.05),分别是ck的1.82、1.35、1.49、1.34倍。而在9月,ck处理与P2、P3处理差异不显著;P0和P1处理的根系活力显著低于ck (P<0.05);仅P4处理根系活力显著高于ck (P<0.05),是ck的1.25倍。在9月,马尾松幼苗根系活力表现出随磷质量分数的升高而增强。综上所述,在低磷胁迫前期,根系活力虽然保持较高水平,但随着胁迫时间的增加,根系活力急剧下降。
2.3 不同磷质量分数下马尾松幼苗根MDA质量摩尔浓度及SOD、CAT、POD活性的变化
MDA是植物经受逆境情况下产生的,是一种广泛使用的损伤标志物,其质量摩尔浓度随胁迫程度发生变化[23]。从图3A可以看出:马尾松幼苗根MDA质量摩尔浓度在不同磷质量分数间和不同采样时间下存在极显著差异(P<0.01)。ck处理的MDA质量摩尔浓度与P1、P2、P3处理无显著差异,马尾松幼苗根MDA质量摩尔浓度随着磷质量分数的降低呈不同程度的增加,尤其在P0处理下,MDA质量摩尔浓度显著高于ck (P<0.05),是ck的1.37倍,P4处理则显著低于ck (P<0.05),相比于ck降低了18.98%。同时,随着时间的推移,MDA质量摩尔浓度也明显增加,9月马尾松幼苗根MDA质量摩尔浓度显著高于8月(P<0.05),涨幅为21.34%。由此可见,缺磷导致MDA积累增加,植物损伤程度增强,且随着胁迫时间增加,MDA也不断积累。MDA积累是马尾松幼苗应答低磷环境的生理变化之一。
不同磷质量分数处理下的马尾松幼苗根SOD、CAT和POD活性均存在极显著差异(图3,P<0.01),MDA质量摩尔浓度以及SOD、CAT、POD活性随着磷质量分数的增加而降低。P2、P3、P4处理的SOD、POD、CAT活性均与ck无显著差异,P0、P1处理的SOD、POD、CAT活性显著高于ck (P<0.05)。其中:P0、P1处理的SOD活性分别是ck的1.67、1.47倍(图3B);相较于ck处理,P0、P1处理的POD活性分别增加了66.11%和54.43%(图3C);P0、P1处理的CAT活性分别是ck的1.47、1.26倍(图3D)。
同时,随着处理时间的增加,MDA质量摩尔浓度和POD活性显著增加了21.34%、26.15%(P<0.05)。SOD、CAT活性在不同采样时间无差异,而POD活性在9月显著高于8月(P<0.05),是8月的1.26倍。上述结果说明马尾松幼苗可通过提高抗氧化酶的活性来应对低磷胁迫。
2.4 马尾松幼苗根主要生理变化的相关分析
由表1可知:马尾松幼苗根ACP活性与有机酸质量摩尔浓度相关系数为0.472,呈极显著正相关(P<0.01),即有机酸质量摩尔浓度的增加有利于ACP活性的提高;MDA质量摩尔浓度与SOD、POD、CAT活性相关系数分别为0.695、0.694、0.712,呈极显著正相关(P<0.01),即在低磷胁迫下膜脂过氧化产物MAD质量摩尔浓度增加,使细胞膜受到破坏,SOD、POD、CAT酶活性增强以适应低磷胁迫的损伤;根系活力与ACP活性呈显著正相关(P<0.05),与POD活性呈极显著正相关(P<0.01)。
表 1 不同磷质量分数下马尾松幼苗根生理变化指标的Pearson相关性分析Table 1 Pearson correlation analysis of the physiological indexes of P. massoniana seedlings under different phosphorus concentrations指标 有机酸总量 根系活力 MDA SOD活性 POD活性 CAT活性 ACP活性 0.472** 0.392* 0.215 0.466** 0.287 0.415* 有机酸总量 1 −0.190 0.702** 0.658** 0.577** 0.640** 根系活力 1 −0.308 −0.095 −0.432** −0.162 MDA 1 0.695** 0.694** 0.712** SOD活性 1 0.670** 0.671** POD活性 1 0.672** 说明:*表示相关显著(P<0.05);**表示相关极显著(P<0.01) 3. 讨论与结论
在逆境中,植物的根部是最先受到环境胁迫影响的器官,而在植物对低磷环境的响应中,ACP与根的联系最紧密,可以促进根有机磷的重复利用[24]。如ZAHEER等[25]研究认为:植物的ACP活性可衡量植物生理的磷营养情况;程丽莉等[26]对落叶松Larix gmelinii幼苗的研究发现:低磷胁迫下,幼苗根组织内ACP活性增加。本研究也发现:在处理1.5个月后,马尾松幼苗根ACP活性随磷胁迫程度的增加而增强,说明幼苗为满足自身生长对磷元素的需要,通过提高根中ACP活性以增强体内磷的利用效率[27]。但是随着胁迫时间的推移,幼苗生长自身对磷元素的需求有所差异,使得各磷质量分数根ACP活性的差异在2个采样时间有所不同。此外,为维持植物体内有效磷水平,根需要保持旺盛的有机酸分泌活动。俞元春等[28]研究表明:缺磷胁迫下杉木Cunninghamia lanceolata和马尾松苗木根系有机酸分泌量显著增加。在本研究中,马尾松幼苗根有机酸分泌量随着磷质量分数的增加而下降,且有机酸质量摩尔浓度与ACP活性呈极显著正相关,这说明有机酸质量摩尔浓度的增加有利于ACP活性的增强。在磷胁迫下,马尾松幼苗通过提高根ACP活性和增加有机酸分泌量来提高磷的利用效率,进而适应低磷环境。
在逆境条件下,根系活力是表征植物抵御逆境胁迫能力高低的重要生理指标,会直接影响植物的生长状况。研究表明:低磷胁迫下根系活力会降低[29−30]。如崔博文[31]对7个种源马尾松幼苗研究发现:其中4个种源在轻度、中度低磷胁迫时,其根系活力较对照升高,而当低磷胁迫达到重度时,根系活力下降;另外3个种源根系活力随磷胁迫程度增加而降低。然而本研究中,第2次采样时根系活力随磷质量分数的降低而降低,这与上述研究结果一致,说明随磷胁迫程度的增加,根系活力显著下降。但是在处理仅为2个月,即第1次采样时,无磷处理根系活力显著高于ck与其他处理,这可能是在低磷胁迫初期,马尾松幼苗为满足自身生长对磷元素的需求,通过提高对基质中磷的吸收能力,促进根系生长,以此提高根系活力[32-35]。
活性氧的产生和清除在植物正常代谢中处于一个动态平衡的状态,而逆境会导致细胞内活性氧含量上升,并破坏植物膜系统[36]。活性氧的积累会引起膜脂过氧化,MDA作为植物细胞膜脂过氧化的产物之一,在一定程度上能够反映植物体的受害程度[37−38]。MDA的积累会刺激植物保护酶(SOD、POD、CAT)系统活性的提高,通过这些保护酶之间相互协调,加快清除MDA,保持稳定平衡的状态。如于姣妲等[39]对低磷胁迫下杉木的生理响应研究发现:杉木幼苗的根系和叶片会通过改变SOD、POD和CAT 3种保护酶活性来抑制MDA的形成,从而降低MDA对细胞膜系统的破坏。本研究也发现:不同磷质量分数处理下MDA质量摩尔浓度与SOD活性、POD活性和CAT活性均显著正相关,且随着磷质量分数的降低,MDA质量摩尔浓度与SOD活性、POD活性、CAT活性均呈上升趋势,这与乔光等[32]对不同种源马尾松幼苗低磷胁迫的生理响应结果一致。与此同时,随着处理时间的增加,第2次采样时间的根MDA质量摩尔浓度和POD活性均显著高于第1次采样,表明马尾松细胞膜受到的破坏随磷胁迫程度和时间的推移而加重,马尾松幼苗根受到磷胁迫的影响产生更多的自由基,膜脂过氧化程度加快,导致MDA质量摩尔浓度增加,但在受到低磷胁迫后,保护酶系统被激活,其活性增强以提高清除自由基的能力。由此可见,马尾松幼苗中存在着MDA质量摩尔浓度和保护酶活性的保持动态平衡的低磷生理应答机制。
本研究发现:不同磷质量分数下,马尾松幼苗根ACP活性与有机酸质量摩尔浓度随磷胁迫程度的增加而升高,以提高植物体对磷的活化、吸收与利用;在胁迫前期,根系活力在无磷处理下显著高于其他处理,但随着胁迫时间增加,根系活力随磷质量分数的降低而下降,尤其是无磷、低磷处理的根系活力急剧下降;根MDA质量摩尔浓度、SOD活性、POD活性、CAT活性,随磷质量分数的下降而升高,低磷环境下MDA质量摩尔浓度增高,SOD活性、POD活性、CAT活性也随之增强以修复MDA带来的损伤。可见,低磷胁迫下马尾松幼苗会通过调整生理、生化的变化机制来应对低磷环境。
-
[1] 赵波. 甘蓝型油菜矮秆基因定位、克隆及功能分析[D]. 武汉: 华中农业大学, 2017. ZHAO Bo. Gentic Mapping, Cloning and Functional Analysis of Dwarf Genes in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2017. [2] 张甜. 芥菜紫叶基因Bj.Pur定位及候选基因分析[D]. 武汉: 华中农业大学, 2017. ZHANG Tian. Mapping and Candidate Gene Analysis of Bj.Pur, a Gene Controlling Purple Leaf in Brassica juncea[D]. Wuhan: Huazhong Agricultural University, 2017. [3] 赖艳, 付秋实, 吕建春, 等. 一个新的薄皮甜瓜叶色突变体的生理特性及超微结构分析[J]. 四川农业大学学报, 2018, 36(3): 372 − 379. LAI Yan, FU Qiushi, LÜ Jianchun, et al. Analysis of physiological characteristics and chloroplast ultrastructure of a new leaf color mutant in melon [J]. J Sichuan Agric Univ, 2018, 36(3): 372 − 379. [4] 刘红艳, 周芳, 李俊, 等. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856 − 1863. LIU Hongyan, ZHOU Fang, LI Jun, et al. Anatomical structure and photosynthetic characteristics of a yellow leaf mutant YL1 in sesame(Sesamum indicum L.) [J]. Acta Agronomica Sin, 2017, 43(12): 1856 − 1863. [5] 杨小苗, 吴新亮, 刘玉凤, 等. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用[J]. 应用生态学报, 2018, 29(6): 1983 − 1989. YANG Xiaomiao, WU Xinliang, LIU Yufeng, et al. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS [J]. Chin J Appl Ecol, 2018, 29(6): 1983 − 1989. [6] 迟鸣雨. 青梗菜黄化突变体生理特性及转录组分析[D]. 沈阳: 沈阳农业大学, 2017. CHI Mingyu. Transcriptome and Physiological Characterization Analysis of a Chlorosis Mutant of Pachoi[D]. Shenyang: Shenyang Agricultural University, 2017. [7] 郭士伟, 张云华, 金永庆, 等. 小白菜(Brassica chinensis L.)黄苗突变体的叶绿素荧光特性栽[J]. 作物学报, 2003, 29(6): 958 − 960. GUO Shiwei, ZHANG Yunhua, JIN Yongqing, et al. Characterization of chlorophyll fluorescence in a mutant of Brassica chinensis L. with xanthan seedling leaves [J]. Acta Agronomica Sin, 2003, 29(6): 958 − 960. [8] 张琨, 刘志勇, 单晓菲, 等. 青梗菜黄化突变体pylm遗传特性分析[J]. 沈阳农业大学学报, 2017, 48(1): 1 − 8. ZHANG Kun, LIU Zhiyong, SHAN Xiaofei, et al. Genetic analysis of a yellow mutant pylm in pakchoi [J]. J Shenyang Agric Univ, 2017, 48(1): 1 − 8. [9] 杨冲, 张扬勇, 方智远, 等. 甘蓝叶色黄化突变体YL-1的光合生理特性及其叶绿体的超微结构[J]. 园艺学报, 2014, 41(6): 1133 − 1144. YANG Chong, ZHANG Yangyong, FANG Zhiyuan, et al. Photosynthetic physiological characteristics and chloroplast ultrastructure of yellow leaf mutant YL-1 in cabbage [J]. Acta Hortic Sin, 2014, 41(6): 1133 − 1144. [10] 杜江涛. 大白菜金黄叶色突变基因lcm2的克隆及鉴定[D]. 沈阳: 沈阳农业大学, 2018. DU Jiangtao. Cloning and Identification of a Golden Leaf Gene lcm2 in Chinese Cabbage[D]. Shenyang: Shenyang Agricultural University, 2018. [11] 侯爱琳. 大白菜叶片黄化突变基因lcm3的克隆与鉴定[D]. 沈阳: 沈阳农业大学, 2018. HOU Ailin. Cloning and Identification of lcm3, a Leaf Chlorosis Mutantion Gene in Chinese Cabbage[D]. Shenyang: Shenyang Agricultural University, 2018. [12] ZHAO Hua, YU Lei, HUAI Zexun, et al. Mapping and candidate gene identification defining BnChd1-1, a locus involved in chlorophyll biosynthesis in Brassica napus [J]. Acta Physiol Plant, 2014, 36(4): 859 − 870. [13] 董遵, 刘敬阳, 马红梅, 等. 甘蓝型油菜黄化(苗)突变体的叶绿素含量及超微结构[J]. 中国油料作物学报, 2000, 22(3): 27 − 29, 34. DONG Zun, LIU Jingyang, MA Hongmei, et al. Chlorophyll contents and chloroplast ultrastructure of chlorophyll deficient mutant in B. napus [J]. Chin J Oil Crop Sci, 2000, 22(3): 27 − 29, 34. [14] 陈艳丽. 甘蓝型油菜黄化突变体的基因定位[D]. 武汉: 华中农业大学, 2011. CHEN Yanli. Genetic Mapping of the Yellow Mutant Gene in Brassca napus[D]. Wuhan: Huazhong Agricultural University, 2011. [15] ZHU Lixia, ZENG Xinhua, CHEN Yanli, et al. Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (BnaC.ygl) in Brassica napus [J]. Mol Breed, 2014, 34(2): 603 − 614. [16] 杨胜洪, 杜林方, 赵云, 等. 抽薹期叶绿素缺乏油菜突变体类囊体膜的研究[J]. 云南植物研究, 2001, 23(1): 97 − 104. YANG Shenghong, DU Linfang, ZHAO Yun, et al. Study on the thylakoid membranes from a chlorophyll-deficient oilseed rape mutant at the bolting stage [J]. Acta Bot Yunnan, 2001, 23(1): 97 − 104. [17] FRICK G, SU Qingxiang, APEL K, et al. An Arabidopsis porB porC double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested [J]. Plant J Cell Mol Biol, 2003, 35(2): 141 − 153. [18] BANG W Y, JEONG I S, KIM D W, et al. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling [J]. Plant Cell Physiol, 2008, 49(9): 1350 − 1363. [19] PRIVAT I, HAKIMI M A, BUHOT L, et al. Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3 [J]. Plant Mol Biol, 2003, 51(3): 385 − 399. [20] KUMAR A M, SÖLL D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis [J]. Plant Physiol, 2000, 122(1): 49 − 56. [21] KOBAYASHI K, KONDO M, FUKUDA H, et al. Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis [J]. Proc Nat Acad Sci, 2007, 104(43): 17216 − 17221. [22] 白大勇. 拟南芥真叶白化突变体cfl1的基因克隆与初步功能分析[D]. 开封: 河南大学, 2013. BAI Dayong. Map-based Cloning and Functional Analysis of Tue-Leaves-Etiolation Mutant cfl1 in Arabidopsis thaliana[D]. Kaifeng: Henan University, 2013. [23] 肖华贵, 杨焕文, 饶勇, 等. 甘蓝型油菜黄化突变体的光合特性及叶绿素荧光参数分析[J]. 作物学报, 2013, 39(3): 520 − 529. XIAO Huagui, YANG Huanwen, RAO Yong, et al. Photosynthetic characteristics and chlorophyll fluorescence kinetic parameters analyses of chlorophyll-reduced mutant in Brassica napus L. [J]. Acta Agronomica Sin, 2013, 39(3): 520 − 529. [24] CHANG C S J, WU M S H. COP1-Mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis [J]. Plant Physiol, 2011, 156(1): 228 − 239. [25] 李玮, 于澄宇, 胡胜武. 芥菜型油菜叶片黄化突变体的初步研究[J]. 西北农林科技大学学报(自然科学版), 2007, 35(9): 79 − 82. LI Wei, YU Chengyu, HU Shengwu. Primary investigation on a chlorsis mutant in Brassica juncea L. [J]. J Northwest A&F Univ Nat Sci Ed, 2007, 35(9): 79 − 82. [26] GAO Hongbo, SAGE T L, OSTERYOUNG K W. FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology [J]. Proc Nat Acad Sci, 2006, 103(17): 6759 − 6764. [27] KIM Y K, LEE J Y, CHO H S, et al. Inactivation of organellar glutamyl- and seryl-trna synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants [J]. J Biol Chem, 2005, 280(44): 37098 − 37106. [28] 赵云, 王茂林, 李江, 等. 幼叶黄化油菜(Brassica napus L.)突变体Cr3529叶绿体超微结构观察[J]. 四川大学学报(自然科学版), 2003, 40(5): 974 − 977. ZHAO Yun, WANG Maolin, LI Jiang, et al. Observation of the chloroplast in chlorophyll-reduced seeding mutant Cr3529, Brassica napus L. [J]. J Sichuan Univ Nat Sci Ed, 2003, 40(5): 974 − 977. [29] 吴砚农. 小白菜黄化突变体生理特性及遗传特性分析[D]. 杭州: 浙江农林大学, 2019. WU Yannong. Analysis of Physiological Characteristics and Genetic Characteristics of Pakchoi Yellowing Mutant[D]. Hangzhou: Zhejiang A&F University, 2019. [30] AUSTIN J, WEBBER A N. Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number [J]. Photosynth Res, 2005, 85(3): 373 − 384. [31] OKAZAKI K, KABEYA Y, SUZUKI K, et al. The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation [J]. Plant Cell, 2009, 21(6): 1769 − 1780. [32] 牟钰. 白菜黄化突变基因py2的精细定位[D]. 沈阳: 沈阳农业大学, 2018. MU Yu. Fine Mapping of py2, a Gene Referred to Yellow Leaf Mutant in Packoi (Brassica campestris L. ssp. chinensis)[D]. Shenyang: Shenyang Agricultural University, 2018. [33] 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展[J]. 生态科学, 2019, 38(3): 225 − 234. FANG Yiran, XUE Li. Research advances in the effect of salt stress on plant chlorophyll fluorescence [J]. Ecol Sci, 2019, 38(3): 225 − 234. [34] TSANG E W T, YANG Jingyi, CHANG Qing, et al. Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde aminotransferase antisense gene [J]. Plant Mol Biol, 2003, 51(2): 191 − 201. [35] 田颖, 黄谦心, 刘海衡, 等. 芥菜型油菜黄化突变体L638-y的遗传及黄化基因gr1的分子标记[J]. 西北农林科技大学学报(自然科学版), 2012, 40(12): 90 − 96. TIAN Ying, HUANG Qianxin, LIU Haiheng, et al. Imheritance of chlorophyll-deficient mutant L638-y in Brassica juncea L. and molecular markers for chlorophyll-deficient gene gr1 [J]. J Northwest A&F Univ Nat Sci Ed, 2012, 40(12): 90 − 96. [36] 吴自明, 张欣, 万建民, 等. 叶绿素生物合成的分子调控[J]. 植物生理学报, 2008, 44(6): 1064 − 1070. WU Ziming, ZHANG Xin, WAN Jianmin, et al. Molecular regulation of chlorophyll biosynthesis [J]. Plant Physiol Commun, 2008, 44(6): 1064 − 1070. [37] NAGATA N. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species [J]. Plant Cell, 2005, 17(1): 233 − 240. [38] 孙捷音, 张年辉, 杜林方. 油菜叶绿素b减少突变体Cr3529叶绿素生物合成的研究[J]. 西北植物研究, 2007, 27(10): 1962 − 1966. SUN Jieyin, ZHANG Nianhui, DU Linfang. Chlorophyll biosynthesis in a chlorophyll b-deficient oilseed rape mutant Cr3529 [J]. Acta Bot Boreal-Occident Sin, 2007, 27(10): 1962 − 1966. [39] 吕明, 刘海衡, 毛虎德, 等. 芥菜型油菜黄化突变体叶片叶绿素合成代谢变化[J]. 西北植物学报, 2010, 30(11): 2177 − 2183. LÜ Ming, LIU Haiheng, MAO Hude, et al. Changes of chlorophyll synthesis metabolism in chlorophyll-deficient mutant in Brassica juncea [J]. Acta Bot Boreal-Occident Sin, 2010, 30(11): 2177 − 2183. [40] PONTIER D, ALBRIEUX C, JOYARD J, et al. Knock-out of the magnesium protoporphyrin Ⅸ methyltransferase gene in Arabidopsis: effects on chloroplast development and on chloroplast-to-nucleus signaling [J]. J Biol Chem, 2007, 282(4): 2297 − 2304. [41] LARKIN R M. GUN4, a regulator of chlorophyll synthesis and intracellular signaling [J]. Science, 2003, 299(5608): 902 − 906. [42] KOBAYASHI K, FUJII S, SASAKI D, et al. Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis[J]. Front Plant Sci, 2014, 5(11): 272. doi: 10.3389/fpls.2014.00272. [43] HUANG Yishiuan, LI Hsoumin. Arabidopsis CHLI2 can substitute for CHLI1 [J]. Plant Physiol, 2009, 150(2): 636 − 645. [44] WATERS M T, LANGDALE J A. The making of a chloroplast [J]. EMBO J, 2009, 28(19): 2861 − 2873. [45] CHANG C S J, LI Y H, CHEN L T, et al. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation [J]. Plant J, 2008, 54(2): 205 − 219. [46] 张年辉, 杜林方, 赵云, 等. 叶绿素缺乏油菜突变体的LHCⅡ多肽组成、蛋白含量与cab基因转录研究[J]. 西北植物学报, 2004, 24(3): 484 − 487. ZHANG Nianhui, DU Linfang, ZHAO Yun, et al. Study on the polypeptide composition and content of LHC Ⅱ and the cab gene transcription inchlorophyll-reduced mutant of oilseed rape seedlings [J]. Acta Bot Boreali-Occident Sin, 2004, 24(3): 484 − 487. [47] MIURA E, KATO Y, MATSUSHIMA R, et al. The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants [J]. Plant Cell, 2007, 19(4): 1313 − 1328. [48] MOCHIZUKI N, BRUSSLAN J A, LARKIN R, et al. Arabidopsis genomes uncoupled 5(GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction [J]. Proc Nat Acad Sci, 2001, 98(4): 2053 − 2058. [49] NAESTED H. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development [J]. J Cell Sci, 2004, 117(20): 4807 − 4818. [50] SAKAMOTO W. Coordinated regulation and complex formation of Yellow Variegated1 and Yellow Variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of Photosystem Ⅱ in Arabidopsis thylakoid membranes [J]. Plant Cell, 2003, 15(12): 2843 − 2855. [51] SJOGREN L L E, STANNE T M, ZHENG B, et al. Structural and functional insights into the chloroplast ATP-dependent clp protease in Arabidopsis [J]. Plant Cell, 2006, 18(10): 2635 − 2649. [52] ZALTSMAN A, ORI N, ADAM Z. Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem Ⅱ repair in Arabidopsis [J]. Plant Cell, 2005, 17(10): 2782 − 2790. 期刊类型引用(4)
1. 郭艳,陈后英,铁烈华,赵熙州,丁贵杰. 外生菌根真菌橙黄硬皮马勃对不同难溶性磷酸盐供应水平下马尾松幼苗生长及生理特性的影响. 应用与环境生物学报. 2025(01): 87-95 . 百度学术
2. 曾露婧,王国华. 干旱及复水对荒漠绿洲过渡带一年生草本植物生长及生理特性的影响. 草业学报. 2024(05): 41-57 . 百度学术
3. 徐明睿,王晓娟,杨亚莉,马越飞,刘万茂,孙颖. 基于转录组学分析辣椒对磷营养逆境的响应. 中国农业科学. 2024(14): 2827-2846 . 百度学术
4. 高良丽,马洪娜,李慧,檀龙颜. 低磷胁迫对菘蓝幼苗叶片生理特性的影响. 耕作与栽培. 2024(05): 48-54 . 百度学术
其他类型引用(5)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200132

计量
- 文章访问数: 1603
- HTML全文浏览量: 343
- PDF下载量: 216
- 被引次数: 9