Effects of intercropping patterns on physiological characteristics and Pb uptake of edible plants in community gardens
-
摘要:
目的 研究间作东南景天Sedum alfredii的社区花园受铅污染土壤中的植物生理特性及对重金属铅的吸收特征,以期筛选出降低可食植物对重金属铅吸收的最佳种植模式。 方法 以东南景天以及可食植物青芹Apium graveolens、上海青Brassica chinensis、辣椒Capsicum annuum和樱桃萝卜Raphanus sativus为研究材料,在浙江省杭州市临安区平山苗圃开展盆栽试验。以单作为对照,分析间作东南景天对可食植物生理生化指标的影响,以及可食植物的铅吸收转移特征、植物根际土壤pH和铅形态分布特征。 结果 ①间作显著增加了东南景天、青芹和辣椒的生物量(P<0.05),降低了上海青和樱桃萝卜生物量;②东南景天和可食植物叶片内丙二醛浓度变化表现出一致规律,间作均低于单作;间作体系中青芹、辣椒、樱桃萝卜叶片内过氧化氢酶活性比单作分别显著增长33.92%、41.94%、53.80%(P<0.05); ③间作东南景天显著降低了青芹、辣椒、樱桃萝卜可食部位对铅的积累(P<0.05),与单作相比分别下降了24.37%、162.50%和39.82%; ④间作模式降低植物根际土壤pH,且改变土壤中铅形态分布。间作东南景天降低了可食植物根际土壤弱酸提取态铅和可氧化态铅的形态占比,提高了可还原态铅的形态占比。 结论 间作模式促进东南景天对铅的富集和迁移,减缓铅对可食植物的毒害作用。与东南景天间作,青芹、辣椒可食部位铅质量分数显著降低,达到安全食用标准;樱桃萝卜可食部位铅质量分数有降低的趋势。图6表3参31 Abstract:Objective The objective is to study the physiological characteristics of plants in Pb contaminated soil and uptake characteristics of Pb in community gardens intercropped with Sedum alfredi, in order to screen out the best planting mode to reduce the uptake of Pb by edible plants. Method S. alfredii, Apium graveolens, Brassica chinensis, Capsicum annuum and Raphanus sativus were used as research materials. A pot experiment was carried out in Pingshan Nursery of Lin’an District of Hangzhou City, Zhejiang Province. The effects of intercropping S. alfredii on physiological and biochemical indexes of edible plants, uptake and transfer characteristics of Pb, the pH of rhizosphere soil and distribution characteristics of Pb were analyzed. Result (1) Intercropping significantly improved the biomass of S. alfredii, A. graveolens and C. annuum, and reduced the biomass of B. chinensis and R. sativus (P<0.05). (2) The content of MDA in leaves of S. alfredii and edible plants showed a consistent pattern, and intercropping was lower than monoculture. In the intercropping system, CAT activities in leaves of A. graveolens, C. annuum and R. sativus significantly increased by 33.92%, 41.94% and 53.80%, compared with the monoculture system (P<0.05). (3) Intercropping S. alfredii significantly reduced Pb accumulation in edible parts of A. graveolens, C. annuum and R. sativus, which decreased by 24.37%, 162.50% and 39.82%, respectively (P<0.05), compared with monoculture. (4) Intercropping decreased the pH of rhizosphere soil and changed the distribution of Pb in soil. Intercropping S. alfredii decreased the form proportion of weak acid extracted and oxidized Pb in the rhizosphere soil of edible plants, but increased the form proportion of reducible Pb in soil. Conclusion The intercropping mode can promote the enrichment and migration of Pb in S. alfredii and reduce the toxic effect of Pb on edible plants. Intercropping S. alfredii significantly reduces Pb content in edible parts of A. graveolens and C. annuum, reaching the safe edible standard. The Pb content in edible parts of R. sativus tends to decrease, which is an ideal combination mode for intercropping restoration. [Ch, 6 fig. 3 tab. 31 ref.] -
Key words:
- community garden /
- edible plants /
- intercropping /
- Pb contamination /
- physiological indicators /
- phytoremediation
-
表 1 盆栽试验设计
Table 1. Pot experiment design
种植模式 处理 代号 种植模式 处理 代号 单作 青芹 Q 间作 东南景天-上海青(东南景天) S-D1 单作 上海青 S 间作 东南景天-上海青(上海青) S-D2 单作 辣椒 L 间作 东南景天-辣椒(东南景天) L-D1 单作 樱桃萝卜 B 间作 东南景天-辣椒(辣椒) L-D2 单作 东南景天 D 间作 东南景天-樱桃萝卜(东南景天) B-D1 间作 东南景天-青芹(东南景天) Q-D1 间作 东南景天-樱桃萝卜(樱桃萝卜) B-D2 间作 东南景天-青芹(青芹) Q-D2 说明:间作模式各处理括号中列出的是该模式下的采样植物 表 2 不同组合下东南景天对铅的富集系数及转运系数
Table 2. FBC and FT of Pb by S. alfredii in different treatments
植物 处理 FBC FT根—茎叶 根 茎叶 东南景天 D 0.426 76 b 0.098 39 b 0.231 b Q-D1 0.438 03 b 0.102 06 b 0.233 b S-D1 0.331 30 c 0.079 01 c 0.238 b L-D1 0.435 77 b 0.130 85 a 0.300 a B-D1 0.529 70 a 0.131 23 a 0.248 b 说明:表中数据为平均值(n=3)。同列不同字母表示各处理间显著差异(P<0.05) 表 3 不同间作组合下可食植物对铅的富集系数及转运系数
Table 3. FBC and FT of Pb by edible plants in different treatments
植物 处理 FBC FT根—茎叶 根 茎 叶 果 青芹 Q 0.002 24 c 0.001 69 bc 0.000 80 cd − 1.164 b Q-D2 0.002 07 c 0.001 28 c 0.000 50 d − 0.875 c 上海青 S 0.004 07 b 0.002 19 a 0.001 33 b − 0.863 c S-D2 0.002 65 c 0.001 24 c 0.001 86 a − 1.173 b 辣椒 L 0.002 16 c 0.001 57 bc 0.001 11 bc 0.000 96 a 1.688 a L-D2 0.002 34 c 0.001 66 bc 0.000 75 cd 0.000 41 b 1.215 b 樱桃萝卜 B 0.004 79 a 0.002 02 ab 0.000 71 cd − 0.570 d B-D2 0.004 06 b 0.001 65b c 0.000 82 bc − 0.608 d 说明:−表示无此项。数据为平均值(n=3)。同列不同字母表示各处理间具有显著差异(P<0.05) -
[1] 刘悦来, 许俊丽, 尹科娈. 高密度城市社区公共空间参与式营造——以社区花园为例[J]. 风景园林, 2019, 26(6): 13 − 17. doi: 10.14085/j.fjyl.2019.06.0013.05 LIU Yuelai, XU Junli, YIN Keluan. Participatory construction of community public space in high-density cities: a case study of community gardens [J]. Landscape Architecture, 2019, 26(6): 13 − 17. doi: 10.14085/j.fjyl.2019.06.0013.05 [2] 钱静. 西欧份地花园与美国社区花园的体系比较[J]. 现代城市研究, 2011, 26(1): 86 − 92. doi: 10.3969/j.issn.1009-6000.2011.01.014 QIAN Jing. The comparison of allotment garden in Europe and community garden in the United States [J]. Modern Urban Research, 2011, 26(1): 86 − 92. doi: 10.3969/j.issn.1009-6000.2011.01.014 [3] 陈蓉蓉, 金荷仙, 颜越. 近20年社区花园演进历程及热点趋势研究[J]. 风景园林, 2021, 28(11): 114 − 119. doi: 10.14085/j.fjyl.2021.10.0114.06 CHEN Rongrong, JIN Hexian, YAN Yue. Evolution process, hotspots and trends of community gardens in recent 20 years [J]. Landscape Architecture, 2021, 28(11): 114 − 119. doi: 10.14085/j.fjyl.2021.10.0114.06 [4] BELON E, BOISSON M, DEPORTES I Z, et al. An inventory of trace elements inputs to French agricultural soils [J]. Science of the Total Environment, 2012, 439: 87 − 95. doi: 10.1016/j.scitotenv.2012.09.011 [5] LAIDLAW M A S, ALANKARAGE D H, REICHMAN S M, et al. Assessment of soil metal concentrations in residential and community vegetable gardens in Melbourne, Australia [J]. Chemosphere, 2018, 199: 303 − 311. doi: 10.1016/j.chemosphere.2018.02.044 [6] DAO Ligan, MORRISON L, ZHANG Hongxuan, et al. Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland [J]. Environmental Geochemistry and Health, 2013, 36(3): 333 − 343. [7] ROUILLON M, HARVEY P J, KRISTENSEN L J, et al. VegeSafe: a community science program measuring soil-metal contamination, evaluating risk and providing advice for safe gardening [J]. Environmental Pollution, 2016, 222: 557 − 566. [8] JEAN-SORO L, GUERN L C, BECHET B, et al. Origin of trace elements in an urban garden in Nantes, France [J]. Journal of Soils and Sediments, 2015, 15(8): 1802 − 1812. doi: 10.1007/s11368-014-0952-y [9] MITCHELL R G, SPLIETHOFF H M, RIBAUDO L N, et al. Lead (Pb) and other metals in New York City community garden soils; factors influencing contaminant distributions [J]. Environmental Pollution, 2014, 187: 162 − 169. doi: 10.1016/j.envpol.2014.01.007 [10] 杨剑洲, 王振亮, 高健翁, 等. 海南省集约化种植园中谷物、蔬菜和水果中重金属累积程度及健康风险[J]. 环境科学, 2021, 42(10): 4916 − 4924. doi: 10.13227/j.hjkx.202102119 YANG Jianzhou, WANG Zhenliang, GAO Jianweng, et al. Accumulation and herisk of heavy metals in cereals, vegetables, and fruits of intensive plantations in Hainan Province [J]. Environmental Science, 2021, 42(10): 4916 − 4924. doi: 10.13227/j.hjkx.202102119 [11] KIM H S, KIM Y J, SEO Y R. An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention [J]. Journal of Cancer Prevention, 2015, 20(4): 232 − 240. doi: 10.15430/JCP.2015.20.4.232 [12] RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: Health risks, fate, mechanisms, and management [J]. Environment international, 2019, 125: 365 − 385. doi: 10.1016/j.envint.2019.01.067 [13] 曹瑞祺, 方松林, 曹盼宫. 重金属污染土壤园林植物修复研究进展[J]. 北方园艺, 2019(16): 145 − 152. CAO Ruiqi, FANG Songlin, CAO Pangong. Research on garden plant restoration of heavy metal contaminated soil. [J]. Northern Horticulture, 2019(16): 145 − 152. [14] 时健, 龙新宪, 徐祚荣, 等. 东南景天组培苗对锌、镉及其复合污染土壤的修复效能分析[J]. 北京师范大学学报(自然科学版), 2022, 58(1): 70 − 76. SHI Jian, LONG Xinxian, XU Zuorong, et al. Remediation by tissue culture seedlings of Sedum alfredii Hance in Zn-, Cd- and combination-contaminated soils [J]. Journal of Beijing Normal University (Natural Science) , 2022, 58(1): 70 − 76. [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. LI Hesheng. Experiment Principle and Technology of Plant Physiology and Biochemistry [M]. Beijing: Higher Education Press, 2000. [16] RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring, 1999, 1(1): 57 − 61. doi: 10.1039/a807854h [17] 刘晨, 郭佳, 赵敏, 等. 毛竹幼苗与伴矿景天间作对铜镉锌转运积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 615 − 622. LIU Chen, GUO Jia, ZHAO Min, et al. Effects of moso bamboo and Sedum plumbizincicola intercropping on transport and accumulation of Cu, Cd and Zn in soil-plant system [J]. Journal of Zhejiang University (Agriculture &Life Science) , 2017, 43(5): 615 − 622. [18] TAN Yan, HU Falong, CHAI Qiang, et al. Optimizing water use between intercropped pea and maize through strip row ratio expansion and N fertilizer reduction in arid areas[J/OL]. Field Crops Research, 2021, 260[2022-04-20]. doi: 10.1016/j.fcr.2020.108001. [19] 游梦, 邹茸, 王丽, 等. 不同富集植物与小麦间作对镉吸收转运的影响[J]. 中国土壤与肥料, 2022(4): 201 − 208. doi: 10.11838/sfsc.1673-6257.21040 YOU Meng, ZOU Rong, WANG Li, et al. Effects of intercropping different accumulators with wheat on Cd absorption and transport under Cd stress [J]. Soil and Fertilizer Sciences in China, 2022(4): 201 − 208. doi: 10.11838/sfsc.1673-6257.21040 [20] 徐圆圆, 陆明英, 蒋维昕, 等. 铝胁迫下不同耐铝型桉树无性系根和叶抗氧化特征的差异[J]. 浙江农林大学学报, 2016, 33(6): 1009 − 1016. doi: 10.11833/j.issn.2095-0756.2016.06.012 XU Yuanyuan, LU Mingying, JIANG Weixin, et al. Al stress with lipid peroxidation and antioxidant enzyme activities in eucalyptus roots and leaves [J]. Journal of Zhejiang A&F University, 2016, 33(6): 1009 − 1016. doi: 10.11833/j.issn.2095-0756.2016.06.012 [21] 王晓维, 黄国勤, 徐健程, 等. 铜胁迫和间作对玉米抗氧化酶活性及丙二醛含量的影响[J]. 农业环境科学学报, 2014, 33(10): 1890 − 1896. doi: 10.11654/jaes.2014.10.003 WANG Xiaowei, HUANG Guoqin, XU Jiancheng, et al. Effects of copper stresses and intercropping on antioxidant enzyme activities and malondialdehyde contents in maize [J]. Journal of Agro-Environment Science, 2014, 33(10): 1890 − 1896. doi: 10.11654/jaes.2014.10.003 [22] 沈徐悦, 张浪, 陈蓉蓉, 等. 盐胁迫对望春玉兰幼苗形态和相关生理指标的影响[J]. 浙江农林大学学报, 2021, 38(2): 289 − 295. doi: 10.11833/j.issn.2095-0756.20200449 SHEN Xuyue, ZHANG Lang, CHEN Rongrong, et al. Effect of NaCl stress on the morphology and related physiological indexes of Magnolia biondii seedlings [J]. J Zhejiang A&F Univ, 2021, 38(2): 289 − 295. doi: 10.11833/j.issn.2095-0756.20200449 [23] 张家洋. 重金属铅镉短期胁迫对蓬莱蕉生理生化指标的影响[J]. 水土保持学报, 2016, 30(2): 340 − 345. doi: 10.13870/j.cnki.stbcxb.2016.02.059 ZHANG Jiayang. The effect of Pb and Cd on physiological and biochemical indexes of Monstera deliciosa Liebm. in the short-term conditions. [J]. Journal of Soil and Water Conservation, 2016, 30(2): 340 − 345. doi: 10.13870/j.cnki.stbcxb.2016.02.059 [24] 王吉秀, 李元, 祖艳群, 等. 铅胁迫下小花南芥和玉米间作体系对植物生理的影响[J]. 环境科学与技术, 2017, 40(7): 54 − 59. WANG Jixiu, LI Yuan, ZU Yanqun, et al. Effects of Arabis alpina L. var. parviflora Franch and Zea mays L. in an intercropping system on plant physiology to lead stress [J]. Environmental Science &Technology, 2017, 40(7): 54 − 59. [25] 蒋成爱, 吴启堂, 吴顺辉, 等. 东南景天与不同植物混作对土壤重金属吸收的影响[J]. 中国环境科学, 2009, 29(9): 985 − 990. doi: 10.3321/j.issn:1000-6923.2009.09.017 JIANG Chengai, WU Qitang, WU Shunhui, et al. Effect of co-cropping Sedum alfredii with different plants on metal uptake [J]. China Environmental Science, 2009, 29(9): 985 − 990. doi: 10.3321/j.issn:1000-6923.2009.09.017 [26] 孟楠, 王萌, 李杉杉, 等. 草本植物间作对空心菜Pb吸收、转运的影响[J]. 地学前缘, 2019, 26(6): 103 − 111. MENG Nan, WANG Meng, LI Shanshan, et al. Effects of intercropping ten herbaceous plants on lead uptake by and accumulation in water spinach [J]. Earth Science Frontiers, 2019, 26(6): 103 − 111. [27] 邱孝煊, 方守玲, 陈孔长, 等. 不同植物与芥菜间作对芥菜-土壤镉含量的影响[J]. 福建农业科技, 2022, 53(3): 63 − 69. QIU Xiaoxuan, FANG Shouling, CHEN Kongchang, et al. Effects of Brassica juncea intercropped with different plants on the content of Cadmium in Brassica juncea and soil [J]. Fujian Agricultural Science and Technology, 2022, 53(3): 63 − 69. [28] 赵中秋, 朱永官, 蔡运龙. 镉在土壤-植物系统中的迁移转化及其影响因素[J]. 生态环境, 2005, 14(2): 282 − 286. ZHAO Zhongqiu, ZHU Yongguan, CAI Yunlong. Transport and transformation of cadmium in soil-plant systems and the influence factors [J]. Ecology and Environment, 2005, 14(2): 282 − 286. [29] 崔晓荧, 秦俊豪, 黎华寿. 不同水分管理模式对水稻生长及重金属迁移特性的影响[J]. 农业环境科学学报, 2017, 36(11): 2177 − 2184. doi: 10.11654/jaes.2017-0665 CUI Xiaoying, QIN Junhao, LI Huashou. Effect of different water management modes on rice (Oryza sativa L. ) growth and heavy metal transport characteristics [J]. Journal of Agro-Environment Science, 2017, 36(11): 2177 − 2184. doi: 10.11654/jaes.2017-0665 [30] 郭彦海, 高国龙, 王庆, 等. 典型平原地区生活垃圾焚烧厂周边土壤重金属赋存形态分布特征及生物有效性评价[J]. 环境科学研究, 2019, 32(9): 1613 − 1620. doi: 10.13198/j.issn.1001-6929.2018.10.14 GUO Yanhai, GAO Guolong, WANG Qing, et al. Heavy metal speciation distribution and bioavailability assessment in soils surrounding a municipal solid waste incineration plant in the typical plain area in China [J]. Research of Environmental Sciences, 2019, 32(9): 1613 − 1620. doi: 10.13198/j.issn.1001-6929.2018.10.14 [31] 胡自航, 赵霞, 董晓芸, 等. 污泥与园林废弃物混合堆肥施用量对林地土壤重金属质量分数及微生物活性的影响[J]. 浙江农林大学学报, 2021, 38(1): 31 − 37. doi: 10.11833/j.issn.2095-0756.20200262 HU Zihang, ZHAO Xia, DONG Xiaoyun, et al. Effect of sludge and garden waste composting rates on heavy metal content and microbial activity in plantation soil [J]. Journal of Zhejiang A&F University, 2021, 38(1): 31 − 37. doi: 10.11833/j.issn.2095-0756.20200262 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220365

计量
- 文章访问数: 40
- 被引次数: 0