留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

十字花科植物黄化突变特性及其分子机制研究进展

吴砚农 郑伟尉 陆伟杰 臧运祥

翁国杭, 姜武, 包其敏, 等. 浙江乌岩岭国家级自然保护区黄腹角雉分布范围[J]. 浙江农林大学学报, 2022, 39(3): 582-589. DOI: 10.11833/j.issn.2095-0756.20210456
引用本文: 吴砚农, 郑伟尉, 陆伟杰, 等. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报, 2021, 38(2): 412-419. DOI: 10.11833/j.issn.2095-0756.20200132
WENG Guohang, JIANG Wu, BAO Qimin, et al. Distribution range of Tragopan caboti in Wuyanling National Nature Reserve of Zhejiang[J]. Journal of Zhejiang A&F University, 2022, 39(3): 582-589. DOI: 10.11833/j.issn.2095-0756.20210456
Citation: WU Yannong, ZHENG Weiwei, LU Weijie, et al. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A&F University, 2021, 38(2): 412-419. DOI: 10.11833/j.issn.2095-0756.20200132

十字花科植物黄化突变特性及其分子机制研究进展

DOI: 10.11833/j.issn.2095-0756.20200132
基金项目: 国家自然科学基金资助项目(31572130);浙江省自然科学基金资助项目(LY20C150001)
详细信息
    作者简介: 吴砚农( ORCID: 0000-0002-7757-2109),从事蔬菜品质调控及分子机制研究。E-mail: 1435966317@qq.com
    通信作者: 臧运祥(ORCID: 0000-0002-3505-7539),教授,博士,从事蔬菜品质调控及分子机制研究。E-mail: yxzang@zafu.edu.cn
  • 中图分类号: S718.3

Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae

  • 摘要: 十字花科Brassicaceae植物多数生长发育时间短,生长过程中自然发生,或使用物理或化学方法诱导,常会出现一些颜色较淡或金黄的突变个体即黄化突变体。这些突变体表型直观,表现为植株矮小,叶绿素较低,植株光合作用受抑制,产量降低,因此黄化突变常被视为有害突变。但近20 a来黄化突变体日益受到研究者们的重视与青睐,被用于研究植物叶绿体结构、叶绿素合成代谢等方面。本研究简要介绍了十字花科植物常见的黄化突变类型及其主要的外观特征,综述了十字花科植物黄化突变体的叶绿体超微结构、光合色素及其光合性能,并对十字花科植物黄化突变的遗传特性、分子机制进行了讨论,为十字花科植物叶色突变研究及新品种选育提供理论基础。参52
  • 黄腹角雉Tragopan caboti隶属鸡形目Galliformes雉科Phasinidae角雉属Tragopan,分布于湖南东南部、浙江南部和西南部、江西、福建、广东北部和广西东北部,是中国特产濒危雉类,国家一级重点保护动物,全国估计有4 000只,被列入《中国濒危动物红皮书·鸟类卷》[1]

    自20世纪80年代发现黄腹角雉以来,在浙江乌岩岭国家级自然保护区(1994年之前为省级)对黄腹角雉的研究,主要涉及栖息地和巢址选择、栖息地片段化、食性、人工受精繁殖、越冬与迁移、种群结构与动态、种群生存力分析等方面的内容[2],这些都为自然保护区黄腹角雉种群的科学保护提供了指导建议。本研究对浙江乌岩岭国家级自然保护区内黄腹角雉的最新分布范围进行了调查和分析,以期对前期保护效果进行评估,并为今后保护工作提供建议。

    浙江乌岩岭国家级自然保护区(27°20′52″~27°48′39″N,119°37′08″~119°50′00″E)由原乌岩岭省级自然保护区在1994年扩大范围并经国务院批准而晋升为国家级。扩区、晋级后面积为1 881.6 km2,下辖双坑口、碑排、黄桥、垟溪等4个保护站,涉及乌岩岭林场的国有林,罗阳、司前、竹里、西旸等4个乡镇12个行政村的集体林。属于亚热带海洋性季风气候,以次生植被为主,但保存着大面积完整的原生性常绿阔叶林[3]。宋永昌等[4]认为:乌岩岭地区所保存的常绿阔叶林植被比较完整、典型,被认为是中国亚热带常绿阔叶林东部地区保存较好的地点之一。

    保护区动植物资源非常丰富,近年来陆续发现了一批新种、全国新分布种、浙江新分布种[5-11]。珍稀物种较多,国家一级保护植物有5种,国家一级保护动物有8种[3]。国家一级保护动物中,鸟类有黄腹角雉与白颈长尾雉Syrmaticus ellioti。作为全国主要的黄腹角雉保种基地与科研基地,做好黄腹角雉种群的调查、监测是该保护区的重要工作之一。

    自2019—2020年,采用样线调查法、红外相机调查法对浙江乌岩岭国家级自然保护区黄腹角雉分布进行了调查。样线布设时最大限度地利用现有护林路及防火线,可利用里程为60 km。对间距超出1 km的区域进行线路加密,加密里程为25 km。样线总长度达85 km,基本遍及保护区的各类典型区域。样线调查结合巡护工作每季度开展1次,调查中携带望远镜、照相机,进行必要的影像与文字记录。红外相机调查主要在双坑口、碑排2个保护站所辖区域开展,2019年在双坑口、2020年在碑排分别布设红外相机100台,布设时间均为1 a,2 a共布设200台次。红外相机的设置及照片判读参照章书声等[12-13]的方法。红外相机位点选择总体上采用随机原则,位点间保持直线距离为500~800 m,尽量呈均匀分布,并确保每平方公里范围至少布设1台红外相机。但在局部位置确定上,则要根据地形、植被情况,尽量选择黄腹角雉可能出现并被监拍到的方位。相机安装高度为0.2~1.5 m(结合地形及相机朝向确定),每季度更换电池与内存卡。由于保护区地形地貌复杂与人为干扰等因素,红外相机存在遗失与被偷盗情况,在双坑口、碑排保护站所辖区有效收回的相机分别为95、92台。

    对发现黄腹角雉分布点的经纬度、海拔、植被类型、个体数量及性别等相关情况进行记录,并对不同分布区(保护站)、不同植被类型与不同海拔范围进行统计。

    研究表明:黄腹角雉栖息地为海拔800~1 400 m的常绿阔叶林和常绿针阔混交林[14],全年最大扩散距离为3 km[2, 15]。通过实地调查,结合ArcGIS图像判读,分析各个分布点周边的森林植被类型、海拔高度及地形地貌等相关因素,逐个地块判定黄腹角雉分布的区域范围。如在某一地块发现黄腹角雉,则在同一座山体中自该分布点上至海拔1 400 m,下至海拔800 m范围,植被类型为阔叶林、针阔混交林(包含小面积的其他林种),距离3 km以内(实际中大都达不到3 km)的地域予以确认为黄腹角雉分布范围。分布点以外较大面积(1 hm2以上)的农用地、毛竹Phyllostachys edulis林、针叶纯林予以排除,被其他地类完全隔离的阔叶林、针阔混交林也不予以确认。将相邻分布地块合并后的分布范围按不同保护站转绘到ArcGIS 10.0软件系统中,自动求算各分布区面积。

    总共调查到黄腹角雉分布点69个,其中通过样线调查发现的分布点为54个,通过红外相机拍照发现的分布点为15个。双坑口、碑牌、黄桥、垟溪4个保护站均发现有黄腹角雉分布,分布点分别为37、15、11和6个。各分布点的记录详见表1

    表 1  黄腹角雉野外分布调查记录
    Table 1  Population quantity of T. caboti
    分布区分布点经纬度海拔/m植被类型数量与性别调查方式
    双坑口 S1 27°40′60″N,119°41′15″E 860 阔叶林 1雄 样线调查
    S2 27°40′55″N,119°41′10″E 1 110 阔叶林 1雌1雄 红外相机调查
    S3 27°40′54″N,119°40′53″E 1 070 针阔混交林 1雄 样线调查
    S4 27°20′42″N,119°40′45″E 1 040 针阔混交林 1雌 样线调查
    S5 27°41′23″N,119°40′21″E 1 180 针阔混交林 1雌1雄 样线调查
    S6 27°41′19″N,119°39′56″E 1 230 针阔混交林 3雄 样线调查
    S7 27°41′29″N,119°39′50″E 1 380 针阔混交林 1雌3幼 红外相机调查
    S8 27°41′38″N,119°39′56″E 1 310 针叶林(柳杉) 1雌3幼 样线调查
    S9 27°41′46″N,119°40′02″E 1 190 阔叶林 1雌 样线调查
    S10 27°41′59″N,119°40′18″E 1 220 针阔混交林 1雌3亚 样线调查
    S11 27°42′08″N,119°40′21″E 1 120 针叶林(柳杉) 1雌2幼 红外相机调查
    S12 27°42′13″N,119°40′21″E 1 030 针阔混交林 1雄 样线调查
    S13 27°42′13″N,119°40′16″E 1 070 针阔混交林 1雌 样线调查
    S14 27°41′57″N,119°40′31″E 1 045 针阔混交林 2雄 红外相机调查
    S15 27°42′16″N,119°40′09″E 995 阔叶林 1雌 样线调查
    S16 27°42′18″N,119°40′03″E 915 阔叶林 1雌1雄 样线调查
    S17 27°42′48″N,119°40′13″E 843 针阔混交林 1雌 红外相机调查
    S18 27°42′50″N,119°40′05″E 772 阔叶林 1雄 样线调查
    双坑口 S19 27°42′30″N,119°39′50″E 680 阔叶林 2雌 红外相机调查
    S20 27°41′09″N,119°41′13″E 741 阔叶林 1雌1雄4亚 样线调查
    S21 27°43′02″N,119°39′47″E 957 阔叶林 1雌 样线调查
    S22 27°42′57″N,119°40′01″E 882 阔叶林 2雌 红外相机调查
    S23 27°40′16″N,119°40′16″E 860 针阔混交林 1雄 样线调查
    S24 27°41′31″N,119°41′35″E 1 193 毛竹林 2雌2雄 样线调查
    S25 27°41′43″N,119°39′27″E 1 221 针阔混交林 1雄 红外相机调查
    S26 27°42′03″N, 119°39′06″E 1 300 针阔混交林 2雄 样线调查
    S27 27°42′38″N,119°38′52″E 1 065 阔叶林 1雌 红外相机调查
    S28 27°42′49″N,119°38′49″E 1 325 针阔混交林 1雄 样线调查
    S29 27°42′45″N,119°38′43″E 1 405 针阔混交林 1雌 样线调查
    S30 27°42′55″N,119°38′36″E 1 550 针阔混交林 1雌 红外相机调查
    S31 27°42′58″N,119°38′40″E 1 495 针阔混交林 2雌1雄 样线调查
    S32 27°43′10″N,119°38′50″E 1 135 针阔混交林 1雄 样线调查
    S33 27°43′52″N,119°39′36″E 1 210 针阔混交林 1雌2雄 样线调查
    S34 27°43′41″N,119°39′51″E 1 155 针叶林(杉木林) 1雌 红外相机调查
    S35 27°44′36″N,119°41′10″E 750 阔叶林 1雄 样线调查
    S36 27°45′26″N,119°42′48″E 980 阔叶林 1雄 样线调查
    S37 27°45′56″N,119°43′32″E 1 100 针阔混交林 1雌2幼 样线调查
    碑排 B1 27°40′31″N,119°39′23″E 710 阔叶林 1雌3幼 红外相机调查
    B2 27°40′11″N,119°40′11″E 690 阔叶林 1雌 样线调查
    B3 27°41′13″N,119°39′52″E 1 270 针阔混交林 1雌3亚 样线调查
    B4 27°41′19″N,119°39′43″E 1 170 针阔混交林 1雌2幼 红外相机调查
    B5 27°41′36″N,119°39′06″E 1 390 针阔混交林 1雄 样线调查
    B6 27°41′12″N,119°38′38″E 1 340 针阔混交林 1雌 样线调查
    B7 27°40′39″N,119°39′17″E 782 阔叶林 2雄 样线调查
    B8 27°40′7″N,119°39′16″E 760 针阔混交林 1雌 样线调查
    B9 27°41′14″N,119°39′22″E 1 070 针叶林(柳杉林) 1雌1雄 红外相机调查
    B10 27°40′19″N,119°38′44″E 1 090 针阔混交林 1雌 样线调查
    B11 27°39′03″N,119°38′29″E 1 120 阔叶林 1雄 样线调查
    B12 27°38′05″N,119°38′32″E 1 170 针阔混交林 2雌 样线调查
    B13 27°40′14″N,119°39′57″E 772 阔叶林 1雌2雄 样线调查
    B14 27°40′28″N,119°40′31″E 1170 针阔混交林 1雄 红外相机调查
    B15 27°40′19″N,119°40′17″E 910 阔叶林 2雄 样线调查
    黄桥 H1 27°46′05″N,119°44′39″E 905 针阔混交林 1雌 样线调查
    H2 27°46′07″N,119°44′56″E 920 针阔混交林 1雄 样线调查
    H3 27°46′02″N,119°44′56″E 830 针阔混交林 2雄 样线调查
    H4 27°46′10″N,119°45′35″E 995 针阔混交林 1雌 样线调查
    H5 27°46′33″N,119°46′41″E 850 阔叶林 1雌1雄 样线调查
    H6 27°46′48″N,119°46′24″E 860 毛竹林 1雌 样线调查
    H7 27°46′54″N,119°45′42″E 905 针阔混交林 1雄 样线调查
    H8 27°47′19″N,119°47′53″E 720 阔叶林 2雌 样线调查
    H9 27°47′02″N,119°48′19″E 835 阔叶林 1雌2幼 样线调查
    H10 27°48′11″N,119°49′27″E 910 针阔混交林 1雌2亚 样线调查
    黄桥 H11 27°48′29″N,119°48′18″E 775 阔叶林 1雄 样线调查
    垟溪 Y1 27°21′51″N,119°45′21″E 705 阔叶林 1雄 样线调查
    Y2 27°21′46″N,119°45′18″E 850 针阔混交林 1雄 样线调查
    Y3 27°21′54″N,119°45′43″E 903 针阔混交林 2雄 样线调查
    Y4 27°22′22″N,119°46′01″E 1010 阔叶林 1雌 样线调查
    Y5 27°22′20″N,119°46′18″E 915 针阔混交林 1雄 样线调查
    Y6 27°22′15″N,119°45′34″E 720 阔叶林 1雌 样线调查
      说明:“亚”即黄腹角雉亚成体,“幼”即黄腹角雉幼体;柳杉Cryptomera fortunei,杉木Cunninghamia lanceolata
    下载: 导出CSV 
    | 显示表格

    按植被类型统计,黄腹角雉在常绿阔叶林分布26只,占37.7%,在针阔混交林分布37只,占53.6%,其他植被类型(针叶林及毛竹林)分布6只,占8.7%。针阔混交林的分布点最多,其次为常绿阔叶林,其他植被类型则较少。按海拔范围统计,黄腹角雉在海拔800~1 400 m分布53只,占76.8%;其他海拔分布16只,占23.6%,其中海拔800 m以下分布13只,占18.8%,海拔1 400 m以上分布3只,占4.4% (表2)。

    表 2  黄腹角雉野外分布调查统计表
    Table 2  Statistical table of distribution of T. caboti
    分布区分布数量/只按植被类型的黄腹角雉分布按海拔范围的黄腹角雉分布
    阔叶林针阔混交林其他800 m以下800~1 400 m1 400 m以上
    数量/只占比/%数量/只占比/%数量/只占比/%数量/只占比/%数量/只占比/%数量/只占比/%
    双坑口 37 13 35.1 20 54.1 4 10.8 4 10.8 30 81.1 3 8.1
    碑排  15 6 40.0 8 53.3 1 6.7 5 33.3 10 66.7
    黄桥  11 4 36.4 6 54.5 1 9.1 2 18.2 9 81.8
    垟溪  6 3 50.0 3 50.0 2 33.3 4 66.7
    合计  69 26 37.7 37 53.6 6 8.7 13 18.8 53 76.8 3 4.4
    下载: 导出CSV 
    | 显示表格

    调查中发现:在靠近防火线与山脊线的边缘区域、以及与其他植被类型交界的过渡区域,黄腹角雉分布数量相对较多,而核心区域黄腹角雉反而较少,可以初步确定黄腹角雉种群分布存在边缘效应。此外,在低海拔地带及保护区最南面的洋溪分布区,并未发现黄腹角雉依赖性的植物交让木Daphniphyllum macropodum

    浙江乌岩岭国家级自然保护区黄腹角雉分布区总面积为55.3 km2。双坑口分布区面积为24.9 km2,东与司前镇黄桥村为界;南面边缘有较多的毛竹林、针叶林,最低海拔为680 m;西与罗阳镇马联村为界;北部主要与景宁畲族自治县为界。主要涉及乌岩岭林场的国有林,及司前镇榅垟村、上地村、叶山村及罗溪源林场的集体林。海拔范围为680~1 550 m。碑排分布区面积为15.2 km2,东与乌岩岭林场为界;南面最低海拔为690 m,分布较多成片的毛竹林、针叶林;西与罗阳镇上垟村为界;北部与景宁畲族自治县及福建省寿宁县为界。主要涉及罗阳镇马联村、五岗村,及马子坑联营场、碑排林场、岭北林场的集体林。海拔为690~1 350 m。黄桥分布区面积为10.7 km2,分为陈吴坑—双坑头、苦杜井—晓燕2个区块。东与文成县交界,南面主要与毛竹林相邻,西与司前镇上地村接壤,北与景宁畲族自治县为界。主要涉及司前镇黄桥村、黄桥联营场、竹里乡茶石村、竹里乡林场的集体林。海拔为720~995 m。垟溪分布区面积为4.5 km2,范围为羊场(地名)周边海拔720 m以上的区域。主要涉及西旸镇洋溪林场的集体林。

    本研究发现:黄腹角雉分布地主要为常绿阔叶林与针阔混交林,这与之前的研究结果[14]基本一致。但也有少数分布点位于针叶林与毛竹林中,这些分布点大都在阔叶林附近,黄腹角雉在这些地块出现可能属于偶然路过。黄腹角雉营巢树以柳杉为主[16],在柳杉林区域出现则可能与营巢有关。保护区内黄腹角雉海拔分布范围为680~1 550 m,比之前800~1 400 m的海拔范围[15]要广。近年来黄腹角雉向低海拔区域扩散的趋势明显,2019年在保护区以外天关山地区海拔570 m处发现了黄腹角雉,这是浙江省泰顺县迄今为止发现黄腹角雉的最低海拔区域。

    交让木果实与叶子是黄腹角雉赖以越冬的食物,交让木同黄腹角雉的分布密切相关,是其依赖性植物[15]。乌岩岭自然保护区交让木分布在海拔900~1 400 m[17],但在黄腹角雉低海拔分布地带及垟溪分布区,并没有发现交让木的存在,说明当前黄腹角雉的分布与交让木不具有完全的相关性。本研究分析认为:低海拔地带及地处最南面的垟溪分布区,植物种类都比较丰富,并且在冬季枯萎程度也不高,黄腹角雉具备相对充足的食物来源,即便没有交让木也能越冬生存。观察乌岩岭人工饲养下黄腹角雉对笼舍内所种植交让木的取食情况,发现笼舍内种植的交让木很少被取食。这说明在人工投喂食物充足的情况下,黄腹角雉对交让木并不具有喜好性与依赖性。但在冬季,高山地区食物相对短缺,交让木对黄腹角雉种群越冬无疑具有重要作用。

    边缘效应是自然界普遍存在的现象[18]。本研究初步确定黄腹角雉种群分布也具有边缘效应,种群在阔叶林边缘区域分布相对较多,而在核心区域的发现频率则相对较少。这可能与核心区域在植被高度郁闭下群落内部林窗、林隙的减少与消失有关。陈龙斌等[19]认为:林隙在促进森林生态系统物种多样性、结构复杂性和生境多样性等方面具有重要驱动作用。而植被高度郁闭则会产生以下影响:一是由于光照不足,林下植物种类及数量明显下降而导致食物缺乏;二是自然整枝现象严重,树木变得高大通直而不适于营巢;三是林内光线过于阴暗;四是缺乏具有一定空旷度的“飞动”空间。因此,过度郁闭的植被环境可能并不适合黄腹角雉的生存。在森林内部维持适量林窗、林隙等“小尺度边缘”,有可能是今后保护工作需要考虑的方向。而保护区内遍及主要山脊线的防火线,除了在森林防火上发挥功能以外,也为黄腹角雉活动提供了“边缘”地带。防火线周边是近年来发现黄腹角雉较多的地带,说明防火线对黄腹角雉种群生存繁衍具有助益作用,今后应继续予以维护和保留。

    其他野生动物也有相类似现象。如华南梅花鹿Cervus nippon kopschi在保护过程中也面临过相类似困境,良好保护下生长茂盛的森林植被并不适于华南梅花鹿栖息[20]。这些实例都说明,对于某些特定的珍稀濒危物种,如果仅仅对栖息地采取单纯保护,有时候反而造成自然演替中适宜栖息环境的变迁乃至丧失。根据保护对象特定的生态学习性采取适当的人工干预,是栖息地保护与改良的必要措施之一。

    在1990年,乌岩岭黄腹角雉冬季种群平均密度为7.08只·km−2,种群数量为43只[21],可推算出当时的分布面积为6.09 km2。当前黄腹角雉分布面积为55.3 km2,为之前的9.1倍,栖息地范围得到了较大扩展。但相对于保护区1 881.6 km2总面积,当前黄腹角雉分布区所占比例为29.3%,种群分布还有进一步的扩展空间。在4个分布区中,双坑口是原乌岩岭省级自然保护区所在地,也是黄腹角雉的传统分布区与主要分布区,此前鸟类专家大多在此区域开展黄腹角雉研究工作。碑排、黄桥、垟溪3个分布区均为乌岩岭1994年晋升国家级保护区时新划入的范围,其中碑排、黄桥这2个分布区与原乌岩岭省级自然保护区相邻,黄腹角雉种群有可能是乌岩岭原有种群向外扩散繁衍的结果,而垟溪分布区与乌岩岭相距遥远,还被多个乡镇分隔,黄腹角雉种群则可以确定为独立存在的种群。

    栖息地片段化与典型栖息地丧失对濒危雉类的威胁尤为严峻,是濒危雉类保护工作中必须优先考虑的问题[15]。典型栖息地的急剧缩小和恶化是致危的主要外因之一,历史上阔叶林已被人工针叶林所取代,使黄腹角雉失去赖以生存的条件[14]。此前保护区的研究[22-23]表明:通过“针改阔”能够实现黄腹角雉栖息地的恢复。在一些植被类型由针叶林改造为阔叶林、针阔混交林的地块,已发现了黄腹角雉的活动。而1994年保护区扩大范围后,区内农村集体林也停止了以针叶用材树种(主要为杉木、柳杉及马尾松Pinus massoniana)作为目的树种的传统林业经营活动,在历经多年演替后,原有针叶林地块大都已向亚热带地带性植被常绿阔叶林方向演变,目前大部分已演变为针阔混交林,黄腹角雉栖息环境已在较大空间尺度内得到恢复,栖息地片段化、破碎化状况已得到明显改变,这是种群分布得以扩展的根本原因。而这次调查中发现针阔混交林中黄腹角雉分布点占比较多的原因,除该植被类型分布最为广泛外,还可能与该植被类型在演替进程中尚处于过渡阶段,内部还存在一定数量的林窗、林隙更适合黄腹角雉的生存有关。

    近年来在保护区以外地区也数次发现了黄腹角雉,这大概是由于泰顺县多年来实施“生态大搬迁”,森林生态环境总体上得到了较好改善,保护区以外的部分地区也具备了黄腹角雉的栖息条件。而随着生态进一步向好,该濒危雉类的种群还会进一步扩展。

    经过多年保护,浙江乌岩岭国家级自然保护区黄腹角雉栖息地环境已得到了较好恢复,栖息地片段化的状况已得到明显改变,野生种群的分布范围得到了较大扩展,这说明该保护区长期以来对黄腹角雉所采取的保护措施,特别是大面积扩大保护范围的措施已取得积极效果。对于所发现的边缘效应等现象要进一步跟进研究,并科学地出台相应的应对措施。

  • [1] 赵波. 甘蓝型油菜矮秆基因定位、克隆及功能分析[D]. 武汉: 华中农业大学, 2017.

    ZHAO Bo. Gentic Mapping, Cloning and Functional Analysis of Dwarf Genes in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2017.
    [2] 张甜. 芥菜紫叶基因Bj.Pur定位及候选基因分析[D]. 武汉: 华中农业大学, 2017.

    ZHANG Tian. Mapping and Candidate Gene Analysis of Bj.Pur, a Gene Controlling Purple Leaf in Brassica juncea[D]. Wuhan: Huazhong Agricultural University, 2017.
    [3] 赖艳, 付秋实, 吕建春, 等. 一个新的薄皮甜瓜叶色突变体的生理特性及超微结构分析[J]. 四川农业大学学报, 2018, 36(3): 372 − 379.

    LAI Yan, FU Qiushi, LÜ Jianchun, et al. Analysis of physiological characteristics and chloroplast ultrastructure of a new leaf color mutant in melon [J]. J Sichuan Agric Univ, 2018, 36(3): 372 − 379.
    [4] 刘红艳, 周芳, 李俊, 等. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856 − 1863.

    LIU Hongyan, ZHOU Fang, LI Jun, et al. Anatomical structure and photosynthetic characteristics of a yellow leaf mutant YL1 in sesame(Sesamum indicum L.) [J]. Acta Agronomica Sin, 2017, 43(12): 1856 − 1863.
    [5] 杨小苗, 吴新亮, 刘玉凤, 等. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用[J]. 应用生态学报, 2018, 29(6): 1983 − 1989.

    YANG Xiaomiao, WU Xinliang, LIU Yufeng, et al. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS [J]. Chin J Appl Ecol, 2018, 29(6): 1983 − 1989.
    [6] 迟鸣雨. 青梗菜黄化突变体生理特性及转录组分析[D]. 沈阳: 沈阳农业大学, 2017.

    CHI Mingyu. Transcriptome and Physiological Characterization Analysis of a Chlorosis Mutant of Pachoi[D]. Shenyang: Shenyang Agricultural University, 2017.
    [7] 郭士伟, 张云华, 金永庆, 等. 小白菜(Brassica chinensis L.)黄苗突变体的叶绿素荧光特性栽[J]. 作物学报, 2003, 29(6): 958 − 960.

    GUO Shiwei, ZHANG Yunhua, JIN Yongqing, et al. Characterization of chlorophyll fluorescence in a mutant of Brassica chinensis L. with xanthan seedling leaves [J]. Acta Agronomica Sin, 2003, 29(6): 958 − 960.
    [8] 张琨, 刘志勇, 单晓菲, 等. 青梗菜黄化突变体pylm遗传特性分析[J]. 沈阳农业大学学报, 2017, 48(1): 1 − 8.

    ZHANG Kun, LIU Zhiyong, SHAN Xiaofei, et al. Genetic analysis of a yellow mutant pylm in pakchoi [J]. J Shenyang Agric Univ, 2017, 48(1): 1 − 8.
    [9] 杨冲, 张扬勇, 方智远, 等. 甘蓝叶色黄化突变体YL-1的光合生理特性及其叶绿体的超微结构[J]. 园艺学报, 2014, 41(6): 1133 − 1144.

    YANG Chong, ZHANG Yangyong, FANG Zhiyuan, et al. Photosynthetic physiological characteristics and chloroplast ultrastructure of yellow leaf mutant YL-1 in cabbage [J]. Acta Hortic Sin, 2014, 41(6): 1133 − 1144.
    [10] 杜江涛. 大白菜金黄叶色突变基因lcm2的克隆及鉴定[D]. 沈阳: 沈阳农业大学, 2018.

    DU Jiangtao. Cloning and Identification of a Golden Leaf Gene lcm2 in Chinese Cabbage[D]. Shenyang: Shenyang Agricultural University, 2018.
    [11] 侯爱琳. 大白菜叶片黄化突变基因lcm3的克隆与鉴定[D]. 沈阳: 沈阳农业大学, 2018.

    HOU Ailin. Cloning and Identification of lcm3, a Leaf Chlorosis Mutantion Gene in Chinese Cabbage[D]. Shenyang: Shenyang Agricultural University, 2018.
    [12] ZHAO Hua, YU Lei, HUAI Zexun, et al. Mapping and candidate gene identification defining BnChd1-1, a locus involved in chlorophyll biosynthesis in Brassica napus [J]. Acta Physiol Plant, 2014, 36(4): 859 − 870.
    [13] 董遵, 刘敬阳, 马红梅, 等. 甘蓝型油菜黄化(苗)突变体的叶绿素含量及超微结构[J]. 中国油料作物学报, 2000, 22(3): 27 − 29, 34.

    DONG Zun, LIU Jingyang, MA Hongmei, et al. Chlorophyll contents and chloroplast ultrastructure of chlorophyll deficient mutant in B. napus [J]. Chin J Oil Crop Sci, 2000, 22(3): 27 − 29, 34.
    [14] 陈艳丽. 甘蓝型油菜黄化突变体的基因定位[D]. 武汉: 华中农业大学, 2011.

    CHEN Yanli. Genetic Mapping of the Yellow Mutant Gene in Brassca napus[D]. Wuhan: Huazhong Agricultural University, 2011.
    [15] ZHU Lixia, ZENG Xinhua, CHEN Yanli, et al. Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (BnaC.ygl) in Brassica napus [J]. Mol Breed, 2014, 34(2): 603 − 614.
    [16] 杨胜洪, 杜林方, 赵云, 等. 抽薹期叶绿素缺乏油菜突变体类囊体膜的研究[J]. 云南植物研究, 2001, 23(1): 97 − 104.

    YANG Shenghong, DU Linfang, ZHAO Yun, et al. Study on the thylakoid membranes from a chlorophyll-deficient oilseed rape mutant at the bolting stage [J]. Acta Bot Yunnan, 2001, 23(1): 97 − 104.
    [17] FRICK G, SU Qingxiang, APEL K, et al. An Arabidopsis porB porC double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested [J]. Plant J Cell Mol Biol, 2003, 35(2): 141 − 153.
    [18] BANG W Y, JEONG I S, KIM D W, et al. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling [J]. Plant Cell Physiol, 2008, 49(9): 1350 − 1363.
    [19] PRIVAT I, HAKIMI M A, BUHOT L, et al. Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3 [J]. Plant Mol Biol, 2003, 51(3): 385 − 399.
    [20] KUMAR A M, SÖLL D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis [J]. Plant Physiol, 2000, 122(1): 49 − 56.
    [21] KOBAYASHI K, KONDO M, FUKUDA H, et al. Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis [J]. Proc Nat Acad Sci, 2007, 104(43): 17216 − 17221.
    [22] 白大勇. 拟南芥真叶白化突变体cfl1的基因克隆与初步功能分析[D]. 开封: 河南大学, 2013.

    BAI Dayong. Map-based Cloning and Functional Analysis of Tue-Leaves-Etiolation Mutant cfl1 in Arabidopsis thaliana[D]. Kaifeng: Henan University, 2013.
    [23] 肖华贵, 杨焕文, 饶勇, 等. 甘蓝型油菜黄化突变体的光合特性及叶绿素荧光参数分析[J]. 作物学报, 2013, 39(3): 520 − 529.

    XIAO Huagui, YANG Huanwen, RAO Yong, et al. Photosynthetic characteristics and chlorophyll fluorescence kinetic parameters analyses of chlorophyll-reduced mutant in Brassica napus L. [J]. Acta Agronomica Sin, 2013, 39(3): 520 − 529.
    [24] CHANG C S J, WU M S H. COP1-Mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis [J]. Plant Physiol, 2011, 156(1): 228 − 239.
    [25] 李玮, 于澄宇, 胡胜武. 芥菜型油菜叶片黄化突变体的初步研究[J]. 西北农林科技大学学报(自然科学版), 2007, 35(9): 79 − 82.

    LI Wei, YU Chengyu, HU Shengwu. Primary investigation on a chlorsis mutant in Brassica juncea L. [J]. J Northwest A&F Univ Nat Sci Ed, 2007, 35(9): 79 − 82.
    [26] GAO Hongbo, SAGE T L, OSTERYOUNG K W. FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology [J]. Proc Nat Acad Sci, 2006, 103(17): 6759 − 6764.
    [27] KIM Y K, LEE J Y, CHO H S, et al. Inactivation of organellar glutamyl- and seryl-trna synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants [J]. J Biol Chem, 2005, 280(44): 37098 − 37106.
    [28] 赵云, 王茂林, 李江, 等. 幼叶黄化油菜(Brassica napus L.)突变体Cr3529叶绿体超微结构观察[J]. 四川大学学报(自然科学版), 2003, 40(5): 974 − 977.

    ZHAO Yun, WANG Maolin, LI Jiang, et al. Observation of the chloroplast in chlorophyll-reduced seeding mutant Cr3529, Brassica napus L. [J]. J Sichuan Univ Nat Sci Ed, 2003, 40(5): 974 − 977.
    [29] 吴砚农. 小白菜黄化突变体生理特性及遗传特性分析[D]. 杭州: 浙江农林大学, 2019.

    WU Yannong. Analysis of Physiological Characteristics and Genetic Characteristics of Pakchoi Yellowing Mutant[D]. Hangzhou: Zhejiang A&F University, 2019.
    [30] AUSTIN J, WEBBER A N. Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number [J]. Photosynth Res, 2005, 85(3): 373 − 384.
    [31] OKAZAKI K, KABEYA Y, SUZUKI K, et al. The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation [J]. Plant Cell, 2009, 21(6): 1769 − 1780.
    [32] 牟钰. 白菜黄化突变基因py2的精细定位[D]. 沈阳: 沈阳农业大学, 2018.

    MU Yu. Fine Mapping of py2, a Gene Referred to Yellow Leaf Mutant in Packoi (Brassica campestris L. ssp. chinensis)[D]. Shenyang: Shenyang Agricultural University, 2018.
    [33] 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展[J]. 生态科学, 2019, 38(3): 225 − 234.

    FANG Yiran, XUE Li. Research advances in the effect of salt stress on plant chlorophyll fluorescence [J]. Ecol Sci, 2019, 38(3): 225 − 234.
    [34] TSANG E W T, YANG Jingyi, CHANG Qing, et al. Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde aminotransferase antisense gene [J]. Plant Mol Biol, 2003, 51(2): 191 − 201.
    [35] 田颖, 黄谦心, 刘海衡, 等. 芥菜型油菜黄化突变体L638-y的遗传及黄化基因gr1的分子标记[J]. 西北农林科技大学学报(自然科学版), 2012, 40(12): 90 − 96.

    TIAN Ying, HUANG Qianxin, LIU Haiheng, et al. Imheritance of chlorophyll-deficient mutant L638-y in Brassica juncea L. and molecular markers for chlorophyll-deficient gene gr1 [J]. J Northwest A&F Univ Nat Sci Ed, 2012, 40(12): 90 − 96.
    [36] 吴自明, 张欣, 万建民, 等. 叶绿素生物合成的分子调控[J]. 植物生理学报, 2008, 44(6): 1064 − 1070.

    WU Ziming, ZHANG Xin, WAN Jianmin, et al. Molecular regulation of chlorophyll biosynthesis [J]. Plant Physiol Commun, 2008, 44(6): 1064 − 1070.
    [37] NAGATA N. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species [J]. Plant Cell, 2005, 17(1): 233 − 240.
    [38] 孙捷音, 张年辉, 杜林方. 油菜叶绿素b减少突变体Cr3529叶绿素生物合成的研究[J]. 西北植物研究, 2007, 27(10): 1962 − 1966.

    SUN Jieyin, ZHANG Nianhui, DU Linfang. Chlorophyll biosynthesis in a chlorophyll b-deficient oilseed rape mutant Cr3529 [J]. Acta Bot Boreal-Occident Sin, 2007, 27(10): 1962 − 1966.
    [39] 吕明, 刘海衡, 毛虎德, 等. 芥菜型油菜黄化突变体叶片叶绿素合成代谢变化[J]. 西北植物学报, 2010, 30(11): 2177 − 2183.

    LÜ Ming, LIU Haiheng, MAO Hude, et al. Changes of chlorophyll synthesis metabolism in chlorophyll-deficient mutant in Brassica juncea [J]. Acta Bot Boreal-Occident Sin, 2010, 30(11): 2177 − 2183.
    [40] PONTIER D, ALBRIEUX C, JOYARD J, et al. Knock-out of the magnesium protoporphyrin Ⅸ methyltransferase gene in Arabidopsis: effects on chloroplast development and on chloroplast-to-nucleus signaling [J]. J Biol Chem, 2007, 282(4): 2297 − 2304.
    [41] LARKIN R M. GUN4, a regulator of chlorophyll synthesis and intracellular signaling [J]. Science, 2003, 299(5608): 902 − 906.
    [42] KOBAYASHI K, FUJII S, SASAKI D, et al. Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis[J]. Front Plant Sci, 2014, 5(11): 272. doi: 10.3389/fpls.2014.00272.
    [43] HUANG Yishiuan, LI Hsoumin. Arabidopsis CHLI2 can substitute for CHLI1 [J]. Plant Physiol, 2009, 150(2): 636 − 645.
    [44] WATERS M T, LANGDALE J A. The making of a chloroplast [J]. EMBO J, 2009, 28(19): 2861 − 2873.
    [45] CHANG C S J, LI Y H, CHEN L T, et al. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation [J]. Plant J, 2008, 54(2): 205 − 219.
    [46] 张年辉, 杜林方, 赵云, 等. 叶绿素缺乏油菜突变体的LHCⅡ多肽组成、蛋白含量与cab基因转录研究[J]. 西北植物学报, 2004, 24(3): 484 − 487.

    ZHANG Nianhui, DU Linfang, ZHAO Yun, et al. Study on the polypeptide composition and content of LHC Ⅱ and the cab gene transcription inchlorophyll-reduced mutant of oilseed rape seedlings [J]. Acta Bot Boreali-Occident Sin, 2004, 24(3): 484 − 487.
    [47] MIURA E, KATO Y, MATSUSHIMA R, et al. The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants [J]. Plant Cell, 2007, 19(4): 1313 − 1328.
    [48] MOCHIZUKI N, BRUSSLAN J A, LARKIN R, et al. Arabidopsis genomes uncoupled 5(GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction [J]. Proc Nat Acad Sci, 2001, 98(4): 2053 − 2058.
    [49] NAESTED H. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development [J]. J Cell Sci, 2004, 117(20): 4807 − 4818.
    [50] SAKAMOTO W. Coordinated regulation and complex formation of Yellow Variegated1 and Yellow Variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of Photosystem Ⅱ in Arabidopsis thylakoid membranes [J]. Plant Cell, 2003, 15(12): 2843 − 2855.
    [51] SJOGREN L L E, STANNE T M, ZHENG B, et al. Structural and functional insights into the chloroplast ATP-dependent clp protease in Arabidopsis [J]. Plant Cell, 2006, 18(10): 2635 − 2649.
    [52] ZALTSMAN A, ORI N, ADAM Z. Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem Ⅱ repair in Arabidopsis [J]. Plant Cell, 2005, 17(10): 2782 − 2790.
  • [1] 周夏雯, 石从广, 周芳伟, 徐梁, 杨少宗, 何秋伶.  植物叶色突变体分类、变异机制与应用的研究进展 . 浙江农林大学学报, 2025, 42(2): 422-432. doi: 10.11833/j.issn.2095-0756.20240397
    [2] 何慈颖, 娄和强, 吴家胜.  香榧油脂及其合成调控机制研究进展 . 浙江农林大学学报, 2023, 40(4): 714-722. doi: 10.11833/j.issn.2095-0756.20230224
    [3] 苗大鹏, 贾瑞瑞, 李胜皓, 席烁, 朱葛, 文书生.  木本植物不定根发生机制研究进展 . 浙江农林大学学报, 2022, 39(4): 902-912. doi: 10.11833/j.issn.2095-0756.20210652
    [4] 陆伟杰, 郑伟尉, 吴砚农, 臧运祥.  十字花科植物蜡质形成特性及分子机制研究进展 . 浙江农林大学学报, 2021, 38(1): 205-213. doi: 10.11833/j.issn.2095-0756.20200138
    [5] 钱宇汀, 薛晓峰, 曾燕如, 陈文充, 叶晓明, 喻卫武, 戴文圣.  香榧瘿螨为害对香榧叶片结构及叶绿素质量分数的影响 . 浙江农林大学学报, 2020, 37(2): 296-302. doi: 10.11833/j.issn.2095-0756.2020.02.014
    [6] 王柯杨, 卜柯丽, 马元丹, 栗青丽, 王灵杰, 高岩, 高海波, 张汝民.  毛竹茎秆发育过程中不同节间叶绿素荧光的变化 . 浙江农林大学学报, 2019, 36(4): 697-703. doi: 10.11833/j.issn.2095-0756.2019.04.009
    [7] 刘婧冉, 杜长霞, 樊怀福.  植物嫁接砧穗愈合机制研究进展 . 浙江农林大学学报, 2018, 35(3): 552-561. doi: 10.11833/j.issn.2095-0756.2018.03.022
    [8] 张洁, 尹德洁, 关海燕, 屈琦琦, 董丽.  景天属植物研究综述 . 浙江农林大学学报, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [9] 李珅, 林爱真, 杨媛, 沈亚芳, 饶盈, 羊健, 刘云辉, 王洋, 周伟.  丹参酮生物合成分子调控机制的研究进展 . 浙江农林大学学报, 2018, 35(2): 367-375. doi: 10.11833/j.issn.2095-0756.2018.02.023
    [10] 崔静, 吴记贵, 黄伯高, 蒋万杰, 范雅倩, 程瑾.  兰科植物的生殖隔离 . 浙江农林大学学报, 2016, 33(4): 695-702. doi: 10.11833/j.issn.2095-0756.2016.04.020
    [11] 魏玮, 郭嘉莲, 万琳涛, 徐林峰, 丁明全, 周伟.  小麦粒重形成的分子调控机制研究综述 . 浙江农林大学学报, 2016, 33(2): 348-356. doi: 10.11833/j.issn.2095-0756.2016.02.022
    [12] 吕铖香, 张明如, 邹伶俐.  模拟酸雨与光强处理对芒萁叶绿素及荧光特性的影响 . 浙江农林大学学报, 2015, 32(1): 52-59. doi: 10.11833/j.issn.2095-0756.2015.01.008
    [13] 李亚丹, 杜华强, 周国模, 谷成燕, 徐小军, 孙少波, 高国龙.  雷竹叶绿素与高光谱植被指数关系及其反演模型 . 浙江农林大学学报, 2015, 32(3): 335-345. doi: 10.11833/j.issn.2095-0756.2015.03.002
    [14] 何勇清, 方佳, 余敏芬, 方仲相, 江波, 潘寅辉, 郑炳松.  植物质膜内在水通道蛋白PIPs的分子生物学研究进展 . 浙江农林大学学报, 2012, 29(3): 446-452. doi: 10.11833/j.issn.2095-0756.2012.03.020
    [15] 程建中, 杨萍, 桂仁意.  植物硒形态分析的研究综述 . 浙江农林大学学报, 2012, 29(2): 288-395. doi: 10.11833/j.issn.2095-0756.2012.02.020
    [16] 程莹, 李根有, 夏国华, 黄晌决, 黄宇锋.  楤木属植物组织培养研究综述 . 浙江农林大学学报, 2011, 28(6): 968-972. doi: 10.11833/j.issn.2095-0756.2011.06.022
    [17] 孔红, 成仿云.  滇牡丹分类处理的细胞学与分子生物学证据 . 浙江农林大学学报, 2010, 27(4): 601-605. doi: 10.11833/j.issn.2095-0756.2010.04.021
    [18] 王卫国, 尤汉杰, 陈浩亮, 张宏伟, 金孝锋.  浙江十字花科一地理分布新记录属种 . 浙江农林大学学报, 2009, 26(2): 294-296.
    [19] 曾小红, 伍建榕, 马焕成.  接种根瘤菌的台湾相思对干旱胁迫的生化响应 . 浙江农林大学学报, 2008, 25(2): 181-185.
    [20] 林武星.  自身他感作用物对木麻黄幼苗叶绿素及糖类的影响 . 浙江农林大学学报, 2007, 24(1): 12-16.
  • 期刊类型引用(9)

    1. 程松林,雷平,兰文军,邹思成,张彩霞. 江西武夷山国家级自然保护区脊椎动物资源调查编目(Ⅲ):鸟纲. 南方林业科学. 2024(02): 58-65 . 百度学术
    2. 尉鹏雁,王一桐,蔡斌,刘金福,张惠光. 武夷山国家公园(福建片区)黄腹角雉季节性生境选择. 林业勘察设计. 2024(01): 1-6 . 百度学术
    3. 李玉滢,陈向向,应益山,伊理孝,祝立宏,应建平,林晓越,张敏. 浙江省龙游县野猪种群密度和活动节律研究. 浙江农林大学学报. 2024(06): 1142-1149 . 本站查看
    4. 黄琰彬. 明溪县黄腹角雉分布及日活动节律. 淮北师范大学学报(自然科学版). 2024(04): 48-52 . 百度学术
    5. 林莉斯,赵凯,陈丽群,翁国杭,包其敏. 基于人工巢试验分析黄腹角雉巢卵捕食者. 动物学杂志. 2023(03): 341-347 . 百度学术
    6. 翁国杭. 浙江乌岩岭国家级自然保护区黄腹角雉保护现状与对策. 温带林业研究. 2023(02): 73-77 . 百度学术
    7. 翁国杭,郑方东,林瑞峰,林莉斯,赖家厚,赵凯,张庆朝,张立华,林雪艳. 浙江乌岩岭国家级自然保护区黄腹角雉适宜栖息地利用率研究. 南方林业科学. 2023(03): 70-74 . 百度学术
    8. 庞丽芳,庾太林. 基于MaxEnt模型的黄腹角雉潜在生境预测. 广西师范大学学报(自然科学版). 2023(05): 123-133 . 百度学术
    9. 卢敏勇. 安溪云中山省级自然保护区黄腹角雉资源现状与保护对策. 农业灾害研究. 2022(06): 30-32 . 百度学术

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200132

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/2/412

计量
  • 文章访问数:  1622
  • HTML全文浏览量:  345
  • PDF下载量:  219
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-07-25
  • 网络出版日期:  2021-04-01
  • 刊出日期:  2021-04-01

十字花科植物黄化突变特性及其分子机制研究进展

doi: 10.11833/j.issn.2095-0756.20200132
    基金项目:  国家自然科学基金资助项目(31572130);浙江省自然科学基金资助项目(LY20C150001)
    作者简介:

    吴砚农( ORCID: 0000-0002-7757-2109),从事蔬菜品质调控及分子机制研究。E-mail: 1435966317@qq.com

    通信作者: 臧运祥(ORCID: 0000-0002-3505-7539),教授,博士,从事蔬菜品质调控及分子机制研究。E-mail: yxzang@zafu.edu.cn
  • 中图分类号: S718.3

摘要: 十字花科Brassicaceae植物多数生长发育时间短,生长过程中自然发生,或使用物理或化学方法诱导,常会出现一些颜色较淡或金黄的突变个体即黄化突变体。这些突变体表型直观,表现为植株矮小,叶绿素较低,植株光合作用受抑制,产量降低,因此黄化突变常被视为有害突变。但近20 a来黄化突变体日益受到研究者们的重视与青睐,被用于研究植物叶绿体结构、叶绿素合成代谢等方面。本研究简要介绍了十字花科植物常见的黄化突变类型及其主要的外观特征,综述了十字花科植物黄化突变体的叶绿体超微结构、光合色素及其光合性能,并对十字花科植物黄化突变的遗传特性、分子机制进行了讨论,为十字花科植物叶色突变研究及新品种选育提供理论基础。参52

English Abstract

翁国杭, 姜武, 包其敏, 等. 浙江乌岩岭国家级自然保护区黄腹角雉分布范围[J]. 浙江农林大学学报, 2022, 39(3): 582-589. DOI: 10.11833/j.issn.2095-0756.20210456
引用本文: 吴砚农, 郑伟尉, 陆伟杰, 等. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报, 2021, 38(2): 412-419. DOI: 10.11833/j.issn.2095-0756.20200132
WENG Guohang, JIANG Wu, BAO Qimin, et al. Distribution range of Tragopan caboti in Wuyanling National Nature Reserve of Zhejiang[J]. Journal of Zhejiang A&F University, 2022, 39(3): 582-589. DOI: 10.11833/j.issn.2095-0756.20210456
Citation: WU Yannong, ZHENG Weiwei, LU Weijie, et al. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A&F University, 2021, 38(2): 412-419. DOI: 10.11833/j.issn.2095-0756.20200132
  • 十字花科Brassicaceae植物多为1年生或多年生的草本植物,包含小白菜Brassica rapa ssp. chinensis、甘蓝Brassica oleracea var. capitata、油菜Brassica napus、萝卜Raphanus sativus等蔬菜作物,还有二月兰Orychophragmus violaceus等观赏植物,以及板蓝根Isatis tinctoria等药用植物等。十字花科植物中富含叶绿素,且叶与茎中的叶绿素远高于其他色素,因此外观上呈现绿色,但在彩叶植物或者叶绿素缺失植物中,由于其他色素大幅增加或叶绿素大幅减少而呈现彩色或黄色等。植物中存在着数量巨大的各类突变体,常作为研究植物生理生化机制与基因组功能的重要材料[1-3]。其中一类叶绿素缺失,植株表型黄化的突变体,称为黄化突变体[4-5]。由于黄化性状易观察,可以直观呈现植物体内叶绿素的多寡,且影响植物光合作用及生长发育,因此黄化突变体是研究叶绿素合成代谢的优良材料。本研究对十字花科植物中发现的黄化突变进行分类,总结黄化突变体形态结构及光合色素含量的变化规律,探求黄化形成原因与分子机制,归纳黄化性状遗传模式,为十字花科植物的叶绿素代谢及叶绿体发育等研究提供参考。

    • 十字花科植物中已发现多个叶绿素缺失导致的黄化突变体。小白菜自交系‘564’和品种‘寒青’‘Hanqing’、‘华冠’‘Huaguan’中均发现黄化突变体[6-8]。杨冲等[9]从意大利引进的甘蓝杂交种Hosom自交分离后代中发现叶色黄化、植株矮小的突变体YL-1。杜江涛[10]和侯爱琳[11]对大白菜Brassica rapa ssp. pekinensis DH系‘FT’进行甲基磺酸乙酯(EMS)诱变,分别获得了稳定的黄化突变体lcm2、lcm3。通过自发突变、EMS诱变、氮离子束处理等方式,甘蓝型油菜中也获得了多个黄化突变体,如ny、bnaC.ygl[12-15]。杨胜洪等[16]发现:抽薹期的油菜黄化突变体叶片的叶绿素含量和叶绿素与蛋白质比值只有野生型的一半。此外,FRICK等[17]发现:拟南芥Arabidopsis thalianaporB-1porC-1双突变体在子叶期只含有少量的叶绿素a,形成了一个幼苗致死的黄色表型。

      通过转基因技术也可获得黄化突变体。BANG等[18]研究发现:拟南芥CHL27-T敲除突变体生长迟缓,并且伴随着由叶绿体光系统Ⅱ的反应中心损坏引起的发育缺陷。PRIVAT等[19]发现:反义表达质体SIG2转录因子的拟南芥植物表现出叶绿素缺失的表征,并且只表现在子叶中。KUMAR等[20]通过反义表达HEMA基因,获得了表现出不同程度叶绿素缺失性状的拟南芥转基因植株,如叶片斑块状黄化和全株黄化。以上研究表明:黄化突变表现为植株全株黄化或部分黄化,且黄化性状可稳定遗传。

    • 叶绿素是植物生长必不可少的光合色素,如果叶绿素缺失突变导致叶绿素完全不可合成,或叶绿素含量无法保证植株最低程度的光合作用,植株表现出白化,则易发生致死性突变。KOBAYASHI等[21]报道了1种类囊体膜脂质单氨基半乳糖二酰甘油(MGDG)合成酶1完全缺陷的拟南芥突变体,只在蔗糖存在的情况下才能萌发为细小的白化植株,且幼苗缺乏半乳糖,光合膜被破坏,光合能力受损严重。拟南芥白化突变体cfl1的真叶有白色坏死斑点,叶片发育畸形且不对称,叶边缘缺刻严重,生长缓慢,植株矮小,结实率低[22]。白化突变植株与黄化突变植株相比,叶绿素缺失更为严重,植株生长受到的影响也更大,甚至导致植株无法存活。

    • 在目前发现的黄化突变体中,部分黄化突变体在生长过程中黄化性状减弱,植株随时间延长逐渐复绿。郭士伟等[7]发现小白菜黄化突变体在6叶龄前子叶和真叶均呈淡黄色,在6叶龄后又逐渐复绿,且不受环境影响。甘蓝型油菜黄化突变体ny在苗期前期叶片黄化明显,其后叶色缓慢转变,中后期及衰老期叶片复绿[23]。黄化突变体复绿原因现在还未完全探明,需要进一步深入研究。

    • 多数黄化突变体表现出营养生长缓慢,生殖发育迟缓等现象。拟南芥CHL27敲除后的黄化突变体植株矮小,叶片均匀呈浅绿色,莲座叶弯曲,开花较晚,角果弯曲[18]lzf1突变体幼苗叶绿体发育延迟[24]。青梗菜是小白菜中一类束腰亮绿的优质品种,其564y突变体播种后5 d出现叶色差异,叶片黄化,下胚轴伸长,伴随植株细弱易倒,大部分生长指标明显低于野生型[6]。在甘蓝型油菜和芥菜Brassica juncea型油菜中发现的黄化突变体性状表现相似,均出现初花期推迟,花期较短等特点[8, 25]。甘蓝黄化突变体yl-1,虽然仍能结球,但单球质量只有对照的39.0%[9]。甘蓝型油菜黄化突变体Bnchd1,苗期叶脉间黄化,抽薹期薹叶呈淡绿色,整个生命周期内植株矮化,叶绿体形态异常并伴随着叶绿素提早降解现象,种子产量极低[12]。这些研究表明:黄化突变后植株的生长及发育阶段转变都受到不同程度的影响。

    • 叶绿体由被膜、类囊体和基质3部分构成,若叶绿体的类囊体受到破坏,植物的光合作用及其他生理过程都会受到不同程度的影响。多数黄化突变体具有类囊体结构变异和基粒片层数减少等特征[26]。拟南芥FZL基因敲除突变体中类囊体形态异常,基粒堆叠杂乱,基粒和基质类囊体的相对比例发生改变[27]。烟草Nicotiana tabacum黄化突变体中叶绿体体积变小,数目减少并缺乏大部分类囊体膜,部分叶绿体表现出双重形态[28]。甘蓝型油菜的bnaC.ygl突变体与正常植株T6的叶绿体形状都呈正常纺锤状,但突变体叶绿体的基粒垛叠较少,类囊体膜也明显减少[14]。部分黄化突变体叶绿体中的嗜锇颗粒及淀粉粒含量也会发生变化。青梗菜564y突变体中叶绿体垛叠数明显变少,基粒片层结构难以观测,叶绿体淀粉粒数目较多[6]。甘蓝型油菜黄化突变体中,叶绿体的数量、形状、膜结构均受影响,且类囊体缺失,叶绿体内无淀粉粒,嗜锇颗粒较多,而复绿的叶片细胞内则与正常叶片表现相近[13],甘蓝型油菜突变体cr3529中也有类似特征[26]。吴砚农[29]对小白菜黄化突变体BcL14y-1和BcL14y-2研究发现:BcL14y-1黄化程度较轻,其叶绿体内类囊体垛叠数量有所减少,BcL14y-2黄化程度较重,叶绿体形状不规则,除类囊体垛叠数大量减少外,基粒片层排列混乱,嗜锇颗粒聚集,有过量淀粉粒囤积。拟南芥arc突变体的每个叶肉细胞只有2~15个较大的叶绿体,虽然叶绿体个数减少,但作为补偿,单个质体体积增大,从而保持叶肉细胞体积恒定[30]。OKAZAKI等[31]研究发现:拟南芥过表达质体分裂蛋白(plastid division proteins,PDV)后,叶绿体数量增加但体积减小,而PDV表达水平降低则出现相反结果。正常绿色植物的叶绿体成纺锤状紧贴细胞壁,基粒垛叠数较多且片层结构规整,有少量淀粉粒和嗜锇颗粒分布,而黄化突变植株的叶绿体则会出现不同程度的变异,导致这些变异的原因及分子机制需要进一步深入研究。

    • 多数表现出黄化性状的突变体中,叶绿素含量显著低于野生型,而类胡萝卜素发挥了主导作用,因此叶片呈现出黄色表型。叶绿素包括叶绿素a和叶绿素b,在不同的黄化突变体中,两者质量下降幅度有所不同。陈艳丽[14]发现甘蓝型油菜黄化突变体bnaC.ygl中,叶绿素a和叶绿素b的质量分数分别下降了40.3%和57.7%,叶绿素a/b相较非突变品系T6显著提高,在其他不同的芥菜型油菜黄化突变体和甘蓝型油菜黄化突变体中也有类似表现[9, 18, 22-23]。在青梗菜黄化突变体pylm中,叶绿素a、叶绿素b质量分数分别下降了62.0%和75.0%,类胡萝卜素质量分数也下降了58.0%[8],叶片中的血红素显著上升[32]。大白菜黄化突变体lcm2的叶绿素a、叶绿素b质量分数分别下降了60.25%和70.91%[10],而lcm3的叶绿素a、叶绿素b质量分数则分别降低了33.0%和53.0%[11]。从前人研究结果可以看出:在各类黄化突变体中,叶绿素a和叶绿素b显著下降,尤其是叶绿素b,因此,叶绿素a和叶绿素b在光系统反应中的功能差异及其机制值得进一步研究。

    • 光合作用的能力强弱与植物的生长发育及生殖阶段转变有关。在逆境条件下,叶绿素荧光参数也是衡量光合能力的重要指标[33],黄化突变通常缺失叶绿素,意味着光合能力降低。与野生型相比,青梗菜564y黄化突变体净光合速率显著降低,气孔导度、蒸腾速率稍低,胞间二氧化碳摩尔分数稍高,同时各项荧光动力学参数均降低[6]。油菜黄化突变体ny五叶期的净光合速率,心叶仅为野生型的57.96%,平展叶也只有69.62%,同时各项荧光参数显著低于野生型[23]。甘蓝黄化突变体yl-1在苗期时,净光合速率显著低于野生型,而随着植株生长,突变体逐渐恢复部分光合能力,但仍差异显著[9]。由于叶绿体结构改变及叶绿素含量降低,黄化植株的光合能力总体低于野生型植株。

    • 黄化突变体的叶绿素合成或叶绿体组成受到影响,多由核基因突变造成的。黄化突变中显性突变较少。TSANG等[34]构建的谷氨酸1-半醛氨基转移酶(GSA-AT)甘蓝型油菜反义构建体(GSA),T1代转基因株系中叶绿素含量减少,T2代转基因株系的幼苗分离为深绿色、浅绿色和黄色3种不同的表型,这表明GSA反义基因为显性遗传。

      多数黄化突变为隐性突变,包括单核隐性突变和多核隐性突变2种类型。甘蓝型油菜黄化突变体bnaC.ygl的黄化性状由1对隐性核基因控制,为单核隐性突变[14-15]。芥菜型油菜突变体l638-y的黄化性状由2对隐性核基因GR1与GR2控制[25, 35];甘蓝型油菜叶绿素缺失突变体Bnchd1的黄化性状由2个隐性基因BnChd1-1和BnChd1-2控制[12];青梗菜黄化突变体pylm由2对隐性重叠基因(PY1和PY2)互作控制[8]

    • 黄化突变直接原因为叶绿素缺失,因叶绿素合成途径受阻所致。参考吴自明等[36]对被子植物叶绿素合成途径及反应所需酶的总结,整理出以谷氨酸和α-酮戊二酸为原料,依次合成L-谷氨酰-tRNA、谷氨酸酯-1-半醛、δ-氨基酮戊酸、胆色素原、羟甲基胆后色素原、尿卟琳Ⅲ、粪卟啉原Ⅲ、原卟啉原Ⅸ、原卟啉Ⅸ、镁原卟啉Ⅸ、镁原卟啉Ⅸ单甲酯、二乙烯原叶绿素酸酯、原叶绿素酸酯、叶绿素酸酯,最终合成叶绿素a和叶绿素b的途径。

      这些中间产物由20多个基因编码的15种酶参与合成[37]。甘蓝型油菜叶绿素b缺失突变体cr3529的叶绿素合成受阻于胆色素原合成尿卟啉Ⅲ的反应步骤[38]。芥菜型油菜黄化突变体l638-y的黄化性状主要由叶绿素合成途径中粪卟啉原Ⅲ-原卟啉Ⅸ位点受阻引起[39]。拟南芥镁原卟啉Ⅸ甲基转移酶(CHLM)敲除突变体,由于镁原卟啉Ⅸ下游的阻断,导致叶绿素生物合成中间物质的积累[40]。LARKIN[41]使用除草剂Norflurazon阻止叶绿体发育,利用LHCB报告基因在叶绿体没有正常发育的情况下,鉴定了5个LHCB受抑制的突变体(gun1~gun5),其中gun2、gun3、gun4、gun5影响质体酶合成所需的4种物质以及叶绿素前体物质镁原卟啉Ⅸ的水平。KOBAYASHI等[42]通过拟南芥叶绿素缺失突变体研究了类囊体脂基质主要物质MgdG、GgdG合成的关键酶MGD1和DGD1在拟南芥中的表达谱,发现MGD1和DGD1的表达受光诱导,其中细胞分裂素信号转导和长下胚轴5介导的光信号转导都起着关键作用。HUANG等[43]发现镁螯合酶(CHLI)的I亚基由拟南芥中的2个基因CHLI1和CHLI2编码,CHLI1和CHLI2的双敲除突变体为白化性状,而CHLI1单敲除突变体为淡绿色,这表明CHLI2在一定程度上可以替代CHLI1。镁原卟啉Ⅸ是血红素和叶绿素的生物合成途径中的最后1个共同中间体,因此血红素合成途径出现突变,也会影响叶绿素的合成。青梗菜pylm黄化突变体的叶片血红素含量显著高于对照,说明血红素具有反馈调节作用,血红素过量积累反馈抑制谷氨酰-tRNA还原酶的活性,抑制δ-氨基酮戊酸的合成[32]

    • 叶绿体的合成是一个复杂的过程,多数叶绿体蛋白由核基因编码,再通过细胞质的加工处理,最终在叶绿体内发挥功能[44]。光调节锌指蛋白1(LZF1)在拟南芥脱黄化过程中起正调节作用[45]。拟南芥Dynamin超家族新成员FZL,为类似FZO的1种膜重塑蛋白,其过表达后导致类囊体组织缺陷,但其表达水平不影响叶绿体的形态及超微结构[27]。沉默氨酰还原酶(ARSs)后,GluRS和SerRS无法正常表达,导致叶绿体异常,类囊体发育不全,表现出严重的黄化性状,但许多编码叶绿体或线粒体靶向蛋白的核基因表达以及叶绿素的生物合成没有改变[28]

      甘蓝型油菜cr3529突变体中,类囊体膜蛋白LHCⅡ的组成未发生改变,但捕光色素蛋白复合物含量明显减少[46]。MIURA等[47]对拟南芥叶斑突变体var2进行了研究,认为蛋白质合成和降解之间的平衡是导致拟南芥叶色表型的决定因素之一。GUN2和GUN3是已知光致变种hy1和hy2的等位基因,是从血红素合成植物嗜铬蛋白所必需的,而GUN5与另一个镁螯合酶亚基(ChlI)突变体表型的比较表明:ChlH蛋白在质体信号转导途径中具有特定的功能[48]。拟南芥VAR3基因突变后,体细胞区域的叶绿体缺失或发育迟缓,栅栏细胞数量大量减少[49],在SAKAMOTO[50]的研究中也有类似报道。SJOGREN等[51]研究证明了拟南芥CLP蛋白酶对叶绿体发育和功能起到至关重要的作用。ZALTSMAN等[52]研究发现:FTSH蛋白酶在叶绿体生物合成和类囊体的维持中起重要作用,且其中部分FTSH基因可能存在冗余,不同的FTSH基因突变体之间的杂交会出现白化、不育等多种新的表型。

    • 叶绿素是植物进行光合作用的主要色素,在光合作用的光吸收中起核心作用。目前模式植物拟南芥中叶绿素合成代谢、叶绿体结构功能已经了解得比较清楚。在此基础上,利用其他十字花科植物黄化突变体,研究十字花科植物黄化形成的分子机制,将为十字花科植物的相关研究奠定坚实基础。首先增加叶绿素含量,提高光合效率从而达到增产目的;其次将叶色变异应用于高光能育种研究,避免强光下光系统受到伤害,提高植物对强光的耐受性;再次利用叶色突变体植物具有的特殊利用价值,为创造叶色丰富的观赏品种提供宝贵资源。十字花科植物黄化突变不论在理论研究还是实践应用方面都将是重要的研究方向。

参考文献 (52)

目录

/

返回文章
返回