留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冬青‘长叶阿尔塔’扦插生根及解剖学研究

朱晓宇 童婉婉 赵楚 田如男

郑正权, 赵梦婧, 高燕会. 换锦花LsMYB7基因克隆与功能研究[J]. 浙江农林大学学报, 2024, 41(3): 586-596. DOI: 10.11833/j.issn.2095-0756.20230368
引用本文: 朱晓宇, 童婉婉, 赵楚, 等. 冬青‘长叶阿尔塔’扦插生根及解剖学研究[J]. 浙江农林大学学报, 2022, 39(2): 347-355. DOI: 10.11833/j.issn.2095-0756.20210283
ZHENG Zhengquan, ZHAO Mengjing, GAO Yanhui. Cloning and function analysis of LsMYB7 gene in Lycoris sprengeri[J]. Journal of Zhejiang A&F University, 2024, 41(3): 586-596. DOI: 10.11833/j.issn.2095-0756.20230368
Citation: ZHU Xiaoyu, TONG Wanwan, ZHAO Chu, et al. Root formation and anatomical structure of Ilex × altaclerensis ‘Belgica Aurea’ stem cuttings[J]. Journal of Zhejiang A&F University, 2022, 39(2): 347-355. DOI: 10.11833/j.issn.2095-0756.20210283

冬青‘长叶阿尔塔’扦插生根及解剖学研究

DOI: 10.11833/j.issn.2095-0756.20210283
基金项目: 国家林业局引进国际先进林业科学技术项目(2012-4-33);江苏高校优势学科建设工程资助项目(PAPD)
详细信息
    作者简介: 朱晓宇(ORCID: 0000-0001-9071-3722),从事园林植物繁殖栽培与应用研究。E-mail: 614123876@qq.com
    通信作者: 田如男(ORCID: 0000-0003-1115-8973),教授,博士生导师,从事园林植物种质资源创新与应用、园林植物生理与生态修复研究。E-mail: tianrunan@njfu.edu.cn
  • 中图分类号: S687.9

Root formation and anatomical structure of Ilex × altaclerensis ‘Belgica Aurea’ stem cuttings

  • 摘要:   目的  探究植物生长调节剂种类、质量浓度、处理方法和基质类型对冬青‘长叶阿尔塔’Ilex × altaclerensis ‘Belgica Aurea’插穗生根能力的影响及其不定根的起源与形成过程,以期为冬青属Ilex植物扦插繁殖及引种驯化提供理论基础。  方法  以‘长叶阿尔塔’当年生半木质化枝条为插穗,采用3因素(植物生长调节剂种类和质量浓度、处理时间、基质类型)3水平正交试验设计。扦插后80 d,测定并分析不同处理下插穗的存活率、生根率、最长根长、根系效果指数。同时,使用萘乙酸(NAA)对插穗进行促根处理,观察插穗外部形态变化并定期取插穗基部制作石蜡切片,观察扦插前、后插穗的解剖学结构特征,利用扫描电镜和透射电镜技术对其愈伤组织进行形态学和细胞学观察。  结果  ①经1 000 mg·L−1 吲哚丁酸(IBA)溶液速蘸10 s,扦插于V(草炭)∶V(蛭石)∶V(珍珠岩)=4∶3∶3的插穗相关生根指标均处于较高水平,与其他处理均存在极显著差异(P<0.01),其中生根率相比其他处理提高了12.74%~48.83%。②插穗内不存在潜伏根原基,不定根由皮部产生,其生根类型为皮部诱导生根型,根原基起源于髓射线与维管形成层交叉处。③插穗茎段皮层与韧皮部之间存在1~2层环状厚壁组织,是导致插穗生根率低的原因。④愈伤组织中未发现根原基,其产生与不定根发生、发育彼此独立,同时生根并不是愈伤组织分化的最终结果。⑤插穗生根过程形成2类愈伤组织,其中胚性愈伤组织多为白色,排列紧密,表面细胞成团分布,大小近似,细胞核大核仁明显,细胞器丰富;非胚性愈伤组织多为深黄色,空泡化明显,表面细胞不饱满,大部分死亡破裂,内部几乎没有细胞器。  结论  初步筛选出了‘长叶阿尔塔’最佳扦插因素组合,从解剖学角度揭示了其扦插生根机制。图4表3参34
  • 换锦花Lycoris sprengeri为石蒜属Lycoris球根花卉,春初出叶,叶片为带状,宽约1.0 cm,长约30.0 cm,叶顶钝圆;秋初开花,花茎高约60.0 cm,伞形花序4~6朵,6片倒披针形花瓣,长约4.5 cm,宽约1.0 cm;花多淡紫红色,花被顶端蓝色,花色花型丰富,是石蒜属特殊的复色花卉[1]

    目前,换锦花的花色性状改良主要以传统的种间杂交和选择育种为主,分子标记育种为辅的育种模式。徐炳声等[2]利用杂交授粉技术,以换锦花为母本,中国石蒜L. chinensis为父本,选育出粉白色的秀丽石蒜L.× elegans;张定成等[3]在安徽和淮南发现三倍体和二倍体野生换锦花资源,表明换锦花可能是由其他石蒜属植物杂交而来。然而换锦花生长周期长,在自然状态下授粉率低且结实少,种子萌发率低,制约了换锦花传统育种研究。为了克服传统杂交育种的缺陷,不少研究者利用现代分子生物学技术探索换锦花花色分子育种性状改良的有效手段[46]。花色苷生物合成途径是类黄酮生物合成的一个分支途径,主要由结构基因和调控基因共同调控,花色苷积累受光照、温度和水分等多种因素的影响,植物受到强光、低温、氮亏缺等逆境协迫时会大量合成花色苷以增强自身抗性[7],花色苷的生物合成也受到植物体自身生长发育过程的影响[8]。大量研究表明:R2R3-MYB 是花色苷生物合成的重要调控因子,常与bHLH和WD40形成MBW复合体结合到结构基因启动子序列上共同调控葡萄Vitis vinifera、风信子Hyacinthus orientalis、苹果Malus pumila花色素苷的生物合成[9]。许振渊等[10]和侯朔等[11]克隆了换锦花R2R3-MYB转录因子LsMYB4和LsMYB5基因,周洋丽等[12]通过病毒介导的基因沉默(VIGS)技术研究发现LsMYB4和LsMYB5是换锦花花青素合成的抑制性转录因子。周洋丽[13]和薛惠敏等[14]成功克隆了换锦花LsANS、LsF3'HLsUFGT1LsUFGT2基因启动子序列,为研究换锦花花色形成的调控机制和遗传改良提供基础。为进一步探讨换锦花花色形成的调控网络,本研究根据换锦花花瓣(红色部分和蓝色部分)转录组信息筛选到与换锦花花色形成相关的差异R2R3-MYB转录因子LsMYB7并进行生物信息学分析,通过病毒介导的基因沉默(VIGS)技术研究该基因调控花色苷积累的相关功能,结果可为通过基因工程手段改良换锦花的花色奠定理论基础。

    2019年8—9月于浙江农林大学石蒜属植物种质资源圃采集换锦花花瓣,取换锦花小花苞(2.0~3.5 cm)、大花苞(4.5~6.0 cm)、盛花期和败花期4个不同花发育时期(图1A)和不同花色无性系H1、H2、H3、H4和H5盛花期花瓣(图1B),液氮速冻后于−80 ℃冰箱保存备用。

    图 1  换锦花不同花发育时期(A)和不同花色无性系盛花期(B)
    Figure 1  Different stages of flower development (A) and peak flowering stage in different clonal plants (B)
    1.2.1   换锦花花瓣总RNA提取和cDNA第1链的合成

    采用RNAiso plus法提取换锦花花瓣总RNA[15],参照PrimeScript 1st Strand cDNA Synthesis Kit试剂盒(Takara)方法合成cDNA 第1链。

    1.2.2   换锦花LsMYB7基因cDNA序列的PCR扩增

    根据转录组测序信息设计LsMYB7基因 cDNA序列特异引物LsMYB7-F:CAAGCAGTGGTCTCAACA和LsMYB7-R:AGAACAGCACTACTAAAGGT,参照Premix PrimeSTAR HS的PCR扩增体系扩增目的基因cDNA序列,PCR扩增反应程序为94 ℃变性30 s;58 ℃ 退火30 s;72 ℃延伸90 s,32个循环,72 ℃延伸10 min,质量浓度为1.0%琼脂糖凝胶电泳检测PCR扩增产物,于凝胶成像系统(Bio-RAD)观察拍照;采用Hingene琼脂糖凝胶回收试剂盒(杭州麦克德勒科技有限公司)回收目的DNA,于−20 ℃保存备用。

    1.2.3   目的基因连接和转化

    参照pEASY-Blunt Zero Cloning Kit说明书将目的基因LsMYB7序列连接到pEASY-Blunt载体,转化大肠埃希菌Escherichia coli DH5α感受态细胞;在含有氨苄青霉素(Amp)、异丙基-β-D-硫代半乳糖苷(IPTG)和5-溴-4-氯-3-吲哚 β-D-半乳糖苷(X-Gal)的LB培养基(Luria-Bertani medium)上培养过夜,挑取阳性克隆于LB液体(含50 mg·L−1 Amp)培养基中,37 ℃振荡培养,PCR检测呈阳性的菌液送浙江有康生物科技有限公司测序;采用质粒DNA提取试剂盒(杭州创试生物科技有限公司)提取目的序列重组质粒DNA,于−20 ℃保存。

    1.2.4   LsMYB7及花色形成相关基因的表达

    采用Primer 5.0设计LsMYB7基因和花色形成相关基因(LsCHS、LsF3H、LsANS、LsUFGT1和LsUFGT2)的RT-qPCR引物(表1),使用PrimeScriptTM RT reagent Kit with gDNA Eraser试剂盒(Takara)方法合成cDNA 第1链。参照SYBR® Premix Ex TaqTMⅡ(Takara)方法,于CFX96TM荧光定量 PCR 仪(BIO-RAD)进行RT-qPCR验证。RT-qPCR体系(20.0 uL):cDNA(<100 ng) 1.6 uL,正反引物各0.8 uL,TB Green Premix Ex Taq Ⅱ 10.0 uL,RNase Free ddH2O 6.8 uL。RT-qPCR程序为95 ℃ 30 s,95 ℃ 3 s,60 ℃ 30 s,循环40次。以LsGADPH为内参基因[15],2−ΔΔCt方法计算实时荧光各基因的相对表达量,重复3次。

    表 1  RT-qPCR所用引物
    Table 1  Primers for fluorescence RT-qPCR
    引物正向(5′→3′)反向(5′→3′)
    LsGADPH AGGGTTTGATGACCACCGTGCA ACAGCCTTGGCAGCTCCAGTAC
    LsMYB7 GCGCGGAGTTCTTGGCTCTGAT TCTGGCACCGTTCTCATCACGC
    LsCHS CAAGACATGGTGGTGGTCGAGGTC CGAGGAGTTTGGTGAGCTGGTAGTC
    LsF3H AACCGAGGACGCAACGGAATGC ACCATCTTCATCGCAGCCACCA
    LsANS CGTGCCAGGTCTCCAGGTCTTCTA TCGAGAGTGTCACCGACGTGAACTA
    LsUFGT1 GGTGGTGAAGGATGAGGAAGGTAGG GTTGAACCGCTCGAACCGCAATC
    LsUFGT2
    LsF3'H
    GCGTAGCCTTCTCCTTCCTCACCT
    TTGTACAGCCATGCACAGAATC
    CGCCATGAATCGCTTCACCTCCTC
    GCAACCAAGGCAAGAAATCA
      说明:引物参考文献[16]。
    下载: 导出CSV 
    | 显示表格
    1.2.5   换锦花花瓣花色苷的HPLC测定

    参照刘跃平等[17]方法提取并用高效液相色谱(HPLC)测定换锦花花瓣花色苷质量浓度。精密称量换锦花花瓣干粉0.040 0 g,加入2 mL体积分数为1%甲醇/HCl提取溶液,振荡混匀;20 ℃超声提取30 min;12 000 r·min−1,离心15 min,取上清液;0.45 μm滤膜过滤;梯度洗脱:流动相为甲醇(A)-体积分数为1%的甲酸水(B),0~20 min(A体积分数从5%升至60%),20~25 min(A体积分数从60%升至100%),25~30 min(A体积分数保持100%),流速1 mL·min−1,检测波长280 nm,柱温30 ℃,进样量10 uL;以矢车菊素-3-O-葡萄糖苷、天竺葵素-3-O-葡萄糖苷、飞燕草素-3-O-葡萄糖苷等3个花色苷为标准品。每样3个生物学重复。

    1.2.6   亚细胞定位

    采用XbaⅠ和BamHⅠ分步酶切法酶切亚细胞定位载体pAN580,再采用ClonExpress Ⅱ One Step Cloning Kit (杭州霆喜生物科技有限公司)将LsMYB7基因序列连接到pAN580上,并转化大肠埃希菌DH5α感受态细胞,在含有50 g·L−1Amp的LB培养基上进行筛选,挑选阳性克隆进行菌液PCR检测,成功构建pAN580-LsMYB7亚细胞定位载体,采用无内毒素质粒提取试剂盒(AxyPrep)提取pAN580-LsMYB7重组载体质粒DNA;聚乙二醇法(PEG 4000)转化烟草Nicotiana tabacum原生质体,用激光共聚焦荧光显微镜观察拍照。

    1.2.7   VIGS沉默载体构建

    采用双酶切法构建VIGS沉默载体pTRV2-LsMYB7:利用Primer 5.0设计长为400 bp的LsMYB7基因cDNA序列插入片段引物pTRV-LsMYB7-F: TACCGAATTCTCTAGAGAGGACAACATGCTACAATCCC和pTRV-LsMYB7-R:GCTCGGTACCGGATCCGCTCGAATCGCTAACATCCG;用限制性内切酶XbaI和BamHI分别双酶切VIGS载体(pTRV2)与LsMYB7基因的插入序列,T4 DNA连接酶连接载体与目的序列,转化大肠埃希菌DH5α,并在含有50 g·L−1 卡那霉素(Kan)的LB固体培养基筛选,提取pTRV2-LsMYB7重组质粒DNA。

    1.2.8   换锦花花瓣瞬时转化

    采用微量注射法转化换锦花花苞[12],将重组质粒pTRV2-LsMYB7、pTRV2和pTRV1质粒DNA转化根癌农杆菌Agrobacterium tumefaciens GV3101,于YEP液体培养基(50 mg·L−1 Rif和50 mg·L−1 Kan)中,28 ℃,220 r·min−1振荡培养12~14 h;4 000 r·min−1, 离心10 min,去上清液;加入侵染液(10 mmol·L−1 MES + 200 μmol·L−1 AS + 10 mol·L−1 MgCl2,pH 5.6±0.03)重悬后的菌液D(600)=0.8~1.0;将pTRV1与pTRV2空载体、pTRV2-LsMYB7农杆菌液按照体积比1∶1混合均匀,室温黑暗静置4~6 h;使用1 mL注射器,吸取1 mL混合农杆菌菌液。选取3~4 d的换锦花花苞,在花苞基部缓慢注射混合根癌农杆菌菌液,充分侵染换锦花花苞,侵染5 d后采集花瓣用于LsMYB7和花色形成相关结构基因的表达分析(见1.2.4和表1)。

    1.2.9   数据统计分析与作图

    采用Excel 2020 统计和整理数据,采用SPSS 20.0 对数据进行差异显著性分析,采用Graphpad 8.0作图。

    以换锦花花瓣的cDNA为模板,采用RT-qPCR技术扩增获得长度为951 bp 的LsMYB7 cDNA序列(图2)。该cDNA序列含有1个825 bp的开放阅读框(ORF),编码274个氨基酸,分子量为6.84 kD,蛋白分子式为C2402H3981N825O982S258,理论等电点(pI)为5.04,不稳定系数为43.43,总体亲水性(GRAVY)为0.936。

    图 2  全长序列克隆结果
    Figure 2  Full length of RT-qPCR

    通过与美国国家生物技术信息中心(NCBI)搜索的其他植物MYB氨基酸同源序列进行比对,发现换锦花LsMYB7蛋白含有2个R2R3-MYB典型的SANT结构域R2和R3[18](图3),属于R2R3-MYB类转录因子。与茶Camellia sinensis KAF5956278.1、狭叶油茶Camellia lanceoleosa KAI8015846.1、粗柄象腿蕉Ensete ventricosum RRT35038.1/RWV93016.1、椰子Cocos nucifera XP_KAG1363931.1、番红花Crocus sativus QBF29477.1、香根鸢尾Iris pallida KAJ6804060.1/KAJ6829988.1、河岸葡萄Vitis riparia XP_034676575.1和拟南芥Arabidopsis thaliana等其他植物的同源性为44.52%~60.57%,其中,与茶KAF5956278.1的同源性最高达60.57%,其次是香根鸢尾 KAJ6804060.1/KAJ6829988.1(59.32%),与拟南芥AtMYB44(Q9FDW1.1)、AtMYB70(AEC07437.1)、AtMYB73(O23160.1)和AtMYB77(Q98N12.1)的同源性为44.52%~47.44%,且同源部分均集中在N端的R2R3 DNA结合结构域,而C端的同源性较低。

    图 3  LsMYB7与其他植物的R2R3-MYB氨基酸同源序列比对
    Figure 3  Comparison of R2R3-MYB amino acid homologous sequences between LsMYB7 and other plants, R2R3-MYB

    从NCBI数据库下载拟南芥(AtMYB 16条)、换锦花(LsMYB 2条)和石蒜L. radiata (LrMYB 2条) R2R3-MYB氨基酸序列进行比对并构建系统进化树(图4)。参考拟南芥MYB基因家族的分类方法[19],LsMYB7与拟南芥R2R3-MYB S22亚家族的AtMYB44、AtMYB70、AtMYB73和AtMYB77 聚为一类,由于拟南芥S22亚家族参与调控拟南芥的生长和发育过程,响应高盐、干旱低温等非生物胁迫反应,同一亚族基因的功能相似,结合花色基因表达分析,推测LsMYB7可能通过响应干旱和高温等调控换锦花花瓣花色苷的形成。

    图 4  LsMYB7与拟南芥R2R3-MYB蛋白系统进化树
    Figure 4  Phylogenetic tree between LsMYB7 and R2R3-MYB from A. thaliana

    利用HPLC分别测定换锦花4个花发育时期和5个不同花色无性系(H1、H2、H3、H4和H5)盛花期花瓣的花色苷质量浓度(图5A和5B),结果表明:换锦花花瓣花色苷的主要成分为矢车菊素,含有少量的天竺葵素和飞燕草素,说明花色苷的种类和质量浓度决定换锦花花色的多样性。随着换锦花花器官的生长发育,花瓣花色苷总质量浓度和矢车菊素质量浓度呈逐渐下降的趋势,小花苞时期矢车菊素质量浓度大约是败花期的3倍,说明换锦花花瓣花色苷的积累可能主要在花瓣发育的早期完成(图1A和5A);在浅色换锦花无性系H4和H5中,矢车菊素质量浓度明显低于深色换锦花无性系H1、H2和H3(图1B和5B)。因此,从换锦花不同花发育时期和不同花色无性系花瓣颜色和花色苷质量浓度来看,矢车菊素对换锦花花瓣的颜色影响最大,矢车菊素质量浓度越高,换锦花花瓣的颜色就越深。

    图 5  换锦花不同花发育时期(A)和不同花色无性系(B)花瓣的花色苷质量浓度
    Figure 5  Anthocyanin contents in petals of different stages of flower development (A) and different clones (B) of L. sprengeri
    2.5.1   在换锦花不同发育时期的表达

    利用RT-qPCR对LsMYB7和换锦花花色形成相关基因(LsC4HLsCHSLsF3HLsF3'H、LsANSLsUFGT1、LsUFGT2)在换锦花不同发育时期花瓣中的表达进行分析,结果(图6)表明:LsMYB7与LsCHSLsF3'H基因的表达随着换锦花花苞发育呈逐渐上升趋势,LsC4H、LsCHS、LsUFGT1、LsUFGT2、LsF3'HLsMYB7在败花期大量表达,LsF3H则在花苞发育前期几乎无表达,盛花期开始大量表达,而在败花期表达量开始下降;LsANS、LsUFGTs等花色苷合成的后期基因在盛花期的表达最低。其中LsCHSLsF3'H基因的表达与花色苷总质量浓度和矢车菊素质量浓度正好相反(图5A)。

    图 6  换锦花LsMYB7和花色形成结构基因在不同花发育时期的表达
    Figure 6  Expression of LsMYB7 and structure genes related to anthocyanin biosythesis in different flower development stages
    2.5.2   在换锦花不同花色无性系花瓣中的表达

    LsMYB7和换锦花花色形成关键基因LsC4HLsCHSLsF3H、LsF3'H、LsANS、LsUFGT1和LsUFGT2在换锦花不同花色无性系中的表达差异显著(图7)。2个花色苷合成的前期基因LsC4HLsCHS及后期基因LsANS在淡色的无性系换锦花花瓣中表达量高。LsF3H在蓝色为主的H3无性系中表达量达到最高。LsMYB7在H1和H4中表达量比较高。LsMYB7基因的表达与LsCHSLsF3'H基因的表达正好相反,而与不同花色无性系花色苷总质量浓度和矢车菊素质量浓度基本一致,这一结果与不同花发育时期的基因表达结果一致。因此,LsMYB7可能对LsCHSLsF3'H基因的表达有一定的调控作用。

    图 7  换锦花LsMYB7和花色形成结构基因在不同无性系中的表达
    Figure 7  Expression of LsMYB7 and structure genes related to anthocyanin biosythesis in different flower clones

    通过双酶切法构建亚细胞定位载体pAN580-LsMYB7,转化烟草原生质体,于激光共聚焦荧光显微镜观察,LsMYB7荧光信号定位在细胞核中(图8),说明LsMYB7基因为转录因子基因,在细胞核中起转录调控的作用。

    图 8  LsMYB7的亚细胞定位
    Figure 8  Subcellular localization of LsMYB7

    构建LsMYB7的VIGS基因沉默载体pTRV2-LsMYB7,通过微量注射法转化换锦花花苞,LsMYB7 基因沉默后,换锦花同朵花中一半花瓣明显变短,且颜色变深(图9A);对LsMYB7和花色苷形成相关基因在换锦花花瓣中的表达进行分析(图9B和C),与ck (空载)相比,LsMYB7基因换锦花花瓣中的表达量明显下降,同时,花色苷形成相关基因LsCHS、LsF3'HLsANSLsUFGT1和LsUFGT2的表达量极显著下降(P<0.01),而LsF3H基因的表达量反而上升,LsC4H基因表达变化不大,说明LsMYB7转录因子可能参与调控花瓣的生长发育,且对LsCHS、LsF3'HLsANSLsUFGT1和LsUFGT2的表达起正调控作用,而对LsF3H基因的表达起负调控作用。

    图 9  LsMYB7基因沉默后表型变化及花色苷形成相关基因的表达
    Figure 9  Phenotype and relative expression levels of LsMYB7 and genes related to anthocyanin biosynthesis after LsMYB7 silenced
    A.表型变化;B. LsMYB7基因的表达;C. 花色苷形成相关基因的表达**表示差异极显著(P<0.01)

    植物R2R3-MYB转录因子广泛参与调控次生代谢、细胞形态发生、激素刺激、环境胁迫应答、分生组织形成和细胞周期等过程[20]。根据C-末端的不同,拟南芥R2R3-MYB基因家族可分成22个不同的亚族,其中,拟南芥S4、S5、S6和S7亚族基因参与花青素和类黄酮类化合物生物合成途径的结构基因的转录调控[18, 2122],换锦花LsMYB4、LsMYB5和拟南芥S4亚族基因聚为一类。通过花青素形成相关基因表达和VIGS基因沉默技术研究表明,LsMYB4和LsMYB5对花青素生物合成基因的表达有负调控的作用[1012]

    S22亚族基因AtMYB44、AtMYB77、AtMYB73和AtMYB70主要参与拟南芥响应高盐、干旱、低温等非生物胁迫反应,其中,AtMYB73基因启动子中含有ABA响应元件ABRE及干旱胁迫和热胁迫顺式作用元件。AtMYB73突变体atmyb73在干旱胁迫处理下,ABA 下游基因ABI2、ABI5 的表达水平均较野生型明显增强。外源 ABA 处理野生型和突变体种子、幼苗,获得了与干旱胁迫处理类似的结果[2324]。本研究结果表明:LsMYB7蛋白含有2个R2R3-MYB典型的SANT结构域R2和R3,属R2R3-MYB类转录因子,且R2和R3的保守结构域与其他植物高度同源,系统进化树分析结果显示LsMYB7和S22亚族基因AtMYB44、AtMYB77、AtMYB73和AtMYB70聚为一类,推测LsMYB7可能与S22亚族基因有相似的功能。

    本研究中,LsMYB7基因的表达与换锦花花色苷形成相关基因LsCHS、Ls4CL2和LsUFGT2的表达趋势一致,推测LsMYB7可能参与换锦花花瓣花色苷的生物合成。而LsMYB7属于拟南芥S22亚族,未见该亚族基因AtMYB44、AtMYB77、AtMYB73和AtMYB70参与花色苷的生物合成的转录调控。已有报道认为AtMYB73/44能够参与调控拟南芥对干旱胁迫的响应[2526],而干旱胁迫可诱导植物细胞合成和积累花色苷。花色苷的光化学性质、亚细胞积累位点及在植物器官、组织中的空间分布决定了花色苷能强化植物的耐旱性,其中,花色苷提高植物细胞在干旱胁迫下的抗氧化能力可能是花色苷强化植物耐旱性的主要原因[27]。有研究表明:干旱胁迫可激活紫麦Triticum aestioum ‘Guizi 1’、甘薯Ipomoes batats等植物花色苷合成相关基因表达,通过提高花青素含量抵御干旱胁迫[2829]。本研究中LsMYB7 基因沉默后,花色苷形成相关基因LsCHS、LsF3'H、LsANS、LsUFGT1和LsUFGT2的表达明显下降,说明LsMYB7可能直接或间接调控花色苷的积累,而LsMYB7与S22亚族基因聚为一类,由于换锦花开花季为夏末秋初的8—9月,此时多为高温和干旱季节,因此推测LsMYB7可能通过对干旱胁迫响应来调控花色苷形成相关基因的表达,大量积累花色苷。这一研究结果与云南文山辣椒Capsicum annuum、番茄Lycopersicon esculentum的研究[3031]相似,因此,植物可以通过干旱胁迫激活与花色苷合成相关基因的表达水平促进花色苷积累,进而提高抗旱能力。

    本研究通过RT-qPCR获得长为951 bp 的LsMYB7 cDNA序列,开放阅读框(ORF) 825 bp,编码274个氨基酸,LsMYB7为R2R3-MYB转录因子家族,定位于细胞核,与其他植物R2R3-MYB有较高的同源性。系统进化分析表明LsMYB7和参与调控干旱等非生物胁迫响应的S22亚族基因聚为一类;LsMYB7基因主要在败花期和花色苷含量较高的H1无性系中表达,与花色苷合成相关基因的表达趋势一致;LsMYB7基因沉默后,换锦花部分花瓣明显变短,颜色变深,LsCHS、LsF3'H、LsANS、LsUFGT1和LsUFGT2等花色苷形成相关基因的表达显著下调,因此,LsMYB7参与调控换锦花花瓣的生长发育,且通过对LsCHSLsF3'HLsANSLsUFGT1和LsUFGT2花色苷形成相关基因的表达调控花色苷的积累。此外,LsMYB7可能通过响应干旱胁迫激活花青素合成相关基因表达促进花色苷积累,进而提高换锦花的抗旱能力,LsMYB7调控花色苷积累抵御干旱的机制需要进一步研究。

  • 图  1  ‘长叶阿尔塔’插穗生根过程的外部形态变化

    Figure  1  Morphologic variations during rooting process of I.×altaclerensis ‘Belgica Aurea’

    图  2  ‘长叶阿尔塔’插穗生根过程的解剖结构

    Figure  2  Anatomical structure observation during rooting process of I. × altaclerensis ‘Belgica Aurea’

    图  3  ‘长叶阿尔塔’愈伤组织的扫描电镜观察

    Figure  3  Scanning electron microscopic observation on callus of I. × altaclerensis ‘Belgica Aurea’

    图  4  ‘长叶阿尔塔’愈伤组织的透射电镜观察

    Figure  4  Transmission electron microscope observation on callus of I. × altaclerensis ‘Belgica Aurea’

    表  1  ‘长叶阿尔塔’扦插的L9(34)正交试验设计      

    Table  1.   L9(34) orthogonal experimental design for cutting of I. × altaclerensis ‘Belgica Aurea’

    处理号植物生长调节剂处理方法基质类型[V(草
    炭)∶V(蛭
    石)∶V(珍珠岩)]
    种类质量浓度/
    (mg∙L−1)
    T1 ABT1生根粉 300 浸泡1 h 3∶3∶4
    T2 ABT1生根粉 500 浸泡1 h 4∶3∶3
    T3 ABT1生根粉 1 000 速蘸10 s 4∶2∶4
    T4 NAA 300 浸泡1 h 4∶3∶3
    T5 NAA 500 浸泡1 h 4∶2∶4
    T6 NAA 1 000 速蘸10 s 3∶3∶4
    T7 IBA 300 浸泡1 h 4∶2∶4
    T8 IBA 500 浸泡1 h 3∶3∶4
    T9 IBA 1 000 速蘸10 s 4∶3∶3
    下载: 导出CSV

    表  2  不同处理对‘长叶阿尔塔’插穗生根的影响

    Table  2.   Effects of different treatments on rooting of I.× altaclerensis ‘Belgica Aurea’

    处理号插穗存活率/%生根率/%最长根长/cm根系效果指数
    T122.11±2.25 Bbc12.74±1.37 Dd2.69±0.70 Bbc1.92±0.14 Bbc
    T211.37±1.20 De8.68±0.71 DEde1.31±0.70 BCc1.04±0.19 BCc
    T334.18±3.14 Bc23.62±2.47 Cc2.65±0.75 Bbc2.06±0.16 Bbc
    T45.42±4.72 Def4.25±3.68 Ee1.71±1.61 BCbc1.07±0.96 BCc
    T50.00±0.00 Ef0.00±0.00 Ee0.00±0.00 Cc0.00±0.00 Cc
    T641.61±2.67 Bb36.09±2.94 Bb3.09±1.20 ABb2.55±1.07 Bb
    T716.16±3.12 Ce8.88±1.70 DEde2.66±0.46 Bbc1.81±0.71 Bbc
    T823.67±3.63 Cd12.74±2.21 Dd2.91±0.84 ABbc2.33±0.66 Bbc
    T963.98±6.71 Aa48.83±7.35 Aa5.15±1.02 Aa4.90±0.87 Aa
      说明:同列不同小写字母表示差异显著(P<0.05),同列不同大写字母表示差异极显著(P<0.01)
    下载: 导出CSV

    表  3  正交试验各因素对插穗生根率的多重比较

    Table  3.   Multiple comparison of rooting rate on different fators of orthogonal test

    水平植物生长调节剂处理方法基质类型
    115.01±1.51 Bb8.62±1.51 Bb20.52±1.51 Aa
    213.45±1.51 Bb7.14±1.51 Bb20.59±1.51 Aa
    323.48±1.51 Aa36.18±1.51 Aa10.83±1.51 Bb
      说明:同列不同小写字母表示差异显著(P<0.05),同列不
         同大写字母表示差异极显著(P<0.01)
    下载: 导出CSV
  • [1] TSANG A C W, CORLETT R T. Reproductive biology of the Ilex species (Aquifoliaceae) in Hong Kong, China [J]. Can J Bot, 2005, 83(12): 1645 − 1654.
    [2] 刘洋, 张璐, 姜艳娟. 冬青属植物分类学及园艺应用研究进展[J]. 北方园艺, 2015(12): 183 − 189.

    LIU Yang, ZHANG Lu, JIANG Yanjuan. Research progress on the taxonomy and horticultural application of the genus Ilex [J]. Northern Hortic, 2015(12): 183 − 189.
    [3] 金晓玲, 傅建敏, 张冬林, 等. 杂交冬青的适应性及其扦插繁殖技术研究[J]. 中南林业科技大学学报, 2012, 32(3): 7 − 10.

    JIN Xiaoling, FU Jianmin, ZHANG Donglin, et al. Adaptability and cutting propagation technology of Ilex cultivars [J]. J Cent South Univ For Technol, 2012, 32(3): 7 − 10.
    [4] 胡曼筠, 曾雯, 蔡梦颖, 等. 华中冬青雌雄株扦插繁殖技术研究[J]. 江西农业大学学报, 2017, 39(2): 327 − 333.

    HU Manjun, ZENG Wen, CAI Mengying, et al. A study on cutting propagation technique for male and female plants of Ilex centrochinensis [J]. Acta Agric Univ Jiangxi, 2017, 39(2): 327 − 333.
    [5] 瓦逊, 罗德. 世界园林乔灌木[M]. 包志毅, 译. 北京: 中国林业出版社, 2004.

    WASSON E, RODD T. Trees & Shrubs [M]. BAO Zhiyi, tran. Beijing: China Forestry Publishing House, 2004.
    [6] 徐志豪. ‘贝尔奇卡金’ 哈克勒雷冬青无性快繁技术研究[D]. 杭州: 浙江大学, 2010.

    XU Zhihao. Study of Asexual Propagation Techniques of Ilex×altaclerensis ‘Belgica Aurea’ [D]. Hangzhou: Zhejiang University, 2010.
    [7] 季孔庶, 王章荣, 陈天华, 等. 马尾松插穗生根能力变异的研究[J]. 南京林业大学学报, 1998, 22(3): 66 − 70.

    JI Kongshu, WANG Zhangrong, CHEN Tianhua, et al. A study on rooting ability variation of masson pine (Pinus massoniana Lamb.) cuttings [J]. J Nanjing For Univ, 1998, 22(3): 66 − 70.
    [8] 周乃富, 张俊佩, 刘昊, 等. 木本植物非均质化组织石蜡切片制作方法[J]. 植物学报, 2018, 53(5): 653 − 660.

    ZHOU Naifu, ZHANG Junpei, LIU Hao, et al. New protocol for paraffin section of heterogeneous tissue of woody plant [J]. Chin Bull Bot, 2018, 53(5): 653 − 660.
    [9] FOWKE L C, ATTREE S M, RENNIE P J. Scanning electron microscopy of hydrated and desiccated mature somatic embryos and zygotic embryos of white spruce [J]. Plant Cell Rep, 1994, 13(11): 612 − 618.
    [10] WU G L, LIU Q L, da SILVA J A T. Ultrastructure of pericarp and seed capsule cells in the developing walnut (Juglans regia L.) fruit [J]. South Afr J Bot, 2008, 75(1): 128 − 136.
    [11] 王艺, 贾忠奎, 马履一, 等. 4种植物生长调节剂对红花玉兰嫩枝扦插生根的影响[J]. 林业科学, 2019, 55(7): 35 − 45.

    WANG Yi, JIA Zhongkui, MA Lüyi, et al. Effects of four plant growth regulators on rooting of the softwood cutting of Magnolia wufengensis [J]. Sci Silv Sin, 2019, 55(7): 35 − 45.
    [12] HUSEN A. Changes of soluble sugars and enzymatic activities during adventitious rooting in cuttings of Grewia optiva as affected by age of donor plants and auxin treatments [J]. Am J Plant Physiol, 2012, 7(1): 1 − 16.
    [13] HAISSIG B E. Metabolism during adventitious root primordium initiation and development [J]. N Z J For Sci, 1974, 4(2): 324 − 337.
    [14] OZKAN Y, ARSLAN A, GERÇEKÇIOLU R, et al. Effect of indole butyric acid concentrations on rooting of the green and hard-wood cuttings of some plum clone rootstocks [J]. Asian J Chem, 2005, 17(1): 310 − 318.
    [15] 王改萍, 王晓聪, 章雷, 等. 楸树扦插过程中插穗内含物变化分析[J]. 浙江农林大学学报, 2021, 38(2): 296 − 303.

    WANG Gaiping, WANG Xiaocong, ZHANG Lei, et al. Cutting test of Catalpa bungei and change analysis of cutting contents [J]. J Zhejiang A&F Univ, 2021, 38(2): 296 − 303.
    [16] SINGH B, RAWAT J M S. Effects of cutting types and hormonal concentration on vegetative propagation of Zanthoxylum armatum in Garhwal Himalaya, India [J]. J For Res, 2017, 28(2): 419 − 423.
    [17] BASHIR M A, ANJUM M A, CHAUDHRY Z, et al. Response of jojoba (Simmondsia chinensis) cuttings to various concentrations of auxins [J]. Pak J Bot, 2009, 41(6): 2831 − 2840.
    [18] AMRI E. The effect of auxins (IBA, NAA) on vegetative propagation of medicinal plant Bobgunnia madagascariensis (Desv.) J. H. Kirkbr & Wiersema [J]. Tanzania J Nat Appl Sci, 2011, 2(2): 359 − 366.
    [19] BARTEL B, LECLERE S, MAGIDIN M, et al. Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation [J]. J Plant Growth Regul, 2001, 20(3): 198 − 216.
    [20] 李焕勇, 刘涛, 张华新, 等. 植物扦插生根机理研究进展[J]. 世界林业研究, 2014, 27(1): 23 − 28.

    LI Huanyong, LIU Tao, ZHANG Huaxin, et al. Research progress in rooting mechanism of plant cuttings [J]. World For Res, 2014, 27(1): 23 − 28.
    [21] 金建邦, 祝遵凌, 林庆梅. 欧洲鹅耳枥扦插生根及解剖特性[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2): 92 − 98.

    JIN Jianbang, ZHU Zunling, LIN Qingmei. Rooting characteristics and anatomical structure of Carpinus betulus cuttings [J]. J Northwest A&F Univ Nat Sci Ed, 2015, 43(2): 92 − 98.
    [22] 赵爽, 刘志高, 冯彬, 等. 山木通扦插繁殖及生根机制[J]. 浙江农林大学学报, 2017, 34(5): 955 − 962.

    ZHAO Shuang, LIU Zhigao, FENG Bin, et al. Cutting propagation technology and rooting of Clematis finetiana [J]. J Zhejiang A&F Univ, 2017, 34(5): 955 − 962.
    [23] 李梦怡, 李炎林, 许璐, 等. 红花槭扦插生根特性和解剖学研究[J]. 湖南农业大学学报(自然科学版), 2019, 45(4): 362 − 367.

    LI Mengyi, LI Yanlin, XU Lu, et al. Rooting characters and anatomical structure of Acer rubrum cuttings [J]. J Hunan Agric Univ Nat Sci, 2019, 45(4): 362 − 367.
    [24] LIAO Chaoyang. Advances on internal influence factors of adventitious rooting of forest trees [J]. Agr Sci Tech, 2017, 18(7): 1168 − 1172.
    [25] BRYANT P H, TRUEMAN S J. Stem anatomy and adventitious root formation in cuttings of Angophora, Corymbia and Eucalyptus [J]. Forests, 2015, 6(4): 1227 − 1238.
    [26] PORFÍRIO S, da SILVA M D R G, CABRITA M J, et al. Reviewing current knowledge on olive (Olea europaea L.) adventitious root formation [J]. Sci Hortic, 2016, 198: 207 − 226.
    [27] 易咏梅, 罗世家, 李鑫, 等. 珙桐茎的解剖构造及愈伤组织形成的研究[J]. 湖北民族学院学报(自然科学版), 2000, 18(3): 4 − 6.

    YI Yongmei, LUO Shijia, LI Xin, et al. Studies on anatomical structure of dove tree stem and its formation of the callus [J]. J Hubei Inst Natl Nat Sci, 2000, 18(3): 4 − 6.
    [28] 王戈戎, 袁晓颖. 喜树茎解剖构造及插条不定根的形成[J]. 东北林业大学学报, 2007, 35(3): 88 − 89.

    WANG Gerong, YUAN Xiaoying. Anatomical structure of stem and adventitious root formation of cuttings for Camptotheca acuminate [J]. J Northeast For Univ, 2007, 35(3): 88 − 89.
    [29] LIU Jingchun, SHENG Lihong, XU Yingqiang, et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis [J]. Plant Cell, 2014, 26(3): 1081 − 1093.
    [30] 赵今哲, 刘国彬, 张鸿翎, 等. 生长调节剂处理的洒金柏扦插不定根解剖学研究[J]. 西南林业大学学报(自然科学), 2019, 39(2): 179 − 184.

    ZHAO Jinzhe, LIU Guobin, ZHANG Hongling, et al. Anatomical study on adventitious root of Platycladus orientalis cuttings treated by growth regulator [J]. J Southwest For Univ, 2019, 39(2): 179 − 184.
    [31] VIDAL N, ARELLANO G, SAN-JOSÉ M C, et al. Developmental stages during the rooting of in-vitro-cultured Quercus robur shoots from material of juvenile and mature origin [J]. Tree Physiol, 2003, 23(18): 1247 − 1254.
    [32] 李隆云, 张雪, 杨宪. 灰毡毛忍冬扦插生根的解剖学特征研究[J]. 中国中药杂志, 2010, 35(4): 431 − 434.

    LI Longyun, ZHANG Xue, YANG Xian. Anatomical study on rooting of Lonicera macranthoides cutting [J]. China J Chin Mater Med, 2010, 35(4): 431 − 434.
    [33] DRUEGE U, FRANKEN P, HAJIREZAEI M R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings [J/OL]. Front Plant Sci, 2016, 7(133): 381[2021-03-18]. doi: 10.3389/fpls.2016.00381.
    [34] 林艳, 詹亚光, 刘玉喜, 等. 白桦嫩枝扦插不定根形成的解剖观察[J]. 东北林业大学学报, 1996, 24(3): 15 − 18.

    LIN Yan, ZHAN Yaguang, LIU Yuxi, et al. The anatomical study on formation of adventitious root of softwood cutting in Betula platyphylla [J]. J Northeast For Univ, 1996, 24(3): 15 − 18.
  • [1] 陈依宁, 雷雪, 李欣, 高燕会.  石蒜体胚发生过程的细胞学和生理特性 . 浙江农林大学学报, 2024, 41(2): 243-251. doi: 10.11833/j.issn.2095-0756.20230321
    [2] 周文玲, 魏洪玲, 李德文, 唐中华, 刘英, 解胜男, 田叙晨, 储启明.  植物生长调节剂对杜仲叶片主要次级代谢产物的影响 . 浙江农林大学学报, 2023, 40(5): 999-1007. doi: 10.11833/j.issn.2095-0756.20220705
    [3] 钱家连, 李迎超, 许慧慧, 王茜, 秦爱丽, 任俊杰, 王利兵, 于海燕.  不同年龄栓皮栎嫩枝扦插生根及解剖学分析和酶活性变化 . 浙江农林大学学报, 2023, 40(1): 107-114. doi: 10.11833/j.issn.2095-0756.20220143
    [4] 靳皓然, 杨善为, 袁蕾慧子, 潘倩, 侯思璐, 范晓明, 袁德义.  油茶未授粉胚珠愈伤组织诱导及形态学和细胞学特征 . 浙江农林大学学报, 2023, 40(4): 773-782. doi: 10.11833/j.issn.2095-0756.20220507
    [5] 苗大鹏, 贾瑞瑞, 李胜皓, 席烁, 朱葛, 文书生.  木本植物不定根发生机制研究进展 . 浙江农林大学学报, 2022, 39(4): 902-912. doi: 10.11833/j.issn.2095-0756.20210652
    [6] 胡涛, 曹钰, 张鸽香.  基质和植物生长调节剂对美国流苏硬枝扦插生根的影响 . 浙江农林大学学报, 2019, 36(3): 622-628. doi: 10.11833/j.issn.2095-0756.2019.03.025
    [7] 张路, 丁晗, 桂和荣.  伴矿景天叶片愈伤组织诱导及植株再生 . 浙江农林大学学报, 2018, 35(3): 567-571. doi: 10.11833/j.issn.2095-0756.2018.03.024
    [8] 胡佳卉, 王小德.  羊角槭愈伤组织诱导、增殖与分化 . 浙江农林大学学报, 2018, 35(5): 975-980. doi: 10.11833/j.issn.2095-0756.2018.05.024
    [9] 金侯定, 喻卫武, 曾燕如, 项美云, 戴文圣, 党婉誉.  香榧Torreya grandis ‘Merrillii’的扦插繁殖 . 浙江农林大学学报, 2017, 34(1): 185-191. doi: 10.11833/j.issn.2095-0756.2017.01.025
    [10] 刘昊, 宋晓波, 周乃富, 马庆国, 裴东.  吲哚丁酸对核桃嫩枝扦插生根及内源激素变化的影响 . 浙江农林大学学报, 2017, 34(6): 1038-1043. doi: 10.11833/j.issn.2095-0756.2017.06.010
    [11] 曾余力, 林新春, 桂仁意, 张翠萍, 黄丽春.  南方红豆杉离体胚培养诱导不定芽研究 . 浙江农林大学学报, 2010, 27(4): 614-619. doi: 10.11833/j.issn.2095-0756.2010.04.023
    [12] 朱玉球, 廖望仪, 黄坚钦, 孙晓萍.  山核桃愈伤组织诱导的初步研究 . 浙江农林大学学报, 2001, 18(2): 115-118.
    [13] 黄坚钦, 章滨森, 陆建伟, 付敢伟.  山核桃嫁接愈合过程的解剖学观察 . 浙江农林大学学报, 2001, 18(2): 111-114.
    [14] 张纪卯, 陈文荣, 陈能德, 何志斌, 陈巧女, 郑文.  峦大杉扦插生根及生长 . 浙江农林大学学报, 2001, 18(2): 139-143.
    [15] 陈登雄, 蔡邦平, 董建文, 陈木林.  使君子的扦插繁殖技术 . 浙江农林大学学报, 2000, 17(4): 384-388.
    [16] 张若蕙, 刘洪谔, 蔡建国, 沈锡康.  应用新型绿色植物生长调节剂ABT-11~ 15号生根粉促进树木扦插成活 . 浙江农林大学学报, 1998, 15(1): 22-26.
    [17] 蔡建国, 沈锡康, 张若蕙, 林定波, 陆媛媛.  植物立体培育器和植物生长调节剂在银杏扦插繁殖中的应用 . 浙江农林大学学报, 1998, 15(4): 340-346.
    [18] 张立钦, 郑勇平, 罗士元, 胡加共.  杨树湿地松组织培养愈伤组织耐盐性* . 浙江农林大学学报, 1997, 14(1): 16-21.
    [19] 张若蕙, 刘洪谔, 沈锡康, 周骋, 叶苏芳.  26种亚热带树种扦插繁殖试验 . 浙江农林大学学报, 1994, 11(2): 116-120.
    [20] 钱莲芳, 黎章矩, 池方河, 倪丽芬, 王文潮.  银杏硬枝扦插与器官发生 . 浙江农林大学学报, 1993, 10(2): 125-132.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210283

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/2/347

图(4) / 表(3)
计量
  • 文章访问数:  1253
  • HTML全文浏览量:  192
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-10-18
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-03-25

冬青‘长叶阿尔塔’扦插生根及解剖学研究

doi: 10.11833/j.issn.2095-0756.20210283
    基金项目:  国家林业局引进国际先进林业科学技术项目(2012-4-33);江苏高校优势学科建设工程资助项目(PAPD)
    作者简介:

    朱晓宇(ORCID: 0000-0001-9071-3722),从事园林植物繁殖栽培与应用研究。E-mail: 614123876@qq.com

    通信作者: 田如男(ORCID: 0000-0003-1115-8973),教授,博士生导师,从事园林植物种质资源创新与应用、园林植物生理与生态修复研究。E-mail: tianrunan@njfu.edu.cn
  • 中图分类号: S687.9

摘要:   目的  探究植物生长调节剂种类、质量浓度、处理方法和基质类型对冬青‘长叶阿尔塔’Ilex × altaclerensis ‘Belgica Aurea’插穗生根能力的影响及其不定根的起源与形成过程,以期为冬青属Ilex植物扦插繁殖及引种驯化提供理论基础。  方法  以‘长叶阿尔塔’当年生半木质化枝条为插穗,采用3因素(植物生长调节剂种类和质量浓度、处理时间、基质类型)3水平正交试验设计。扦插后80 d,测定并分析不同处理下插穗的存活率、生根率、最长根长、根系效果指数。同时,使用萘乙酸(NAA)对插穗进行促根处理,观察插穗外部形态变化并定期取插穗基部制作石蜡切片,观察扦插前、后插穗的解剖学结构特征,利用扫描电镜和透射电镜技术对其愈伤组织进行形态学和细胞学观察。  结果  ①经1 000 mg·L−1 吲哚丁酸(IBA)溶液速蘸10 s,扦插于V(草炭)∶V(蛭石)∶V(珍珠岩)=4∶3∶3的插穗相关生根指标均处于较高水平,与其他处理均存在极显著差异(P<0.01),其中生根率相比其他处理提高了12.74%~48.83%。②插穗内不存在潜伏根原基,不定根由皮部产生,其生根类型为皮部诱导生根型,根原基起源于髓射线与维管形成层交叉处。③插穗茎段皮层与韧皮部之间存在1~2层环状厚壁组织,是导致插穗生根率低的原因。④愈伤组织中未发现根原基,其产生与不定根发生、发育彼此独立,同时生根并不是愈伤组织分化的最终结果。⑤插穗生根过程形成2类愈伤组织,其中胚性愈伤组织多为白色,排列紧密,表面细胞成团分布,大小近似,细胞核大核仁明显,细胞器丰富;非胚性愈伤组织多为深黄色,空泡化明显,表面细胞不饱满,大部分死亡破裂,内部几乎没有细胞器。  结论  初步筛选出了‘长叶阿尔塔’最佳扦插因素组合,从解剖学角度揭示了其扦插生根机制。图4表3参34

English Abstract

郑正权, 赵梦婧, 高燕会. 换锦花LsMYB7基因克隆与功能研究[J]. 浙江农林大学学报, 2024, 41(3): 586-596. DOI: 10.11833/j.issn.2095-0756.20230368
引用本文: 朱晓宇, 童婉婉, 赵楚, 等. 冬青‘长叶阿尔塔’扦插生根及解剖学研究[J]. 浙江农林大学学报, 2022, 39(2): 347-355. DOI: 10.11833/j.issn.2095-0756.20210283
ZHENG Zhengquan, ZHAO Mengjing, GAO Yanhui. Cloning and function analysis of LsMYB7 gene in Lycoris sprengeri[J]. Journal of Zhejiang A&F University, 2024, 41(3): 586-596. DOI: 10.11833/j.issn.2095-0756.20230368
Citation: ZHU Xiaoyu, TONG Wanwan, ZHAO Chu, et al. Root formation and anatomical structure of Ilex × altaclerensis ‘Belgica Aurea’ stem cuttings[J]. Journal of Zhejiang A&F University, 2022, 39(2): 347-355. DOI: 10.11833/j.issn.2095-0756.20210283
  • 冬青属Ilex植物多常绿,树冠优美,果实通常红色光亮,长期宿存,是良好的庭园观赏和城市绿化树种,拥有巨大的园林应用潜力。冬青属种子具有种胚后熟的特性[1],常规播种繁殖生长缓慢,且后代性状易发生分离。嫁接繁殖步骤繁琐,操作技术不易掌握,管理要求严格。相比之下,扦插繁殖操作简单,繁殖系数较高,还能保持植物的优良性状。然而,冬青属植物中的很多种类扦插生根困难、成活率低,严重制约了该属植物的推广和应用[2]。金晓玲等[3]研究了34种杂交冬青的生态适应性和扦插成活率后发现:不同品种的冬青扦插成活率存在较大差异,其中光滑冬青Ilex glabra系列栽培品种扦插成活率较高(90.5%~100.0%),美洲冬青I. verticillata系列栽培品种较低(47.5%~64.3%)。生产上常常使用植物生长调节剂处理插穗以获得较高的生根率。胡曼筠等[4]研究发现:经500 mg·L−1 钾盐吲哚丁酸(KIBA)处理的华中枸骨I. centrochinensis生根率最高,雌雄株分别为83.33%和87.50%,比对照明显提高了20.83%。冬青‘长叶阿尔塔’I. × altaclerensis ‘Belgica Aurea’为冬青属常绿小乔木,是欧洲冬青I. aquifolium和加那利冬青I. perado的园艺杂交种,均为雌株[5]。该植物茎绿色,具黄色条纹;叶边缘金黄色不规则,中央有灰绿色斑纹;入秋红果累累,经冬不落,是优良的观干、观叶、观果树种。此外,该树种耐修剪,适应性强,亮丽的色彩很适合与其他彩叶植物搭配种植,极具园林应用前景。但‘长叶阿尔塔’扦插生根较为困难,经萘乙酸(NAA)、吲哚乙酸(IAA)、吲哚丁酸(IBA)、GGR6生根粉处理后生根率均不到40%,生根持续时间较长,生根机制尚不清楚[6]。本研究考察了植物生长调节剂种类和质量浓度、处理方法、基质类型对插穗生根的影响,并从形态解剖学角度探讨了插穗不定根的发生及发育过程,旨在揭示‘长叶阿尔塔’插穗的生根机制,为冬青属植物扦插繁殖技术提供理论基础。

    • 材料取自宁波高新农业技术实验园区苗圃。从10 a以上生长健壮、无病虫害且无机械损伤的‘长叶阿尔塔’嫁接苗母株上采集当年生半木质化枝条为插穗。插穗长度为8~10 cm,上切口平剪,下切口45° 斜剪,保留3~5个芽及顶端2片1/2成熟叶。本研究在南京林业大学园林实验中心温室的扦插床上进行。扦插前基质均经过消毒处理,插床配置间歇自动喷雾装置,保持扦插环境相对空气湿度为90%,插穗上方3 m处覆盖50%遮阳网。扦插时温室内温度为20~25 ℃。

    • 以植物生长调节剂种类和质量浓度、处理方法、基质类型为试验因素,每个因素下设3个水平,采用3因素3水平正交试验设计(表1),试验共9个处理,每处理30根插穗,重复3次。

      表 1  ‘长叶阿尔塔’扦插的L9(34)正交试验设计      

      Table 1.  L9(34) orthogonal experimental design for cutting of I. × altaclerensis ‘Belgica Aurea’

      处理号植物生长调节剂处理方法基质类型[V(草
      炭)∶V(蛭
      石)∶V(珍珠岩)]
      种类质量浓度/
      (mg∙L−1)
      T1 ABT1生根粉 300 浸泡1 h 3∶3∶4
      T2 ABT1生根粉 500 浸泡1 h 4∶3∶3
      T3 ABT1生根粉 1 000 速蘸10 s 4∶2∶4
      T4 NAA 300 浸泡1 h 4∶3∶3
      T5 NAA 500 浸泡1 h 4∶2∶4
      T6 NAA 1 000 速蘸10 s 3∶3∶4
      T7 IBA 300 浸泡1 h 4∶2∶4
      T8 IBA 500 浸泡1 h 3∶3∶4
      T9 IBA 1 000 速蘸10 s 4∶3∶3
    • 春季扦插80 d后统计相关生根指标。观测指标包括:插穗存活率(%)、生根率(%)、生根数量(单个处理的单株平均不定根数量,条)、最长不定根长(单个处理的单株平均最长不定根长,cm)、平均不定根长(单个处理的单株平均根长,cm),并对插条生根部位和特征进行观察记录。计算插穗存活率=存活插穗数/总插穗数×100%;生根率=生根插穗数/总插穗数×100%;根系效果指数=(平均根长×根系数量)/总插穗数[7]。数据采用Excel 2003整理,并用SPSS 24.0软件进行方差分析及多重比较。

    • 插穗扦插前用1 000 mg·L−1的NAA溶液速蘸插穗10 s,扦插基质为珍珠岩,每处理30根插穗,重复3次。自扦插当天开始取样,以后每隔14 d取样1次,每次随机取3根插穗,共取样6次(0 、14、28、42、56、70 d)。观察扦插生根过程中插穗基部形态变化,愈伤组织和不定根的发生情况,并拍照记录,拍照记录后的插穗用于后期解剖学观察。

    • 观察‘长叶阿尔塔’插穗茎段的横切面结构及其在扦插过程中的变化;通过扫描电镜、透射电镜观察扦插过程中各类型愈伤组织的表面形态及内部细胞结构的变化。①石蜡切片。参照周乃富等[8]的方法,对插穗基部1 cm左右的茎段进行切片,并用OLYMPUS显微镜观察并拍照,分析插穗内部不定根的发生发育过程。②扫描电镜。参照FOWKE等[9]的方法,对插穗基部愈伤组织的结构进行扫描电镜观察并拍照(Quanta 200)。③透射电镜。参照WU等[10]的方法,对新鲜愈伤组织材料(0.5 cm3)进行透射电镜观察并拍照(JEM 1400)。

    • 表2可知:不同处理‘长叶阿尔塔’插穗存活率、生根率、最长根长、根系效果指数4个指标差异极显著(P<0.01)。其中,T9处理插穗存活率达63.98%、生根率达48.83%、最长根长达5.15 cm、根系效果指数达4.90,均极显著高于其他处理(P<0.01)。从表3可知:植物生长调节剂的种类和质量浓度、处理方法水平3的生根率极显著高于水平1与水平2(P<0.01);基质类型水平1与水平2的生根率极显著高于水平3(P<0.01)。综合表2表3可知:‘长叶阿尔塔’插穗经1 000 mg·L−1 IBA溶液速蘸10 s,扦插在V(草炭)∶V(蛭石)∶V(珍珠岩)=3∶3∶4或4∶3∶3的基质中可获得较高的生根率。

      表 2  不同处理对‘长叶阿尔塔’插穗生根的影响

      Table 2.  Effects of different treatments on rooting of I.× altaclerensis ‘Belgica Aurea’

      处理号插穗存活率/%生根率/%最长根长/cm根系效果指数
      T122.11±2.25 Bbc12.74±1.37 Dd2.69±0.70 Bbc1.92±0.14 Bbc
      T211.37±1.20 De8.68±0.71 DEde1.31±0.70 BCc1.04±0.19 BCc
      T334.18±3.14 Bc23.62±2.47 Cc2.65±0.75 Bbc2.06±0.16 Bbc
      T45.42±4.72 Def4.25±3.68 Ee1.71±1.61 BCbc1.07±0.96 BCc
      T50.00±0.00 Ef0.00±0.00 Ee0.00±0.00 Cc0.00±0.00 Cc
      T641.61±2.67 Bb36.09±2.94 Bb3.09±1.20 ABb2.55±1.07 Bb
      T716.16±3.12 Ce8.88±1.70 DEde2.66±0.46 Bbc1.81±0.71 Bbc
      T823.67±3.63 Cd12.74±2.21 Dd2.91±0.84 ABbc2.33±0.66 Bbc
      T963.98±6.71 Aa48.83±7.35 Aa5.15±1.02 Aa4.90±0.87 Aa
        说明:同列不同小写字母表示差异显著(P<0.05),同列不同大写字母表示差异极显著(P<0.01)

      表 3  正交试验各因素对插穗生根率的多重比较

      Table 3.  Multiple comparison of rooting rate on different fators of orthogonal test

      水平植物生长调节剂处理方法基质类型
      115.01±1.51 Bb8.62±1.51 Bb20.52±1.51 Aa
      213.45±1.51 Bb7.14±1.51 Bb20.59±1.51 Aa
      323.48±1.51 Aa36.18±1.51 Aa10.83±1.51 Bb
        说明:同列不同小写字母表示差异显著(P<0.05),同列不
           同大写字母表示差异极显著(P<0.01)
    • 与扦插前(图1A)相比,扦插14 d时,插穗切口边缘能够观察到少量浅绿色的愈伤组织(图1B);扦插28 d时,插穗切口处表皮开裂,并与木质化部分分离(图1C);扦插42 d时,插穗切口上方1 cm左右的部位出现条状开裂,此时愈伤组织较多,沿着表皮与木质化部分的界限呈环状分布(图1D);扦插56 d时,大部分插穗切口处均形成点状、浅黄色的愈伤组织,少量不定根突破皮层,开始皮外伸长生长­(图1E);扦插70 d时,多数插穗基部均能明显观察到不定根,其生长部位在距插穗下切口上部2 cm内,有些不定根可生长至2 cm左右(图1G);扦插90 d时(不在取样周期内,仅用于外部形态观察),有大量不定根形成,其长度超过5 cm(图1H)。同时,扦插过程中也发现有些插穗基部形成发达的愈伤组织,将切口全部包住(图1F),但并未观察到愈伤组织内长出不定根(图1I)。此外,有些插穗既不长出愈伤组织,也没有形成不定根,也不死亡,出现“假活”现象;也有部分插穗自顶端开始发黑褐化,最终死亡(图1J)。

      图  1  ‘长叶阿尔塔’插穗生根过程的外部形态变化

      Figure 1.  Morphologic variations during rooting process of I.×altaclerensis ‘Belgica Aurea’

    • 扦插前‘长叶阿尔塔’嫩枝插穗的横切面由表皮(Ep)、皮层(Co)、维管柱3部分组成(图2A)。维管柱包括韧皮部(Ph)、维管形成层(Vc)、木质部(Xy)、髓(Pi)等部分;在皮层与韧皮部之间存在由一层或多层纤维细胞组成的环状厚壁组织(Ps),呈连续或不连续的环状排列,被染成红色(图2B)。试验中大量切片观察并未发现插穗茎段横切面内存在潜伏根原基,表明‘长叶阿尔塔’的根原基是在扦插后诱导产生的。

      图  2  ‘长叶阿尔塔’插穗生根过程的解剖结构

      Figure 2.  Anatomical structure observation during rooting process of I. × altaclerensis ‘Belgica Aurea’

    • 根据解剖观察结果,‘长叶阿尔塔’插穗生根过程可划分为3个时期,即形成层细胞活跃期、不定根原基形成期和不定根形成期。①形成层细胞活跃期:由于植物生长调节剂的诱导,形成层细胞在28 d左右开始旺盛分裂,连续平周分裂产生胞质浓、细胞核大、染色深的薄壁细胞,并有向外扩张的趋势。②不定根原基形成期:根诱导42 d左右,髓射线正对的形成层细胞分裂最旺盛,在髓射线加宽部位和紧靠韧皮部的部位形成一团大小相当、细胞核较大、核仁明显、细胞质较浓的根原基细胞团(图2C)。随后,根原基细胞团不断分裂冲破连续的厚壁组织,并向皮层方向生长,突破皮层的根原基细胞团受到挤压分化形成楔形的根原基(图2D)。③不定根形成期:根原基形成后 (约56 d),朝向表皮一端的细胞团转化为不定根的顶端分生组织,顶端分生组织细胞不断分裂、生长,逐渐突破皮层细胞和表皮(图2E);同时,位于不定根根尖后端的细胞从外向内逐渐分化形成根的维管系统,最终与茎的维管系统相连形成幼根(图2F)。

    • 图3A显示同一插穗上2种不同类型的愈伤组织,①为白色、透明、块状的愈伤组织,②为浅黄色、不透明、点状的愈伤组织。白色块状愈伤组织表面有很多凸出且大小均一的球形细胞,细胞间间隙较小,为胚性愈伤组织细胞(图3B图3C),多以细胞团的形式存在(图3D),表面黏液较多,且带有少量絮状附着物(图3E)。从图3F发现:浅黄色点状愈伤组织表面粗糙,细胞大多死亡破裂(图3G),细胞表面有附着物(图3H),在死亡破裂的细胞之间存在间隙,表面存在凹陷(图3I)。

      图  3  ‘长叶阿尔塔’愈伤组织的扫描电镜观察

      Figure 3.  Scanning electron microscopic observation on callus of I. × altaclerensis ‘Belgica Aurea’

    • 同一愈伤组织中既有胚性愈伤组织细胞也有非胚性愈伤组织细胞。胚性愈伤组织细胞质浓厚、细胞器较明显(图4A);非胚性愈伤组织细胞质稀薄,有明显的中央大液泡,几乎观察不到细胞器(图4B)。胚性愈伤组织细胞核大,核仁明显,在靠近细胞膜的胞质区域里有较多的淀粉粒和线粒体,还可观察到内含淀粉粒的叶绿体。淀粉可以为插穗生根提供充足的营养,线粒体较多说明其呼吸作用较强,代谢旺盛(图4C4D4E4F)。同时,仍有部分胚性愈伤组织细胞出现轻微的质壁分离现象(图4G),这可能是老化愈伤组织中的衰老细胞。非胚性愈伤组织细胞的细胞质受到液泡挤压,细胞核等仅分布于细胞壁附近,但仍可观察到明显的核仁(图4H)。

      图  4  ‘长叶阿尔塔’愈伤组织的透射电镜观察

      Figure 4.  Transmission electron microscope observation on callus of I. × altaclerensis ‘Belgica Aurea’

    • 选择最优的植物生长调节剂种类和质量浓度、处理时间等因素组合可以有效提高植物扦插生根率和生根数[11]。研究[12]表明:植物生长调节剂可以促进插穗基部细胞的分生与分化,加速插穗内可溶性糖、淀粉及可溶性蛋白的水解和代谢,使下切口成为营养物质的中心吸收区域;使用植物生长调节剂还可以提高插穗内过氧化物酶(POD)、多酚氧化酶(PPO)、吲哚乙酸氧化酶(IAAO)的活性,调节内源激素水平,活化形成层,促进根原基的形成[13-16]。IBA在促进难生根树种的生根及改善根系品质方面取得了较好的效果[17-18]。本研究中,IBA促进插穗生根效果显著优于ABT1和NAA,这可能是由于IBA被氧化分解的速度慢、传导扩散性能差,作用于插穗基部的时间长,有利于促进不定根的发生[19]。本试验最佳处理的生根率仅为48.83%,今后可结合其生根过程的激素调控、酶活性变化等方面对‘长叶阿尔塔’的生根机制开展更深入探究。

    • 根据不定根在插穗上的形成部位不同,木本植物插穗生根类型分为皮部生根型、愈伤组织生根型和混合生根型[20]。本研究发现:‘长叶阿尔塔’插穗生根部位多在插穗切口上方2 cm左右的皮部,切口处无愈伤组织或仅有少量愈伤组织,也有少数插穗基部的愈伤组织发达,但仍然从切口上方的皮部形成多条不定根,与金建邦等[21]对欧洲鹅耳枥Carpinus betulus扦插不定根的发生发育研究结果类似。同时,观察‘长叶阿尔塔’插穗茎段的横切面切片后,并未发现潜伏根原基的存在,推测不定根是从扦插后诱导产生的诱生根原基发育而来,与山木通Clematis finetiana[22]、红花槭Acer rubrum[23]等的根原基来源相同。因此,‘长叶阿尔塔’插穗生根类型属于皮部诱导生根型。

    • 插穗茎段结构是影响不定根发生、发育的“解剖学原因”[24]。对于难生根树种而言,插穗内部的机械组织(包括厚角组织与厚壁组织2类)是根原基形成和发育的阻碍因子[25-26]。树木扦插生根的难易程度与皮层和韧皮部之间的厚壁组织关系密切。多数难生根树种厚壁组织连续且呈环状,如珙桐Davidia involucrata[27]等。若插穗皮层中没有这种组织,或虽有但并不连续,则插穗生根相对容易,如喜树Camptotheca acuminata[28]等。本研究发现‘长叶阿尔塔’1年生插穗茎段皮层与韧皮部之间,存在1~2层由纤维细胞组成的环状厚壁组织,呈连续或不连续状,可能与插穗的发育程度有关;进一步观察发现仅少数根原基能突破连续的环状厚壁组织。此外,‘长叶阿尔塔’插穗生根需经历较长时间,春季56 d左右才能观察到突破表皮的不定根。由于生根进程缓慢,在此过程中插穗新叶、芽的生长消耗了大量的养分,且较长的时间容易导致插穗因病原菌侵害而褐化死亡,降低生根率。因此,为提高插穗生根率,应选择1年生、木质化程度较弱的枝条进行扦插,以减少厚壁组织对插穗生根率的影响。

    • 扦插后,通常会在插穗基部表皮或表皮与木质化部分交接处形成愈伤组织,可由插穗茎段中的皮层、韧皮部、维管形成层、髓等多个部位的细胞快速分裂而来。插穗愈伤组织与不定根发生发育的关系可概括为以下3种:①愈伤组织的形成是不定根生长发育的物质基础。此类愈伤组织中可以分化形成根原基细胞,在一定条件下可发育形成不定根[29],如洒金柏Platycladus orientalis[30]等多数针叶树种均属于此类。②愈伤组织的产生与不定根形成无直接因果关系、彼此独立[31]。这类愈伤组织通常不能形成根原基,只能分化形成独立的维管束、输导组织等,在插穗与基质之间无机盐、水分等物质交换过程中起着中介作用,如灰毡毛忍冬Lonicera macranthoides[32]等属于此类。③愈伤组织的产生不利于不定根的发生、发育[33]。如高度发达的愈伤组织抑制了白桦Betula platyphylla嫩枝插穗根原基细胞的分化,进而阻碍了不定根的形成[34]。本研究发现:‘长叶阿尔塔’插穗愈伤组织产生与不定根发生、发育彼此独立,适度分化的愈伤组织能够保护切口免受外界病菌侵入,防止插穗内有效物质的流失,还可以充当水分等物质交换的桥梁。但过度分化的愈伤组织会占用插穗内部的营养物质,抑制不定根的形成。

    • 冬青‘长叶阿尔塔’插穗经1 000 mg·L−1 IBA溶液速蘸10 s,扦插在V(草炭)∶V(蛭石)∶V(珍珠岩)=3∶3∶4或4∶3∶3的基质中可获得较高的生根率,其插穗生根类型属于皮部诱导生根型,根原基起源于髓射线与维管形成层交叉处,环状厚壁组织是阻碍其插穗生根的机械原因。‘长叶阿尔塔’插穗愈伤组织中并未观察到根原基发端细胞,其产生与不定根发生、发育彼此独立,可分为胚性愈伤组织和非胚性愈伤组织,胚性愈伤组织多为白色,其表面细胞体积较小且排列紧密,常成团分布,细胞核大质浓,细胞器丰富;非胚性愈伤组织细胞多为黄色,其表面细胞大多死亡破裂,空泡化明显,几乎没有细胞器。

参考文献 (34)

目录

/

返回文章
返回