留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木本植物不定根发生机制研究进展

苗大鹏 贾瑞瑞 李胜皓 席烁 朱葛 文书生

苗大鹏, 贾瑞瑞, 李胜皓, 等. 木本植物不定根发生机制研究进展[J]. 浙江农林大学学报, 2022, 39(4): 902-912. DOI: 10.11833/j.issn.2095-0756.20210652
引用本文: 苗大鹏, 贾瑞瑞, 李胜皓, 等. 木本植物不定根发生机制研究进展[J]. 浙江农林大学学报, 2022, 39(4): 902-912. DOI: 10.11833/j.issn.2095-0756.20210652
MIAO Dapeng, JIA Ruirui, LI Shenghao, et al. Research advances in the mechanism of adventitious root occurrence in woody species[J]. Journal of Zhejiang A&F University, 2022, 39(4): 902-912. DOI: 10.11833/j.issn.2095-0756.20210652
Citation: MIAO Dapeng, JIA Ruirui, LI Shenghao, et al. Research advances in the mechanism of adventitious root occurrence in woody species[J]. Journal of Zhejiang A&F University, 2022, 39(4): 902-912. DOI: 10.11833/j.issn.2095-0756.20210652

木本植物不定根发生机制研究进展

DOI: 10.11833/j.issn.2095-0756.20210652
基金项目: 国家自然科学基金资助项目(32001359);江苏省自然科学基金资助项目(BK20180771);江苏高校优势学科建设工程资助项目(PAPD);南京林业大学青年科技创新基金(CX2018026);南京林业大学大学生创新训练计划项目(2021NFUSPITP0015)
详细信息
    作者简介: 苗大鹏(ORCID: 0000-0002-8241-9520),从事园林繁殖栽培与生物技术研究。E-mail: 1012042154@qq.com
    通信作者: 文书生(ORCID: 0000-0003-0983-6755),讲师,从事园林繁殖栽培与生物技术研究。E-mail: shusheng0507@126.com
  • 中图分类号: S718.3

Research advances in the mechanism of adventitious root occurrence in woody species

  • 摘要: 不定根是植物的茎或叶等非中柱鞘组织产生的根,不定根发生困难是诸多木本植物无性繁殖和工厂化育苗的瓶颈问题,然而相关机制尚不明晰。目前,对于木本植物不定根发生机理的研究主要包括3个方面:①根原基的形成是不定根发生的关键,利用石蜡切片技术对根原基的形成时间和部位进行观察,同时依据组织形态观察结果将不定根发生过程划分为3个主要时期。②不定根发生是一个复杂的生理生化过程,内源激素含量和生根关联酶活性的动态变化在不定根发生过程中发挥着重要调控作用。此外,营养物质、酚类物质以及多胺等物质也被认为是影响不定根发生的重要因素。③探究了部分木本植物不定根发生过程中的关键代谢通路,并挖掘出多个调控不定根发生的基因,鉴定出诸多参与不定根发生的转录因子和非编码的微小核糖核酸(microRNA)。综上,本研究系统概述了木本植物不定根发生的组织学、生理学和分子调控机制的研究进展,并展望了未来该领域的可行性研究方向。表1参80
  • 表  1  木本植物不定根发生相关调控因子

    Table  1.   Regulation factors related to adventitious root in woody species

    类型名称描述植物研究结果参考文献
    基因 ARRO-1 木本植物不定根发生的分子 标记之一 苹果、小金海棠、牡丹‘乌龙捧盛’ 其表达与根原基的形成密切相关, 调控内源生长素的动态平衡 [6466]
    LRP1 不定根原基分化早期阶段的 分子标记之一 核桃、南林895杨 根原基发端组织中特异性表达,根 原基形成阶段强烈表达 [67]
    PRP1,2 编码脯氨酸富含蛋白 葡萄 脱分化期的薄壁组织中优先表达且 水平高,改变细胞壁特性 [68]
    YUCCA 编码IAA生物合成限速酶的 基因之一 84K杨 缩短根形成的时间,促进根系发育, 促进形成层区域分生细胞的分裂 [5]
    TIR1 编码生长素受体转运抑制应 答因子 鲁桑 诱导期与分化期迅速上调表达,参 与调控不定根原基的产生与发育 [69]
    GH3家族 生长素早期响应基因家族 鲁桑 GH3.1与ILL5共同调控内源生长素 浓度,促进不定根发生 [70]
    PIN家族 编码生长素极性运输所依赖 的转运蛋白 芒果 调控组织内生长素富集,从而促进 其不定根发生 [71]
    转录因子家族 AP2/EREBP 调控植物逆境应答和生长发 育的信号转导 毛果杨 促进根原基的形成,增加不定根数 量,缩短根形成时间 [72]
    ARFs 调控生长素信号转导 苹果、油橄榄、杜仲 调控不定根发生过程中的生长素
     水平
    [73]
    GRAs 维持分生组织的分生活性、 影响根的发育和调控激素 信号转导 欧洲栗、辐射松、核桃 促进根原基的形成 [6, 74]
    LBD 调控愈伤组织的形成 84K杨 促使愈伤组织过度膨大,植株不定 根数量减少,根长缩短 [75]
    MYB 参与植物次生代谢、细胞分 化、抗逆反应 鲁桑 促进插穗薄壁细胞的分化 [76]
    NAC 参与侧根发育、根尖分生组 织发育、维管木质化、非 生物胁迫和防卫反应 南林895杨 参与不定根原基的启动诱导和侧根 的发育 [67]
    WOX 维持根尖维管分生组织中干 细胞活性和调控生根过程 激素信号 日本落叶松、84K杨 调控生长素、茉莉酸、脱落酸信号 通路,影响生长素的极性运输 [77]
    WRKY 参与防卫反应、机械创伤修 复和生长发育 南林895杨 参与插穗的创伤修复和防卫反应以 及植物系统获得性抗性防御或者 响应环境胁迫 [67]
    microRNA mdm-miR156 调控植物次生代谢、光信号 转导和胁迫响应 小金海棠 下调转录因子MxSPL26的水平,促 进不定根原基的启动和发育良  好,提高生根率与生根速度 [7]
    mdm-miR160 靶向生长素响应因子    (ARF)家族 圆叶海棠 靶向调控MdARF16和MdARF17的 表达,抑制不定根发生 [78]
    miR396 负调控生长调节因子(GRF) 苹果 靶向调控MdGRF1和MdGRF5的表 达,参与不定根诱导期和根伸长 期的发育 [79]
    miR319a 调控激素合成 毛白杨 靶向调控TCP19的表达,影响生长 素信号转导,负调控不定根发生 [80]
      说明:小金海棠 Malus xiaojinensis;牡丹‘乌龙捧盛’ Paeonia suffruticosa ‘Wulongpengsheng’;葡萄 Vitis vinifera;84K 杨      Populus alba × Populus glandulosa;鲁桑 Morus multicaulis;芒果 Mangifera indica;毛果杨 Populus trichocarpa;油橄榄 Olea      europaea;杜仲 Eucommia ulmoides;欧洲栗 Pinus radiata;辐射松 Castanea sativa;日本落叶松 Larix kaempferi;圆叶海棠      Malus prunifolia var. ringo
    下载: 导出CSV
  • [1] 郭素娟. 林木扦插生根的解剖学及生理学研究进展[J]. 北京林业大学学报, 1997, 19(4): 66 − 71.

    GUO Sujuan. Process of study on rooting anatomy and physiology of forest tree cuttings [J]. J Beijing For Univ, 1997, 19(4): 66 − 71.
    [2] 陈雪梅, 高红兵, 王沙生. 3种杨树扦插生根期间内源激素水平的比较研究[J]. 林业科学, 1994, 30(1): 1 − 7.

    CHEN Xuemei, GAO Hongbing, WANG Shasheng. Studies on endogenous hormone levels in cuttings of three poplar species during rooting process [J]. Sci Silv Sin, 1994, 30(1): 1 − 7.
    [3] 谢寅峰, 王莹, 张志敏, 等. 青钱柳子叶不定根的发生机制[J]. 林业科学, 2009, 45(12): 72 − 76.

    XIE Yinfeng, WANG Ying, ZHANG Zhimin, et al. Preliminary studies on mechanism of cotyledon adventitious root formation of Cyclocarya paliurus [J]. Sci Silv Sin, 2009, 45(12): 72 − 76.
    [4] 徐继忠, 陈四维. 桃硬枝插条内源激素(ABA、IAA)含量变化对生根的影响[J]. 园艺学报, 1989, 16(4): 275 − 278.

    XU Jizhong, CHEN Siwei. The effect of the changes of the endogenous hormone’ s contents (ABA and IAA) in hardwood cuttings of peach to rooting [J]. Acta Hortic Sin, 1989, 16(4): 275 − 278.
    [5] 贾新锐. 形成层特异表达生长素合成基因对杨树不定根发生的影响[D]. 泰安: 山东农业大学, 2020.

    JIA Xinrui. Specifically Enhanced Expression of Auxin Synthetic Gene Affected the Formation of Adventitious Root in Poplar[D]. Tai’ an: Shandong Agricultural University, 2020.
    [6] STEVENS M E, WOESTE K E, PIJUT P M. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L. ) [J]. Tree Physiol, 2018, 38(6): 877 − 894.
    [7] XU Xiaozhao, LI Xu, HU Xingwang, et al. High miR156 expression is required for auxin-induced adventitious root formation via MxSPL26 independent of PINs and ARFs in Malus xiaojinensis [J]. Front Plant Sci, 2017, 8: 1059 − 1076.
    [8] HARTMANN H T. Hartmann and Kester’s Plant Propagation: Principles and Practices[M]. 7rd ed. Boston: Prentice Hall, 2002.
    [9] 肖正昂. 杨树不定根调控基因的筛选与功能鉴定[D]. 武汉: 华中农业大学, 2020.

    XIAO Zheng’ ang. Identification and Functional Characterization of Genes Regulation Adventitious Root[D]. Wuhan: Huazhong Agricultural University, 2020.
    [10] 张恒. 冬青属植物资源收集与无性繁殖技术研究[D]. 杭州: 浙江农林大学, 2011.

    ZHANG Heng. Resource Collection and Vegetative Propagation Technique Studies on Ilex species[D]. Hangzhou: Zhejiang A&F University, 2011.
    [11] 盛丽莉, 陈颖, 汪南阳, 等. 银杏不同外植体的细胞学观察: 体胚发生不定芽诱导及不定根的发生过程[J]. 中南林业科技大学学报, 2012, 32(4): 153 − 158.

    SHENG Lili, CHEN Ying, WANG Nanyang, et al. Histological observation of somatic embryogenesis and adventitious buds induction from Ginkgo biloba L. different expalnts in vitro culture [J]. J Cent South Univ For Technol, 2012, 32(4): 153 − 158.
    [12] 贺丹, 王政, 何松林. 牡丹试管苗生根过程解剖结构观察及相关激素与酶变化的研究[J]. 园艺学报, 2011, 38(4): 770 − 776.

    HE Dan, WANG Zheng, HE Songlin. Adventitious root generating process and hormone and enzyme changes in vitro Paeonia suffruticosa [J]. Acta Hortic Sin, 2011, 38(4): 770 − 776.
    [13] 吕梅, 方炎明, 尹增芳. 桤木插穗不定根发生与发育的解剖学观察[J]. 西北植物学报, 2007, 27(5): 859 − 863.

    LÜ Mei, FANG Yanming, YIN Zengfang. The origin and development of adventitious roots in alder cuttings [J]. Acta Bot Boreali-Occident Sin, 2007, 27(5): 859 − 863.
    [14] 张钢民, 杨文利, 贾玉彬, 等. 矮紫杉插条生根的解剖研究[J]. 园艺学报, 1999, 26(3): 201 − 203.

    ZHANG Gangming, YANG Wenli, JIA Yubin, et al. An anatomical study on rooting of cuttings of Taxus cuspidata var. nana [J]. Acta Hortic Sin, 1999, 26(3): 201 − 203.
    [15] 扈顺, 刘果厚. 四合木茎插穗生根的解剖学研究[J]. 西北植物学报, 2014, 34(2): 291 − 297.

    HU Shun, LIU Guohou. Anatomical characteristics of Tetraena mongolica Maxim. stem cutting rooting [J]. Acta Bot Boreali-Occident Sin, 2014, 34(2): 291 − 297.
    [16] 文书生. ‘正午’牡丹微繁殖技术研究[D]. 北京: 北京林业大学, 2016.

    WEN Shusheng. Studies on the Micropropagation of Tree Peony (Paeonia × lemoinei ‘High Noon’) [D]. Beijing: Beijing Forestry University, 2016.
    [17] 白晓燕, 王力荣, 王新卫, 等. 桃砧木组织培养和扦插生根的解剖学观察[J]. 果树学报, 2015, 32(1): 74 − 78.

    BAI Xiaoyan, WANG Lirong, WANG Xinwei, et al. Microscopic observation on adventitious root development of micropropagation and cutting propagation on peach rootstocks [J]. J Fruit Sci, 2015, 32(1): 74 − 78.
    [18] 刘国彬, 赵今哲, 张玉平, 等. 侧柏扦插不定根发生模式研究[J]. 西北植物学报, 2020, 40(6): 987 − 996.

    LIU Guobin, ZHAO Jinzhe, ZHANG Yuping, et al. Study on the occurrence pattern of adventitious roots from hardwood branches of Platycladus orientalis [J]. Acta Bot Boreali-Occident Sin, 2020, 40(6): 987 − 996.
    [19] 许晓岗, 汤庚国, 童丽丽. 海棠果插穗扦插生根过程解剖学观察[J]. 南京林业大学学报(自然科学版), 2006, 30(4): 77 − 80.

    XU Xiaogang, TANG Gengguo, TONG Lili. The anatomical observation on the rooting of the cutting of Malus prunifolia Borkh [J]. J Nanjing For Univ Nat Sci Ed, 2006, 30(4): 77 − 80.
    [20] 杜常健, 孙佳成, 韩振泰, 等. 板栗扦插生根过程的解剖结构和生理变化研究[J]. 西北植物学报, 2019, 39(11): 1979 − 1987.

    DU Changjian, SUN Jiacheng, HAN Zhentai, et al. Study on changes of anatomical structure and physiology during cuttings rooting of Castanea mollissima [J]. Acta Bot Boreali-Occident Sin, 2019, 39(11): 1979 − 1987.
    [21] 李小方, 汤章城, 何玉科. 不定根的形态发生与调节机制[J]. 细胞生物学杂志, 2001, 23(3): 130 − 136.

    LI Xiaofang, TANG Zhangcheng, HE Yuke. Morphogenesis and regulatory mechanisms of adventitious roots [J]. Chin J Cell Biol, 2001, 23(3): 130 − 136.
    [22] 欧阳芳群, 付国赞, 王军辉, 等. 欧洲云杉扦插生根进程中内源激素和多酚类物质变化[J]. 林业科学, 2015, 51(3): 155 − 162.

    OUYANG Fangqun, FU Guozan, WANG Junhui, et al. Qualitative analysis of endogenesis hormone and polyphenol during rooting of cuttings in Norway spruce (Picea abies) [J]. Sci Silv Sin, 2015, 51(3): 155 − 162.
    [23] 王青, 张捷, 仲崇禄, 等. 麻楝扦插生根进程中内源激素和营养物质含量的变化[J]. 中南林业科技大学学报, 2020, 40(4): 111 − 119.

    WANG Qing, ZHANG Jie, ZHONG Chonglu, et al. Variation of endogenesis hormone and nutritive matter concentration in Chukrasia tabularis cuttings during rooting [J]. J Cent South Univ For Technol, 2020, 40(4): 111 − 119.
    [24] 尚文倩, 王政, 何松林, 等. 牡丹试管苗生根过程中内源IAA及相关酶活性的变化[J]. 西北农林科技大学学报(自然科学版), 2021, 49(2): 129 − 136.

    SHANG Wenqian, WANG Zheng, HE Songlin, et al. Changes of endogenous IAA and related enzyme activities during rooting of Paeonia suffruticosa in vitro [J]. J Northwest A&F UnivNat Sci Ed, 2021, 49(2): 129 − 136.
    [25] de ALMEIDA M R, de BASTIANI D, GAETA M L, et al. Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus [J]. Plant Sci, 2015, 239: 155 − 165.
    [26] 徐克章. 植物生理学[M]. 北京: 中国农业出版社, 2007.

    XU Kezhang. Plant Physiology[M]. Beijing: China Agricultural Press, 2007.
    [27] ELMONGY M S, ZHOU Hong, CAO Yan, et al. The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea [J]. Sci Hortic, 2018, 227(1): 234 − 243.
    [28] WANG Zhiquan, HUA Jianfeng, YIN Yunlong, et al. An integrated transcriptome and proteome analysis reveals putative regulators of adventitious root formation in Taxodium ‘Zhongshanshan’ [J]. Int J Mol Sci, 2019, 20(5): 1225 − 1246.
    [29] 郭素娟, 凌宏勤, 李凤兰. 白皮松插穗生根的生理生化基础研究[J]. 北京林业大学学报, 2004, 26(2): 43 − 47.

    GUO Sujuan, LING Hongqin, LI Fenglan. Physiological and biochemical basis of rooting of Pinus bungeana cuttings [J]. J Beijing For Univ, 2004, 26(2): 43 − 47.
    [30] ZHAO Di, WANG Yantao, FENG Chen, et al. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants [J]. Plant J, 2020, 103(1): 166 − 183.
    [31] 刘关君, 李绪尧, 由香玲, 等. 长白落叶松插穗内源激素变化与不定根产生的关系[J]. 东北林业大学学报, 2000, 28(1): 19 − 20.

    LIU Guanjun, LI Xuyao, YOU Xiangling, et al. Relationship between endogenous hormone changes of softwood cuttings and adventitious roots of Larix olgensis emerging [J]. J Northeast For Univ, 2000, 28(1): 19 − 20.
    [32] 董胜君, 刘明国, 戴菲, 等. 山杏嫩枝扦插生根过程中插穗内源激素含量的变化[J]. 经济林研究, 2013, 31(4): 108 − 114.

    DONG Shengjun, LIU Mingguo, DAI Fei, et al. Variation of endogenous hormone contents in softwood cuttings of Armeniaca sibirica during adventitious root formation [J]. Non-wood For Res, 2013, 31(4): 108 − 114.
    [33] BRIAN P W, HEMMING H G, LOWE D. Inhibition of rooting of cuttings by gibberellic acid [J]. Ann Bot, 1960, 24(4): 407 − 419.
    [34] 郑均宝, 裴保华, 耿桂荣. 毛白杨插穗生根的研究[J]. 东北林业大学学报, 1988, 16(6): 34 − 41.

    ZHENG Junbao, PEI Baohua, GENG Guirong. A study on the rooting of Populus tomentosa CARR. cuttings [J]. J Northeast For Univ, 1988, 16(6): 34 − 41.
    [35] 郑均宝, 刘玉军, 裴保华, 等. 几种木本植物插穗生根与内源IAA、ABA的关系[J]. 植物生理学报, 1991, 17(3): 313 − 316.

    ZHENG Junbao, LIU Yujun, PEI Baohua, et al. Relationship between adventitious root formation and endogenous IAA and ABA of several tree species [J]. Physiol Mol Biol Plants, 1991, 17(3): 313 − 316.
    [36] WANG Yin, YAO Ruiling. Increased endogenous indole-3-acetic acid: abscisic acid ratio is a reliable marker of Pinus massoniana rejuvenation [J]. Biotech Histochem, 2019, 94(7): 546 − 553.
    [37] 张晓平, 方炎明, 黄绍辉. 杂种鹅掌楸扦插生根过程中内源激素的变化[J]. 南京林业大学学报(自然科学版), 2004, 28(3): 79 − 82.

    ZHANG Xiaoping, FANG Yanming, HUANG Shaohui. The endogenous hormone’ s variation during the adventitious roots formation of hybrid tulip trees by cutting [J]. J Nanjing For Univ Nat Sci Ed, 2004, 28(3): 79 − 82.
    [38] 王清民, 彭伟秀, 张俊佩, 等. 核桃试管嫩茎生根的形态结构及激素调控研究[J]. 园艺学报, 2006, 33(2): 255 − 259.

    WANG Qingming, PENG Weixiu, ZHANG Junpei, et al. Histological and hormonal characters during the rhizogenesis of in vitro walnut shoots [J]. Acta Hortic Sin, 2006, 33(2): 255 − 259.
    [39] DRUEGE U, PHILIPP F, LISCHEWSKI S, et al. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings [J]. Front Plant Sci, 2014, 5: 494 − 513.
    [40] PARK S H, ELHITI M, WANG Huaiyu, et al. Adventitious root formation of in vitro peach shoots is regulated by auxin and ethylene [J]. Sci Hortic, 2017, 226: 250 − 260.
    [41] JIN H, DO J, SHIN S J, et al. Exogenously applied 24-epi brassinolide reduces lignification and alters cell wall carbohydrate biosynthesis in the secondary xylem of Liriodendron tulipifera [J]. Phytochemistry, 2014, 101: 40 − 51.
    [42] BELLINI C, PACURAR D, PERRONE I. Adventitious roots and lateral roots: similarities and differences [J]. Annu Rev Plant Biol, 2014, 65(1): 639 − 666.
    [43] HUANG Huang, LIU Bei, LIU Liangyu, et al. Jasmonate action in plant growth and development [J]. J Exp Bot, 2017, 68(6): 1349 − 1359.
    [44] GUTIERREZ L, MONGELARD G, FLOKOVA K, et al. Auxin controls arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis [J]. Plant Cell, 2012, 24(6): 2515 − 2527.
    [45] AGULLÓ-ANTÓN M Á, FERRÁNDEZ-AYELA A, FERNÁNDEZ-GARCÍA N, et al. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings [J]. Physiol Plant, 2014, 150(3): 446 − 462.
    [46] 燕雪蒙. 胡杨等3种杨树生根期间内源激素及酶活性变化分析[D]. 西宁: 青海大学, 2013.

    YAN Xuemeng. Studies on Endogenous Hormone Levels and Enzyme Activity in Cuttings of Populus euphratica Oliv Three Poplar Species during Rooting Process[D]. Xining: Qinghai University, 2013.
    [47] ZHANG Wangxiang, FAN Junjun, TAN Qianqian, et al. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings[J/OL]. PLoS One, 2017, 12(2): e0172320[2021-08-20]. doi: 10.1371/journal.pone.0172320.
    [48] 王艳晶, 彭祚登. 不同处理对国槐硬枝扦插生根的影响及生根过程中相关氧化酶活性的变化[J]. 中南林业科技大学学报, 2017, 37(9): 74 − 79.

    WANG Yanjing, PENG Zuodeng. Effects of different treatments on hardwood-cutting rooting and related oxidase activity changes during rooting of Sophora japonica [J]. J Cent South Univ For Technol, 2017, 37(9): 74 − 79.
    [49] 周祥明, 刘玉堂, 赵宪争, 等. 合欢硬枝扦插生根解剖及相关酶活性变化研究[J]. 植物研究, 2016, 36(1): 58 − 61.

    ZHOU Xiangming, LIU Yutang, ZHAO Xianzheng, et al. Rooting anatomy of hardwood cutting for Albizia julibrissin Duraxx. and activity change of related enzymes during rooting process [J]. Bull Bot Res, 2016, 36(1): 58 − 61.
    [50] 黄卓烈, 李明, 詹福建, 等. 不同生长素处理对桉树无性系插条氧化酶活性影响的比较研究[J]. 林业科学, 2002, 38(4): 46 − 52.

    HUANG Zhuolie, LI Ming, ZHAN Fujian, et al. Study on the comparison of the changes of oxidase activities in Eucalyptus cuttings treated with different auxins [J]. Sci Silv Sin, 2002, 38(4): 46 − 52.
    [51] 王改萍, 王晓聪, 章雷, 等. 楸树扦插过程中插穗内含物变化分析[J]. 浙江农林大学学报, 2021, 38(2): 296 − 303.

    WANG Gaiping, WANG Xiaocong, ZHANG Lei, et al. Cutting test of Catalpa bungei and change analysis of cutting contents [J]. J Zhejiang A&F Univ, 2021, 38(2): 296 − 303.
    [52] BASSUK N L, HUNTER L D, HOWARD B H. The apparent involvement of polyphenol oxidase and phloridzin in the production of apple rooting cofactors [J]. J Hortic Sci, 1981, 56(4): 313 − 322.
    [53] GEBHARDT K. Activation of indole-3-acetic acid oxidase from horseradish and Prunus by phenols and H2O2 [J]. Plant Growth Regul, 1982, 1(2): 73 − 84.
    [54] 闫帅, 张少瑜, 徐锴, 等. 杜梨组培生根过程中多胺、内源激素及相关氧化酶活性的变化[J]. 果树学报, 2019, 36(3): 318 − 326.

    YAN Shuai, ZHANG Shaoyu, XU Kai, et al. Dynamic changes in polyamines, endogenous hormones and oxidase activities during rooting of in vitro plantlets of Pyrus betulifolia Bunge [J]. J Fruit Sci, 2019, 36(3): 318 − 326.
    [55] 宋金耀, 何文林, 李松波, 等. 毛白杨嵌合体扦插生根相关理化特性分析[J]. 林业科学, 2001, 37(5): 64 − 67.

    SONG Jinyao, HE Wenlin, LI Songbo, et al. Analysis of physiological and biochemical characteristics related to cutting and rooting of chimera in Populus tomentosa CARR [J]. Sci Silv Sin, 2001, 37(5): 64 − 67.
    [56] 扈红军, 曹帮华, 尹伟伦, 等. 不同处理对欧榛硬枝扦插生根的影响及生根过程中相关氧化酶活性的变化[J]. 林业科学, 2007, 43(12): 70 − 75.

    HU Hongjun, CAO Banghua, YIN Weilun, et al. Effects of different treatments on hardwood-cutting rooting and related oxidase activity changes during rooting of Corylus avellana [J]. Sci Silv Sin, 2007, 43(12): 70 − 75.
    [57] 郑巧巧, 兰思仁, 刘雪蝶, 等. 生长调节剂对‘香妃’含笑扦插生根及相关酶活性的影响[J]. 中南林业科技大学学报, 2020, 40(5): 67 − 76.

    ZHENG Qiaoqiao, LAN Siren, LIU Xuedie, et al. Effects of growth regulators on rooting and correlative enzyme activities of Michelia figo ‘Xiangfei’ cuttings [J]. J Cent South Univ For Technol, 2020, 40(5): 67 − 76.
    [58] 王政, 申萍, 王照路, 等. 牡丹试管苗与扦插苗生根过程中营养物质含量变化研究[J]. 河南农业大学学报, 2015, 49(3): 349 − 352.

    WANG Zheng, SHEN Ping, WANG Zhaolu, et al. Study on the change of nutrient content of peony cuttings and plantlets in vitro during root-inducing [J]. J Henan Agric Univ, 2015, 49(3): 349 − 352.
    [59] 梁玉堂, 龙庄如. 树木营养繁殖原理和技术[M]. 北京: 中国林业出版社, 1993.

    LIANG Yutang, LONG Zhuangru. Principles and Techniques of Vegetative Propagation of Trees[M]. Beijing: China Forestry Press, 1993.
    [60] 麻文俊, 王军辉, 张守攻, 等. 日本落叶松无性系扦插生根过程中多酚类物质研究[J]. 北京林业大学学报, 2011, 33(1): 150 − 154.

    MA Wenjun, WANG Junhui, ZHANG Shougong, et al. Qualitative analysis of phenolic compounds in the Japanese larch during the rooting of cuttings [J]. J Beijing For Univ, 2011, 33(1): 150 − 154.
    [61] DENAXA N, VEMMOS S N, ROUSSOS P A. Shoot girdling improves rooting performance of kalamata olive cuttings by upregulating carbohydrates, polyamines and phenolic compounds [J]. Agriculture, 2021, 11(1): 71 − 87.
    [62] CRISTOFORI V, ROUPHAEL Y, RUGINI E. Collection time, cutting age, IBA and putrescine effects on root formation in Corylus avellana L. cuttings [J]. Sci Hortic, 2010, 124(2): 189 − 194.
    [63] 汪结明, 李瑞雪, 魏万亮. 氯化钙处理对垂枝樱花扦插生根及抗氧化酶活性的影响[J]. 热带作物学报, 2011, 32(4): 694 − 697.

    WANG Jieming, LI Ruixue, WEI Wanliang. Effects of CaCl2 on rooting and antioxidant enzyme activities of Cerasus subhirtella var. pendula [J]. Chin J Trop Crops, 2011, 32(4): 694 − 697.
    [64] LI Tongyin, WANG Yi, ZHANG Xinzhong, et al. Isolation and characterization of ARRO-1 genes from apple rootstocks in response to auxin treatment [J]. Plant Mol Biol Rep, 2012, 30(6): 1408 − 1414.
    [65] 贺丹, 李睿, 纪思羽, 等. 牡丹不定根形成相关基因PsARRO-1的克隆及表达分析[J]. 植物生理学报, 2014, 50(8): 1151 − 1158.

    HE Dan, LI Rui, JI Siyu, et al. Cloning and expression analysis of adventitious rooting related gene PsARRO-1 of tree peony [J]. Plant Physiol J, 2014, 50(8): 1151 − 1158.
    [66] BUTLER E D, GALLAGHER T F. Characterization of auxin-induced ARRO-1 expression in the primary root of Malus domestica [J]. J Exp Bot, 2000, 51(351): 1765 − 1766.
    [67] 胥猛. 杨树不定根发育的基因表达调控研究[D]. 南京: 南京林业大学, 2008.

    XU Meng. Research on Gene Expression and Regulation of Populus Adventitious Root Development [D]. Nanjing: Nanjing Forestry University, 2008.
    [68] THOMAS P, LEE M M, SCHIEFELBEIN J. Molecular identification of proline-rich protein genes induced during root formation in grape (Vitis vinifera L. ) stem cuttings [J]. Plant Cell Environ, 2003, 26(9): 1497 − 1504.
    [69] 唐壮, 杜伟, 李小玉, 等. 桑树TIR1基因的克隆及在组织器官和扦插生根过程的表达分析[J]. 蚕业科学, 2014, 40(5): 790 − 796.

    TANG Zhuang, DU Wei, LI Xiaoyu, et al. Cloning and expression analysis of mulberry TIR1 gene in various organs and in rooting process of cuttings [J]. Acta Sericologica Sin, 2014, 40(5): 790 − 796.
    [70] 杜伟, 曹旭, 黄平, 等. 9个基因在桑树硬枝扦插生根过程中的表达特性分析[J]. 蚕业科学, 2019, 45(2): 157 − 164.

    DU Wei, CAO Xu, HUANG Ping, et al. Expression characteristics of nine genes in rooting process of mulberry hardwood cutting [J]. Acta Sericologica Sin, 2019, 45(2): 157 − 164.
    [71] LI Yunhe, ZOU Minghong, FENG Binhong, et al. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L. ) cotyledon segments [J]. Plant Physiol Biochem, 2012, 55: 33 − 42.
    [72] RIGAL A, YORDANOV Y S, PERRONE I, et al. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar [J]. Plant Physiol, 2012, 160(4): 1996 − 2006.
    [73] 刘闵豪, 李龙, 叶靖, 等. 杜仲ARF基因家族全基因组鉴定和表达分析[J]. 林业科学, 2021, 57(3): 170 − 180.

    LIU Minhao, LI Long, YE Jing, et al. Genome-wide identification and expression analysis of the ARF gene family in Eucommia ulmoides [J]. Sci Silv Sin, 2021, 57(3): 170 − 180.
    [74] SÁNCHEZ C, VIELBA J M, FERRO E, et al. Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species [J]. Tree Physiol, 2007, 27(10): 1459 − 1470.
    [75] 殷时光. LBD21-31基因调控杨树茎干次生生长的功能分析[D]. 泰安: 山东农业大学, 2020.

    YIN Shiguang, Functional Analysis of LBD21-31 Gene in Regulating Stem Secondary Growth of Populus [D]. Taian: Shandong Agricultural University, 2020.
    [76] 杜小龙. 桑树硬枝扦插生根的转录组分析及R2R3-MYB家族基因的综合分析[D]. 镇江: 江苏科技大学, 2016.

    DU Xiaolong. The Transcriptome Analysis of Hard Wood Cutting in Mulberry and Comprehensive Analysis of R2R3-MYB Family Genes [D]. Zhenjiang: Jiangsu University of Science and Technology, 2016.
    [77] WANG Hongming, XIE Yunhui, LIU Wusheng, et al. Transcription factor LkWOX4 is involved in adventitious root development in Larix kaempferi[J/OL]. Gene, 2020, 758: 144942[2021-09-01]. doi:10.1016/j.gene.2020.144942.
    [78] 孟媛. 苹果砧木不定根发生相关非编码RNA鉴定与作用机制研究[D]. 杨凌: 西北农林科技大学, 2019.

    MENG Yuan. Identification and Mechanism of Non-Coding RNAs Related to Adventitious Roots in Apple Rootstocks [D]. Yangling: Northwest A&F University, 2019.
    [79] 韦燕红, 刘桢, 李珂, 等. 苹果miR396家族鉴定及在不定根发育过程中的表达分析[J]. 园艺学报, 2020, 47(7): 1237 − 1252.

    WEI Yanhong, LIU Zhen, LI Ke, et al. Genome-wide identification and expression analysis of miR396 family during adventitious root development in apple [J]. Acta Hortic Sin, 2020, 47(7): 1237 − 1252.
    [80] 李建秋. 杨树miR319a调控侧根发育的分子机制研究[D]. 重庆: 西南大学, 2020.

    LI Jianqiu. Study on the Lateral Root Development Regulated by miR319a in Poplar [D]. Chongqing: Southwest University, 2020.
  • [1] 夏宏蕾, 王蕾, 方朝储, 王敏艳, 刘万鹏, 沈澄, 张进.  底泥基质对匍匐剪股颖‘本特A-4’生长和生理指标的影响 . 浙江农林大学学报, 2024, 41(5): 1075-1084. doi: 10.11833/j.issn.2095-0756.20240157
    [2] 夏霁晖, 冶佩霞, 杨海, 张圣全, 靳珊珊, 周梦丽, 闫东锋.  大别山北缘不同生活型木本植物叶功能性状及其耦合关系 . 浙江农林大学学报, 2024, 41(5): 970-977. doi: 10.11833/j.issn.2095-0756.20240161
    [3] 叶青青, 周明兵.  木本植物形成层活动的分子调控机制 . 浙江农林大学学报, 2024, 41(4): 879-886. doi: 10.11833/j.issn.2095-0756.20230473
    [4] 何慈颖, 娄和强, 吴家胜.  香榧油脂及其合成调控机制研究进展 . 浙江农林大学学报, 2023, 40(4): 714-722. doi: 10.11833/j.issn.2095-0756.20230224
    [5] 贺丹, 李海涛, 原江琴, 汪安印, 王翼飞, 李永华, 刘艺平.  郑州市7种园林植物滞尘能力与叶片生理及光合响应 . 浙江农林大学学报, 2023, 40(6): 1205-1214. doi: 10.11833/j.issn.2095-0756.20230160
    [6] 颜越, 金荷仙, 王瑛, 陈超怡, 范颖佳, 柳丹.  间作模式对社区花园可食植物生理特性及铅吸收的影响 . 浙江农林大学学报, 2023, 40(2): 338-347. doi: 10.11833/j.issn.2095-0756.20220365
    [7] 朱晓宇, 童婉婉, 赵楚, 田如男.  冬青‘长叶阿尔塔’扦插生根及解剖学研究 . 浙江农林大学学报, 2022, 39(2): 347-355. doi: 10.11833/j.issn.2095-0756.20210283
    [8] 陆伟杰, 郑伟尉, 吴砚农, 臧运祥.  十字花科植物蜡质形成特性及分子机制研究进展 . 浙江农林大学学报, 2021, 38(1): 205-213. doi: 10.11833/j.issn.2095-0756.20200138
    [9] 吴砚农, 郑伟尉, 陆伟杰, 臧运祥.  十字花科植物黄化突变特性及其分子机制研究进展 . 浙江农林大学学报, 2021, 38(2): 412-419. doi: 10.11833/j.issn.2095-0756.20200132
    [10] 李珅, 林爱真, 杨媛, 沈亚芳, 饶盈, 羊健, 刘云辉, 王洋, 周伟.  丹参酮生物合成分子调控机制的研究进展 . 浙江农林大学学报, 2018, 35(2): 367-375. doi: 10.11833/j.issn.2095-0756.2018.02.023
    [11] 曾德静, 王铖, 刘军, 尹丽娟.  水涝胁迫下海州常山形态和生理指标的变化 . 浙江农林大学学报, 2013, 30(2): 172-178. doi: 10.11833/j.issn.2095-0756.2013.02.003
    [12] 李世友, 罗文彪, 舒清态, 马长乐, 马爱丽, 张桥蓉.  昆明地区25种木本植物的燃烧性及防火树种筛选 . 浙江农林大学学报, 2009, 26(3): 351-357.
    [13] 陈柯, 王小德.  常春油麻藤等3种藤本植物抗旱性生理指标研究 . 浙江农林大学学报, 2008, 25(3): 314-318.
    [14] 阮志平, 廖启炓, 丁印龙.  4种棕榈科植物在厦门越冬的生理指标比较 . 浙江农林大学学报, 2007, 24(1): 115-118.
    [15] 张若蕙, 刘洪谔, 蔡建国, 沈锡康.  应用新型绿色植物生长调节剂ABT-11~ 15号生根粉促进树木扦插成活 . 浙江农林大学学报, 1998, 15(1): 22-26.
    [16] 朱勇强, 骆东林, 郑国良, 叶杰成.  武义县野生木本中草药资源 . 浙江农林大学学报, 1998, 15(4): 440-444.
    [17] 朱勇强, 骆东林, 叶杰成, 郑国良.  武义县木本植物资源调查报告 . 浙江农林大学学报, 1998, 15(4): 378-395.
    [18] 王金荣, 朱勇强.  武义县木本植物区系研究 . 浙江农林大学学报, 1998, 15(4): 406-410.
    [19] 骆东林, 朱勇强, 李可追, 郑国良, 叶杰成.  武义县野生木本植物资源的开发利用与保护 . 浙江农林大学学报, 1998, 15(4): 396-405.
    [20] 胡绍庆.  浙江衡县木本植物区系 . 浙江农林大学学报, 1995, 12(1): 46-51.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210652

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/4/902

表(1)
计量
  • 文章访问数:  1200
  • HTML全文浏览量:  248
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2022-04-25
  • 录用日期:  2022-05-13
  • 网络出版日期:  2022-07-20
  • 刊出日期:  2022-08-20

木本植物不定根发生机制研究进展

doi: 10.11833/j.issn.2095-0756.20210652
    基金项目:  国家自然科学基金资助项目(32001359);江苏省自然科学基金资助项目(BK20180771);江苏高校优势学科建设工程资助项目(PAPD);南京林业大学青年科技创新基金(CX2018026);南京林业大学大学生创新训练计划项目(2021NFUSPITP0015)
    作者简介:

    苗大鹏(ORCID: 0000-0002-8241-9520),从事园林繁殖栽培与生物技术研究。E-mail: 1012042154@qq.com

    通信作者: 文书生(ORCID: 0000-0003-0983-6755),讲师,从事园林繁殖栽培与生物技术研究。E-mail: shusheng0507@126.com
  • 中图分类号: S718.3

摘要: 不定根是植物的茎或叶等非中柱鞘组织产生的根,不定根发生困难是诸多木本植物无性繁殖和工厂化育苗的瓶颈问题,然而相关机制尚不明晰。目前,对于木本植物不定根发生机理的研究主要包括3个方面:①根原基的形成是不定根发生的关键,利用石蜡切片技术对根原基的形成时间和部位进行观察,同时依据组织形态观察结果将不定根发生过程划分为3个主要时期。②不定根发生是一个复杂的生理生化过程,内源激素含量和生根关联酶活性的动态变化在不定根发生过程中发挥着重要调控作用。此外,营养物质、酚类物质以及多胺等物质也被认为是影响不定根发生的重要因素。③探究了部分木本植物不定根发生过程中的关键代谢通路,并挖掘出多个调控不定根发生的基因,鉴定出诸多参与不定根发生的转录因子和非编码的微小核糖核酸(microRNA)。综上,本研究系统概述了木本植物不定根发生的组织学、生理学和分子调控机制的研究进展,并展望了未来该领域的可行性研究方向。表1参80

English Abstract

苗大鹏, 贾瑞瑞, 李胜皓, 等. 木本植物不定根发生机制研究进展[J]. 浙江农林大学学报, 2022, 39(4): 902-912. DOI: 10.11833/j.issn.2095-0756.20210652
引用本文: 苗大鹏, 贾瑞瑞, 李胜皓, 等. 木本植物不定根发生机制研究进展[J]. 浙江农林大学学报, 2022, 39(4): 902-912. DOI: 10.11833/j.issn.2095-0756.20210652
MIAO Dapeng, JIA Ruirui, LI Shenghao, et al. Research advances in the mechanism of adventitious root occurrence in woody species[J]. Journal of Zhejiang A&F University, 2022, 39(4): 902-912. DOI: 10.11833/j.issn.2095-0756.20210652
Citation: MIAO Dapeng, JIA Ruirui, LI Shenghao, et al. Research advances in the mechanism of adventitious root occurrence in woody species[J]. Journal of Zhejiang A&F University, 2022, 39(4): 902-912. DOI: 10.11833/j.issn.2095-0756.20210652
  • 不定根是指从植物茎或叶等非中柱鞘组织产生的根。不定根发生既是植物器官分化的重要理论问题,又关系到无性繁殖和完整植株的再生。多数木本植物不定根发生难度较大,从而阻碍了无性繁殖技术的应用,尤其是制约了诸多果树、林木和木本花卉的工厂化育苗。因此,探究木本植物不定根发生机理是突破无性繁殖技术瓶颈的迫切需求。木本植物不定根发生机理的研究始于对不定根发生过程的解剖观察,通过显微观察解析了不定根发生的类型和过程,可为深入的机制研究奠定形态学基础[1]。随着生根过程中激素、酶等物质的变化规律及调控机制的深入研究,生理生化水平上的不定根发生相关理论日益完善[2-4]。近年来,植物分子生物学技术的高速发展有力地推动了木本植物不定根发生的分子机制研究,目前已克隆出多个参与生长素合成代谢的相关基因[5],并鉴定出诸多参与不定根形成的转录因子[6]以及微小核糖核酸[microRNA(miRNA)][7]等,极大地丰富了木本植物不定根发生机制的内容。本研究从解剖学、生理学以及分子生物学这3个层面,系统综述了木本植物不定根发生机制研究进展,以期为解析木本植物不定根发生机制提供理论依据。

    • 依据根原基形成时间不同,可将不定根分为潜伏根原基型和诱生根原基型[8]。潜伏根原基型的根原基在外植体离体前便已产生并一直处于休眠状态,离体后在适宜条件下打破休眠,发育形成不定根,通常这种类型的植物不定根发生难度小,例如南林895杨Populus × euramericana ‘Nanlin 895’[9]、冬青Ilex chinensis[10]等。诱生根原基型的根原基形成需要适宜的环境条件诱导,发生有2种途径:①诱导组织内薄壁细胞恢复分生能力进而分化出根原基,然后形成不定根;②在外植体基部先分化出一部分具有旺盛分裂能力的愈伤组织,再由愈伤组织分化出根原基,进而形成不定根。目前,生根难度较大的木本植物通常属于诱生根原基型,例如银杏Ginkgo biloba[11]、牡丹‘太平红’ Paeonia suffruticosa ‘Taipinghong’[12]等。

    • 不同木本植物的不定根发生部位存在差异,可发生根原基的部位包括皮层、韧皮部、形成层、髓射线、木质部和愈伤组织。依据根原基形成部位不同,可将木本植物不定根分为3种类型:①皮部生根型。指在皮层、韧皮部、形成层、髓射线、木质部等组织内部产生根原基,例如银杏[11]、桤木Alnus cremastogyne[13]。②愈伤组织生根型。指在愈伤组织中产生根原基进而形成不定根,愈伤组织产生是生根的前提,例如矮紫衫Taxus cuspidata var. nana[14]、四合木Tetraena mongolica[15]。然而,属于该生根类型的木本植物通常生根率较低且生根质量不高,这主要是由于一方面愈伤组织的形成会消耗大量营养物质,且老化的愈伤组织诱导生根难度较大;另一方面存在根与茎的维管组织连接不通畅的现象,继而导致根无法吸收水分和养分,此类为无效根。③混合生根型。在皮层、形成层等组织以及基部愈伤组织内均可产生根原基,例如牡丹‘正午’Paeonia × lemoinei ‘High Noon’[16]、桃Amygdalus persica[17]、侧柏Platycladus orientalis[18]等。

    • 根据木本植物不定根发生过程中的组织形态变化,将生根过程分为3个时期[12, 19-20]:①脱分化期。该阶段薄壁细胞经过脱分化转变为代谢旺盛的胚性细胞,形成潜在的根原始点。②诱导期。该阶段主要特征是根原基的诱导形成。脱分化细胞经过刺激开始细胞分裂,形成分生组织细胞群,后进一步形成可见根原基。③分化期。该阶段根原基不断生长,细胞分化出现分层现象。根原基顶端产生多层根冠细胞并继续分裂分化成根尖,后方分生组织细胞逐渐延长形成维管组织,并与原组织中的维管束连接起来,最终根原基伸出表皮层,形成不定根。此外,不同木本植物的生根节点持续时间存在差异,例如牡丹‘太平红’[12]生根诱导3 d后维管束中出现根原基,12 d后根原基分化伸长并逐渐突破表皮,而海棠果Calophyllum inophyllum[19]扦插10 d后维管射线薄壁细胞才恢复分生能力,15 d达到根原基发育的高峰期。因此,通过解剖观察对生根阶段进行划分,是木本植物不定根发生机制研究的前提和基础。

    • 多数木本植物不定根发生依赖外源生长素类物质诱导,常用外源生长素种类包括吲哚乙酸(IAA)、吲哚丁酸(IBA)、萘乙酸(NAA),其主要通过调控内源IAA含量来影响不定根发生。研究表明:内源IAA是促进不定根发生的主要激素,它对根原基诱导、愈伤组织形成以及根伸长均起着重要作用[21]。欧阳芳群等[22]和王青等[23]采用酶联免疫吸附法,对欧洲云杉Picea abies与麻楝Chukrasia tabularis不定根发生过程中的内源IAA含量进行测定,发现IAA含量在根原基诱导期迅速上升,并且峰值与根原基出现的高峰期基本一致,至不定根伸出表皮后其含量降低。尚文倩等[24]和de ALMEIDA等[25]进一步通过免疫组织定位法对牡丹‘凤丹白’Paeonia ostii ‘Fengdanbai’与桉Eucalyptus robusta不定根发生过程中的内源IAA进行定位,发现生根诱导开始时IAA主要分布在维管组织中,随着根原基的出现和发育,维管组织中的IAA信号逐渐减弱,根原基成为IAA分布中心。这些结果证实了IAA在根原基发端位置的积累是不定根发生的重要基础。此外,IAA不仅自身对生根起到促进作用,还能通过与其他内源激素间的互作,来调控不定根发生,例如内源IAA的运输受到脱落酸抑制,内源IAA含量过高能够诱导乙烯的产生,从而对生根产生抑制作用[26]

    • 植物体内天然存在的细胞分裂素类(CTKs)主要有玉米素核苷(ZR)、玉米素(ZT)、异戊烯腺苷(iPA)等,其中ZR在木本植物不定根发生中的作用得到广泛研究。已有研究证实:在牡丹‘太平红’[12]、杜鹃‘紫蝴蝶’Rhododendron pulchurum ‘Zihudie’[27]等植物的生根过程中,不定根脱分化期由于插穗处于离体初期,ZR的供应路线被切断,而其仍被正常消耗,因此ZR含量降低,一段时间后插穗自身开始合成ZR,其含量开始逐渐增加,在诱导期和分化期呈上升趋势,有利于增加细胞数量、提高细胞分裂速度,继而促进根原基的形成和生长。此外,内源细胞分裂素(CTK)和IAA的相对含量与根和芽的形成有关,CTK作为IAA的抑制剂,两者在生根过程中发挥着拮抗作用[28]。内源IAA/CTK值高,有利于不定根发生,而值低则利于诱导芽分化,但不利于根的诱导,例如白皮松Pinus bungeana[29]插穗和苹果Malus pumila[30]组培苗的生根率与IAA/CTK均呈正相关。

    • 目前,关于赤霉素类(GAs)对木本植物不定根发生的作用仍存在较大争议。部分学者认为内源赤霉素(GA)对不定根发生起促进作用,例如GA4含量增加有利于落叶松Larix gmelinii插穗愈伤组织形成,继而促进愈伤组织中产生不定根[31]。然而,更多研究发现:内源GA抑制不定根发生,例如内源GA3含量与山杏Armeniaca sibirica[32]插穗的生根率呈负相关。BRIAN等[33]认为:内源GA对不定根发生主要有抑制作用,一方面GA抑制不定根原基细胞分裂,另一方面阻碍IAA对不定根的诱导。因此,内源GA和IAA的相对含量对不定根发生具有重要调控作用,IAA/GA值高,利于不定根发生[3]。综上,有关内源GA的种类和含量对不定根发生的作用及机制,仍有待进一步研究。

    • 内源脱落酸(ABA)对不定根发生具有抑制作用,例如内源ABA含量高的毛白杨Populus tomentosa硬枝插穗生根能力低[34]。在麻楝[23]、山杏[32]等不定根发生过程中内源ABA含量呈动态变化,表现为脱分化期插穗受脱离母体刺激,ABA含量短暂上升,以提高插穗抗逆性,降低逆境对插穗的损伤,但是ABA含量过高会抑制根原基发育和不定根的伸长,因此当植株适应逆境后,ABA含量在脱分化后期下降并在诱导期持续下降,分化期含量低且稳定。然而,也有研究者认为:不能单纯将ABA视为抑制生根的激素,并提出将内源IAA/ABA值作为植物生根能力的衡量标准,且与生根能力呈正相关,例如毛白杨[35]、马尾松Pinus massoniana [36]、杂种鹅掌楸Liriodendron chinense × L. tulipifera[37]等生根能力强的插穗或组培苗中内源IAA/ABA值较高。此外,王清民等[38]和董胜君等[32]分别在核桃Juglans regia和山杏的生根研究中发现:IAA/ABA值呈先升后降的趋势,在根诱导期达到峰值,并推测高IAA/ABA值有利于根原基的形成。

    • 除了上述内源激素外,乙烯(ET)、油菜素内酯(BRs)、茉莉素(JAs)、水杨酸(SA)等同样参与木本植物不定根发生。乙烯(ET)是不定根发生的刺激因子,乙烯合成受到内源IAA调控,同时也可以调节IAA的运输和信号传导[39]。ET对生根的影响主要体现在与IAA的相互作用中,两者对不定根发生具有拮抗作用,但对根毛的起始和伸长具有协同作用[40]。BRs是一种促进细胞伸长和分裂的甾体激素,较低的内源BRs能够促进根的生长,较高的内源BRs则起抑制作用[41]。此外,BRs与内源IAA间的互作,能够促进侧根的生长[42]。JAs是一种胁迫响应激素,逆境条件能够促使JAs快速合成,并对生根产生影响[43]。内源JAs对不定根发生存在负调控,内源IAA能够控制JAs平衡,两者互作调控生根[44]。SA同样是一种胁迫响应激素。AGULLÓ-ANTÓN等[45]研究发现:不定根发生诱导期内源SA水平明显上升,认为高含量的SA有利于根原基的形成。

    • POD能够氧化内源IAA并促进酚类物质合成木质素,被认为是一种生根潜力指标,如POD活性较高的胡杨Populus euphratica插穗具有较强的生根能力[46]。在苹果[47]、国槐Sophora japonica[48]、合欢Albizia julibrissin[49]等生根过程中均有发现,不定根发生分化期POD活性显著上升,较高的POD活性促使根原基细胞内的木质素合成增加,有利于根原基的伸长和根的木质化。

    • PPO是植物体内的一种含铜氧化酶,植物生根能力与PPO活性呈正相关,例如在尾叶桉Eucalyptus urophylla[50]的生根研究中发现:易生根株系中PPO活性高于难生根株系。在楸树Catalpa bungei[51]和牡丹‘凤丹白’[24]中,PPO活性在不定根发生脱分化期和诱导期逐渐升高并达到峰值。这主要是由于PPO能够催化酚类物质与IAA结合,形成一种生根辅助因子‘IAA-酚酸复合物’,继而促进不定根发生[52]

    • IAAO主要通过降解IAA来调节内源IAA水平,从而调控不定根发生[53]。木本植物不定根发生过程中IAAO活性呈动态变化,在杜梨Pyrus betulifolia[54]、毛白杨[55]等的生根研究中发现:IAAO活性呈“升高—降低—升高”的变化趋势,脱分化期的IAAO活性高,能够适量降低IAA含量,使得植物内部环境适于薄壁细胞脱分化和愈伤组织的诱导。此外,大量研究已证实:生根过程中IAAO活性过高将抑制植物不定根发生,例如在欧榛Corylus avellana[56]和含笑‘香妃’Michelia figo ‘Xiangfei’[57]的生根研究中发现:IAAO活性过高的插穗生根率低。

    • 除激素和酶外,植物体内的营养物质、酚类物质、多胺以及丙二醛(MDA)等对不定根发生也有重要调控作用。木本植物不定根发生过程中的能量主要源于体内可溶性糖、淀粉和可溶性蛋白质等营养物质分解。其中,可溶性糖是不定根发生的直接能量来源,其含量与生根率呈正相关,例如可溶性糖含量高的白皮松插穗生根率更高[29];淀粉是不定根发生的间接能量来源,牡丹‘凤丹白’[58]等多种木本植物的生根研究表明:不定根发生过程中淀粉含量总体呈下降趋势;可溶性蛋白质是重要的渗透调节物质与营养物质,其水解产物能够降低原生质的黏质,有利于根原基的诱导和形成[59]。酚类物质是植物主要次生代谢产物之一,易导致插穗或试管苗茎基部褐化,从而抑制木本植物不定根发生[60]。多胺主要包括腐胺(Put)、亚精胺(Spd)和精胺(Spm),它对木本植物不定根发生有促进作用,例如橄榄Olea europaea插条内多胺含量增加,生根能力提高[61]。多胺还与内源激素存在密切关系,例如杜梨组培苗生根过程中,Spm与ZR呈负相关,Spd与IAA、ABA呈正相关,Put与GA、IAA、ABA呈正相关[54]。此外,CRISTOFORI等[62]认为:IAA与多胺结合能够促进不定根发生。MDA是膜脂被氧化的产物,是衡量植物抗氧化能力的重要指标,对垂枝樱花Cerasus subhirtella var. pendula[63]等木本植物不定根存在毒害作用。

    • 目前,在木本植物不定根发生的分子机制研究领域,已有部分直接或间接调控生根的功能基因被鉴定与分析(表1)。例如ARRO-1被认为是木本植物不定根发生的分子标记之一,苹果生根的研究中发现:在外源生长素IAA和IBA诱导下或者复壮培养后ARRO-1上调表达,在根诱导期逐渐上升达到峰值,植株生根率提高,而RNAi-ARRO-1构建体转化的植株,ARRO-1表达水平降低,生根能力变弱,对外源生长素更敏感。ARRO-1可能作为一种生长素触发生根特异性的基因联合体发挥作用,主要通过调节内源生长素的动态平衡,以促进不定根发生[64]。贺丹等[65]在牡丹‘乌龙捧盛’中同样克隆得到PsARRO-1,并发现PsARRO-1表达量在生根初期就开始快速上升,根原基形成后达峰值,之后迅速回落,说明PsARRO-1与根原基的形成密切相关。此外,还有诸如LRP1、PRP1,2、TIR1和YUCCA基因以及PIN和GH3基因家族成员在部分木本植物中均有鉴定。

      表 1  木本植物不定根发生相关调控因子

      Table 1.  Regulation factors related to adventitious root in woody species

      类型名称描述植物研究结果参考文献
      基因 ARRO-1 木本植物不定根发生的分子 标记之一 苹果、小金海棠、牡丹‘乌龙捧盛’ 其表达与根原基的形成密切相关, 调控内源生长素的动态平衡 [6466]
      LRP1 不定根原基分化早期阶段的 分子标记之一 核桃、南林895杨 根原基发端组织中特异性表达,根 原基形成阶段强烈表达 [67]
      PRP1,2 编码脯氨酸富含蛋白 葡萄 脱分化期的薄壁组织中优先表达且 水平高,改变细胞壁特性 [68]
      YUCCA 编码IAA生物合成限速酶的 基因之一 84K杨 缩短根形成的时间,促进根系发育, 促进形成层区域分生细胞的分裂 [5]
      TIR1 编码生长素受体转运抑制应 答因子 鲁桑 诱导期与分化期迅速上调表达,参 与调控不定根原基的产生与发育 [69]
      GH3家族 生长素早期响应基因家族 鲁桑 GH3.1与ILL5共同调控内源生长素 浓度,促进不定根发生 [70]
      PIN家族 编码生长素极性运输所依赖 的转运蛋白 芒果 调控组织内生长素富集,从而促进 其不定根发生 [71]
      转录因子家族 AP2/EREBP 调控植物逆境应答和生长发 育的信号转导 毛果杨 促进根原基的形成,增加不定根数 量,缩短根形成时间 [72]
      ARFs 调控生长素信号转导 苹果、油橄榄、杜仲 调控不定根发生过程中的生长素
       水平
      [73]
      GRAs 维持分生组织的分生活性、 影响根的发育和调控激素 信号转导 欧洲栗、辐射松、核桃 促进根原基的形成 [6, 74]
      LBD 调控愈伤组织的形成 84K杨 促使愈伤组织过度膨大,植株不定 根数量减少,根长缩短 [75]
      MYB 参与植物次生代谢、细胞分 化、抗逆反应 鲁桑 促进插穗薄壁细胞的分化 [76]
      NAC 参与侧根发育、根尖分生组 织发育、维管木质化、非 生物胁迫和防卫反应 南林895杨 参与不定根原基的启动诱导和侧根 的发育 [67]
      WOX 维持根尖维管分生组织中干 细胞活性和调控生根过程 激素信号 日本落叶松、84K杨 调控生长素、茉莉酸、脱落酸信号 通路,影响生长素的极性运输 [77]
      WRKY 参与防卫反应、机械创伤修 复和生长发育 南林895杨 参与插穗的创伤修复和防卫反应以 及植物系统获得性抗性防御或者 响应环境胁迫 [67]
      microRNA mdm-miR156 调控植物次生代谢、光信号 转导和胁迫响应 小金海棠 下调转录因子MxSPL26的水平,促 进不定根原基的启动和发育良  好,提高生根率与生根速度 [7]
      mdm-miR160 靶向生长素响应因子    (ARF)家族 圆叶海棠 靶向调控MdARF16和MdARF17的 表达,抑制不定根发生 [78]
      miR396 负调控生长调节因子(GRF) 苹果 靶向调控MdGRF1和MdGRF5的表 达,参与不定根诱导期和根伸长 期的发育 [79]
      miR319a 调控激素合成 毛白杨 靶向调控TCP19的表达,影响生长 素信号转导,负调控不定根发生 [80]
        说明:小金海棠 Malus xiaojinensis;牡丹‘乌龙捧盛’ Paeonia suffruticosa ‘Wulongpengsheng’;葡萄 Vitis vinifera;84K 杨      Populus alba × Populus glandulosa;鲁桑 Morus multicaulis;芒果 Mangifera indica;毛果杨 Populus trichocarpa;油橄榄 Olea      europaea;杜仲 Eucommia ulmoides;欧洲栗 Pinus radiata;辐射松 Castanea sativa;日本落叶松 Larix kaempferi;圆叶海棠      Malus prunifolia var. ringo
    • 转录因子(transcription factor,TF)是能直接或间接与顺式调控元件起作用而影响基因转录的蛋白质因子。目前,已发现多个转录因子家族的成员参与调控木本植物不定根发生,包括植物特有的WOX家族和GRAs家族以及生长素信号转导相关的ARFs家族等(表1)。例如属于AP2/EREBP家族的PtAIL1,过量表达PtAIL1的转基因杨树不定根数量大大增加,而PtAIL1干扰株的不定根形成数量减少、形成时间延迟,推测PtAIL1为毛果杨不定根发育早期阶段促进根原基形成的正向调控转录因子[72]。从鲁桑[76]中克隆得到涉及不定根发生的3个编码MYB家族转录因子的典型基因,分别命名为MmMYB1、MmMYB2、MmMYB3,表明MmMYB1通过调节AHLs通路继而影响生长素和细胞分裂素的合成,抑制MmMYB2表达会阻碍类黄酮的合成从而促进生根,MmMYB3通过调节内源赤霉素水平从而影响不定根发生。

    • microRNA (miRNA)是一类内源性非编码RNA,其靶基因多为转录因子,主要参与植物的生长发育、信号转导及响应逆境胁迫等生理过程。近年来,随着高通量测序的发展和生物信息学水平的提高,在一些木本植物中发现miRNA对不定根发生具有一定的调控作用(表1)。例如在苹果砧木小金海棠[7]不定根发生的研究中,miR156在生根能力强的插穗中有更高的表达水平,外源生长素诱导miR156高表达,通过下调转录因子MxSPL26的水平,促进不定根原基的启动和发育,继而显著提高生根率与生根速度。从苹果砧木圆叶海棠‘M26’、‘T337’和‘SH6’[78]中均克隆得到mdm-miR160。研究发现:mdm-miR160能够负调控MdARF16和MdARF17的表达,对不定根发生具有抑制作用,通过IBA诱导生根可以减轻mdm-miR160的抑制效果。此外,对转基因毛白杨[80]的生根研究发现:miR319a通过靶向调控转录因子TCPs,影响了生长素信号转导,继而负调控杨树不定根发生。

    • 综上可见,木本植物不定根发生机制研究主要集中于解剖学和生理学层面,研究结果揭示了木本植物不定根的来源以及发生过程,阐明了不定根发生过程中生理生化方面的变化规律。此外,初步解析了木本植物不定根发生过程中涉及的代谢通路,并进一步鉴定获得了多个调控不定根发生的基因、转录因子以及非编码的miRNA。

      木本植物不定根发生机制的研究正由简单的解剖学和生理学逐步深入到基因和蛋白的调控层面。虽然在分子水平上已经取得了一定进展,但总体仍处于初步探究阶段。后续研究可以从3个方面展开:①以建立植株再生体系为基础,推进基因组测序工作,联合多组学研究并结合RNA干扰等现代分子生物技术,深入探究木本植物不定根发生机制。②深入分析相关基因在木本植物中的调控机制,并将其应用于解决生根问题。③注重向表观遗传调控领域扩展,多维度、全方位地构建木本植物不定根发生相关的基因调控网络。

参考文献 (80)

目录

    /

    返回文章
    返回