-
随着工矿业的发展,矿业冶炼、工业废水及废弃物排放等含镉(Cd)污染物不断进入土壤,土壤镉污染问题日益严重。镉不仅损害植物的生长发育,影响植株的生理代谢,还会在农作物中富集,通过食物链进入人体,威胁人体健康[1],进行镉污染土壤修复研究刻不容缓。土壤镉污染修复技术主要有物理修复、化学修复、生物修复以及多措施联合修复等。与传统的理化修复方法相比,植物修复技术成本低、操作简易,应用广泛[2-3]。但植物材料易受环境等因素影响,因此需要优化植物提取土壤重金属的条件[4]。结合电动修复技术可以提高植物修复效率,具有良好发展前景[5]。研究证实交流电场可以促进黑麦草Lolium perenne[6]、莴苣Lactuca sativa[7]、东南景天Sedum alfredii[8]等植物的生长,加快植物对重金属的吸收积累。植物联合电动修复技术不仅能提高土壤中重金属的有效性,还能促进植物生长和对重金属的富集[9],强化植物吸收修复效率,提升植物修复技术的实际应用前景。水分是贯穿土壤-植物-大气系统的动力因素,不仅直接影响植物的生长,还会通过改变土壤pH、氧化还原状况等影响土壤物质转化,从而间接影响重金属在土壤固-液两相的分配,影响土壤中重金属的有效性和植物对土壤重金属的吸收[10]。ANGLE等[11]对遏蓝菜Thlaspi caerulescens、崖雪球Alyssum murale等的研究表明:随着土壤含水量的增加,植物生物量和对重金属积累能力也随之增加。然而,国内外在关于电场、水分对植物生长和金属吸收性方面研究报道很少。因此本研究以褪色柳Salix discolor、东南景天为对象,采用混栽盆栽试验,研究电场和水分对褪色柳和东南景天生长和对土壤重金属镉吸收积累的影响,为进一步优化提升植物修复土壤重金属镉提供技术支撑。
-
供试土壤采自温州市农业科学研究院试验基地,为重金属镉污染的耕地土壤。取0~20 cm表层土壤,放于阴凉处风干,过2 mm筛备用。供试土壤理化性质:土壤pH 6.30;有机质41.50 g·kg−1;碱解氮242.00 mg·kg−1;有效磷72.30 mg·kg−1;速效钾354.00 mg·kg−1;有效态镉0.28 mg·kg−1;全镉2.47 mg·kg−1。
供试柳树由江苏宿迁名世园艺提供。将长势良好且相近的褪色柳枝条剪成15 cm长的插条,超纯水洗净备用。东南景天取自浙江省衢州市一古老铅锌矿,栽培于浙江农林大学平山试验基地,选用大小相近东南景天苗植株作为供试材料。
-
将4 kg风干土搅拌均匀后装盆(上直径202 mm,高198 mm,下直径170 mm),褪色柳枝条和东南景天幼苗各5株移栽入盆,随机排列。设置2种电场强度和2种土壤水分,共 4个处理:以不通电、湿润(土壤田间持水量保持为60%)处理为对照(ck),通电、湿润处理为E组,不通电、高水分(土壤田间持水量为100%)处理为W组,通电、高水分处理为EW组。试验前调节各处理土壤含水量,在E组和EW组中每盆插入2根石墨棒,设定电场强度为0.5 V·cm−1[12-14]。各处理重复3次。2019年5月开始试验,隔1周调整1次电压,每日称量加水以保持土壤水分;2019年12月收获植物样品,采集土样。
-
土壤pH采用pH计电位法测定,水土体积质量比为2.5∶1.0;碱解氮、有效磷、速效钾质量分数分别采用碱解扩散法、碳酸氢钠提取-钼锑抗比色法和醋酸铵浸提-火焰光度法测定;土壤有机质采用重铬酸钾外加热法测定[15]。土壤镉全量采用三酸[三酸分别为硝酸(HNO3)、高氯酸(HClO4)、氢氟酸(HF),体积比为5∶1∶1]进行消煮,土壤有效镉采用二乙基三胺五乙酸(DTPA)试剂提取,镉形态分级参照欧洲共同体参考物机构(European Communities Bureau of Reference)改进的三步提取法(BCR)[16],消煮液和提取液最后用石墨炉原子吸收仪(岛津AA-7000)测定。
将所采植物样品分为柳叶、柳枝、东南景天地上部3个部分,用自来水和去离子水各清洗1次,105 ℃杀青15 min,80 ℃下烘干至恒量,磨细过20目筛,供分析测定。植物样品经硫酸-过氧化氢消煮后,用石墨炉原子吸收仪(岛津AA-7000)测定镉质量分数。采用便携式光合作用仪(Li-6400XT)于9:00−11:00在25 ℃下测定褪色柳光合参数[17],分别为净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、细胞间隙二氧化碳摩尔分数(Ci)。
-
利用SPSS 21软件进行统计分析数据。计算植物镉积累量(μg·盆−1):ACd=wCd×B,其中wCd为植物Cd质量分数(mg·kg−1),B为植物生物量(g·盆−1)。
-
由表1可知:与对照(ck)相比,高水分+电场处理(EW)下土壤pH显著升高(P<0.05),电场(E)或高水分(W)单独处理对土壤pH无显著影响。W和EW处理下土壤碱解氮质量分数显著提高11.00%、12.09%(P<0.05),E处理下无显著变化。不同处理下土壤中有机质、有效磷质量分数均无显著影响。
表 1 不同处理对土壤理化性质的影响
Table 1. Effects of different treatments on basic soil chemical properties
处理 pH 有机质/(g·kg−1) 碱解氮/(mg·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) ck 6.18±0.13 b 38.71±2.12 a 192.97±8.17 b 72.85±3.40 a 465.00±13.08 ab E 6.25±0.19 ab 42.75±1.05 a 190.63±12.01 b 72.95±6.95 a 483.30±16.26 a W 6.46±0.18 ab 43.30±4.08 a 214.20±12.14 a 76.58±3.93 a 450.67±16.26 b EW 6.58±0.17 a 43.39±2.13 a 216.30±11.57 a 76.71±5.93 a 469.67±12.58 ab 说明:同列不同字母表示处理间差异显著(P<0.05) -
与ck相比,E处理下土壤有效态镉质量分数显著提高了16.13%(P<0.05),其他处理无显著变化。利用BCR法得到土壤不同形态镉比例,由表2可知:W和EW处理下,土壤酸可提取态镉和可还原态镉比例分别显著降低了2.78%、6.16%和2.72%、8.44%(P<0.05),土壤残渣态镉比例则显著提高(P<0.05)。W处理下,土壤可氧化态镉比例显著提高(P<0.05),E处理对土壤所有镉形态均无显著影响(P>0.05)。
表 2 不同处理对土壤有效态镉质量分数和镉形态的影响
Table 2. Effects of different treatments on soil available Cd and its fractionations
处理 有效镉/(mg·kg−1) 酸可提取态/% 可还原态/% 可氧化态/% 残渣态/% ck 0.31±0.02 b 14.23±1.37 a 37.45±2.29 a 2.53±0.49 b 45.79±2.19 b E 0.36±0.04 a 14.59±1.17 a 38.90±2.04 a 3.13±0.66 ab 43.38±2.63 b W 0.31±0.03 b 11.45±0.76 b 31.29±2.13 b 3.70±0.48 a 53.56±1.51 a EW 0.35±0.01 ab 11.51±0.62 b 29.01±2.42 b 3.22±0.27 ab 56.27±1.90 a 说明:同列不同字母表示处理间差异显著(P<0.05) -
由表3可知:与ck相比,W处理后,柳叶、柳枝生物量分别提高15.61%和27.11%(P<0.05),东南景天生物量显著降低60.24%(P<0.05);EW处理后,柳叶、柳枝生物量分别提高34.39%和101.10%(P<0.05),东南景天显著降低22.02%(P<0.05);E处理对柳叶、柳枝及东南景天生物量均未产生显著影响。不同处理对褪色柳各项光合参数均未造成显著影响。综合来看,EW处理促进褪色柳生长的效果最佳,其柳叶、柳枝生物量分别是W处理的1.16和1.58倍,是E处理的1.25和2.08倍。
表 3 不同处理对植物生物量以及褪色柳光合参数的影响
Table 3. Effects of different treatments on plant biomass and photosynthesis of S. discolor
处理 柳叶干质量/
(g·盆−1)柳枝干质量/
(g·盆−1)东南景天地上部
干质量/(g·盆−1)Tr /
(mmol·m−2·s−1)Pn /
(μmol·m−2·s−1)Ci /
(μmol·mol−1)Gs /
(mol·m−2·s−1)ck 5.70±1.21 a 2.73±0.47 c 1.33±0.26 ab 5.24±0.43 a 11.64±2.12 ab 312.11±19.30 ab 0.28±0.03 a E 6.13±0.71 a 2.64±0.25 c 1.49±0.28 a 4.98±2.33 a 13.96±5.86 a 301.03±11.12 b 0.29±0.13 a W 6.59±0.44 a 3.47±0.23 b 0.83±0.11 c 4.94±1.94 a 6.45±0.85 b 341.40±16.36 a 0.27±0.12 a EW 7.66±1.60 a 5.49±0.39 a 1.09±0.10 bc 5.60±1.59 a 7.83±0.73 ab 340.52±15.43 a 0.32±0.11 a 说明:同列不同字母表示差异显著(P<0.05) -
由表4可知:与ck相比,W和EW处理的柳叶镉质量分数分别显著降低106.91%、156.13%(P<0.05),柳枝镉质量分数分别显著降低113.13%、165.80%(P<0.05);柳叶镉积累量分别显著降低82.81%、95.60%(P<0.05),东南景天地上部镉积累量分别降低63.15%和18.02%。而E处理中柳叶、东南景天地上部镉质量分数与对照相比分别提高6.68%、9.59%;柳叶、东南景天地上部镉积累量与ck相比分别提高12.61%、22.50%。各处理褪色柳和东南景天地上部镉总积累量由高到低依次为:E、ck、EW、W。
表 4 不同处理对植物镉吸收积累的影响
Table 4. Effects of different treatments on Cd absorption and accumulation in S. discolor and S. alfredii
处理 镉质量分数/(mg·kg−1) 植物镉积累量/(μg·盆−1) 柳叶 柳枝 东南景天地
上部柳叶 柳枝 东南景天地上部 总地上部 ck 6.89±1.04 a 9.25±1.31 a 36.19±2.02 ab 39.98±13.30 a 25.69±8.00 a 48.00±7.63 ab 113.68±15.48 a E 7.35±0.30 a 9.36±1.87 a 39.66±2.32 a 45.02±4.70 a 24.54±3.88 a 58.80±8.80 a 128.36±7.06 a W 3.33±0.65 b 4.34±1.07 b 35.27±1.36 b 21.87±4.03 b 15.20±4.64 a 29.42±4.59 c 66.49±6.32 b EW 2.69±0.49 b 3.48±0.59 b 37.49±1.69 ab 20.44±4.64 b 19.20±4.39 a 40.67±2.00 bc 80.31±4.99 b 说明:同列不同字母表示处理间差异显著(P<0.05) -
土壤速效养分是土壤肥力的重要指标,一定程度上反映了近期土壤对植物养分的供应情况[18]。土壤碱解氮主要来源于有机氮的矿化分解,属于有效氮,是土壤中能够被植物直接吸收利用的氮素[19-20]。本研究发现:施加电场对土壤理化性质无显著影响;高水分+电场处理显著提高碱解氮质量分数,但对有效磷、速效钾无显著影响。研究[21-22]发现:长期高水分处理会使植株叶片叶绿素发生降解,导致叶片衰老凋落,可能是土壤碱解氮质量分数升高的原因。同时,长时间的高水分处理会使土壤二氧化碳排放受阻,反应产生碳酸盐,提高土壤pH[23-24]。
-
重金属的生物活性不仅与其总量有关,更大程度上由其存在形态决定。重金属的不同形态会产生不同的环境效应,直接影响其迁移和在自然界的循环[25-26]。本研究发现:施加电场显著提高了土壤有效镉质量分数,土壤金属离子活性的提高,有利于残渣态镉向交换态镉转化[6, 27]。同时发现:高水分处理下,酸可提取态镉、可还原态镉比例显著降低,残渣态镉比例显著提高,这与LI等[28]的研究结果一致。推测原因在于长期高水分处理下,土壤氧化还原电位(Eh)降低,土壤还原状况加强,土壤中还原态阳离子(如铁、锰离子)和阴离子(如硫离子)相对含量增加,硫离子与镉形成难溶的硫化物沉淀的机率提高[29-30]。水分还会影响铁离子的氧化还原过程[31],长期高水分处理促进氧化铁还原,形成新的镉氧化物。因此,土壤高水分处理降低了土壤镉的有效性。
-
水分是影响植物生长发育的重要因素[32]。本研究表明:高水分处理后东南景天生物量的降低可能是由于土壤水分含量高导致根际缺氧,从而抑制了其正常生长[33]。而褪色柳喜湿耐涝,具有较强的耐水性,为耐水湿类树种[34],在高水分处理中表现为更有利于其生长。电场+高水分加快了褪色柳细胞分裂、分化,促进褪色柳对营养元素的吸收,从而使褪色柳地上部的生物量提高[35-36]。
-
褪色柳生长迅速,东南景天吸收重金属的能力强,作为重要的镉富集和超积累植物,褪色柳-东南景天混栽有利于单位面积土壤上植物对土壤中镉的高效吸收[37]。在评价植物对镉污染土壤修复效率时,主要考虑地上部镉积累量[8]。研究发现:湿润条件下施加电场,有利于褪色柳和东南景天生长;同时提高了土壤有效镉质量分数,促进植物根系对镉的吸收[38],有利于褪色柳、东南景天对其的积累[39]。高水分处理下,土壤pH升高,土壤溶液中多价阳离子和氢氧根离子(OH−)增多,加大了氢氧化镉沉淀生成的机率,使土壤镉的有效性降低[40];与此同时,高水分下东南景天生物量也降低,褪色柳和东南景天对土壤中镉的积累受到抑制。
因此,土壤湿润条件比淹水处理更有利于褪色柳-东南景天混栽对土壤中重金属镉的吸收和积累。受时间限制,本研究仅在褪色柳苗期进行,就积累镉质量分数的顺序来看,东南景天地上部要好于柳叶和柳枝。
-
交流电场的施加可提高土壤有效镉质量分数,促进褪色柳-东南景天地上部对镉的积累,对土壤理化性质及土壤中镉形态分布无显著影响。高水分处理提高了土壤碱解氮质量分数以及可氧化态镉和残渣态镉比例,但会抑制东南景天生长,降低褪色柳、东南景天对镉的积累。因此,适宜水分条件下,施加电场有利于褪色柳-东南景天混栽对土壤中重金属镉的吸收和积累。
Effects of AC electric field and soil moisture on phytoremediation of cadmium contaminated soil by mixed planting of Salix discolor and Sedum alfredii
-
摘要:
目的 研究交流电场和土壤水分对褪色柳Salix discolor-东南景天Sedum alfredii混栽模式下镉污染土壤修复效率的影响。 方法 通过土壤盆栽试验,研究不同水分[湿润(60%土壤田间持水量)、高水分(100%土壤田间持水量)]和不同交流电场(0和0.5 V·cm−1)的组合处理,对土壤镉活性、褪色柳和东南景天生长及镉吸收与积累的影响。 结果 交流电场显著提高土壤有效态镉质量分数、促进褪色柳和东南景天地上部对镉的积累,与对照相比,有效态镉质量分数显著提高16.13%(P<0.05),柳叶、东南景天地上部镉积累量分别提高12.61%、22.50%;高水分+电场处理有利于提高土壤pH、碱解氮质量分数,以及残渣态镉所占比例,与对照相比分别提高6.47%、12.09%、22.89%(P<0.05),但会影响褪色柳、东南景天积累重金属镉,与对照相比,柳叶、东南景天地上部镉积累量分别降低95.60%(P<0.05)、18.02%。 结论 土壤湿润条件下施加电场有利于褪色柳-东南景天修复镉污染土壤,褪色柳和东南景天地上部镉总积累量分别是其他处理的1.13~1.93倍。表4参40 Abstract:Objective This study is aimed to examine the effects of alternating current (AC) electric field and soil moisture on the remediation efficiency of cadmium (Cd) contaminated soil via the mixed planting of Salix discolor and Sedum alfredii. Method With a soil pot experiment, an investigation is conducted of the effects of 2 soil water treatments (moist, keeping 60% of the soil field capacity, and high water content, equivalent to paddy field condition, flooding) combined with 2 AC electric field gradients (0, 0.5 V·cm−1) on soil Cd availability and plant growth of S. discolor and S. alfredii. Result The application of 0.5 V·cm−1 AC electric field significantly increased soil available Cd concentration [by 16.13% (P<0.05)], and promoted the absorption and accumulation of Cd in S. discolor and S. afredii, the soil available Cd and Cd accumulation in leaves of S. discolor and the above-ground parts of S. afredii were significantly higher (by 12.61% and 22.50% respectively) than those of the control. The integrated application of high moisture and electric field contributed to the increase of soil pH, alkali-hydrolysable nitrogen concentration and the proportion of residual cadmium by 6.47%, 12.09% and 22.89% (P<0.05) compared with those of the control. This integrated application reduced the accumulation of Cd in S. discolor and S. afredii, the accumulation of Cd in leaves of S. discolor and the above-ground parts of S. afredii were lower than that of the control by 95.60% (P<0.05) and 18.02% respectively. Conclusion Under moist condition, the AC electric field was beneficial to the phytoremediation of Cd contaminated soil via the mixed planting of S. discolor and S. afredii. And the Cd accumulated in the above-ground parts of S. discolor and S. afredii was 1.13−1.93 times of that achieved with other treatments. [Ch, 4 tab. 40 ref.] -
Key words:
- soil moisture /
- AC electric field /
- Salix discolor /
- Sedum alfredii /
- mixed planting /
- soil cadmium /
- phytoremediation
-
西红花Crocus sativus为鸢尾科Iridaceae番红花属Crocus多年生草本植物,又称番红花、藏红花,以干燥柱头入药,属药食同源中药材,被历代医家所推崇,被誉为“红色金子”,2018年被浙江省人民政府认定为新“浙八味”之一。西红花原产于伊朗、希腊、印度、西班牙、意大利、摩洛哥等地[1],喜冷凉、耐寒、不耐涝,适合在疏松肥沃、腐殖质丰富、排水良好的沙质土壤种植[2],在中国山东、江苏、北京、河南等20多个省、市都有一定的种植面积。大量研究发现:西红花具有调血脂[3]、抗肿瘤[4]、抗氧化[5-7]、抗癌[8-9]、防治动脉粥样硬化[10]、抗抑郁[11-12]、预防阿尔茨海默症[13]等多种药用活性。除柱头外,副产物花瓣也具有抗氧化的药用活性[14]。但是西红花是三倍体植物,只能通过无性繁殖繁育新球茎,极易积累病害;同时由于西红花种植面积不断扩大,球茎腐烂病逐年加重,大量球茎在田间生长期和收获储藏期腐烂,球茎减产严重,西红花的产量与品质受到影响[15-19]。目前,围绕西红花的研究主要集中于以下方面:①西红花苷、西红花酸等主要药用成分药理活性研究,进一步开发西红花潜在的药用价值[3, 14]。②西红花苷生物合成途径的解析,如对西红花苷生物合成途径相关合成酶基因进行挖掘和功能解析[20-22]。③西红花价格昂贵、产量低,市面上西红花以次充好、品质参差不齐,因此精准、高效地对西红花的真伪进行鉴定显得尤为重要[23-27]。④优化西红花栽培管理模式和施肥方式,以提高西红花的品质,降低病害发生率[28-30]。⑤西红花球茎腐烂病致病菌的分离与鉴定[15]。球茎腐烂病是困扰西红花产业发展的主要问题,致病菌的分离鉴定以及相应杀菌剂或生物农药的开发利用能为产业良性发展提供保障[15]。本研究围绕西红花土壤真菌性病害、西红花内生真菌、西红花真菌性病害生防菌的挖掘鉴定等展开综述,为全面了解西红花真菌性病害、防治现状以及产业化发展提供理论依据。
1. 西红花致病真菌的分离与鉴定
细菌、真菌、病毒等微生物都能引起西红花病害,以真菌引起的病害最为常见,造成的经济损失也最为严重[31],西红花球茎腐烂病成为当前制约西红花产业发展的主要因素。球茎腐烂病是球茎生长期间的主要病害,常见于连作田及排水差的田块,通常由真菌引起,每年有30%以上的种植面积遭受病害[15],严重影响球茎、柱头的产量和品质。
西红花球茎腐烂病主要有黑腐病和白腐病2种,其中黑腐病主要发生在球茎休眠期,白腐病主要发生在球茎大田生长期[32]。邹凤莲等[33]从西红花种球中分离到1株链格孢菌Alternaria alternata,回接试验发现其可引起西红花球茎腐烂,并与青霉菌一起感染球茎;相比感染单种真菌病害,腐烂更加严重。表明西红花球茎腐烂病可能是多种致病菌共同作用的结果。张国辉等[34]通过组织分离法从感病球茎中分离得到了2种致病真菌,分别为炭疽菌Anthracnose sp. 和尖孢镰刀菌Fusarium oxysporum;回接试验发现:这2种真菌共同感染西红花球茎从而引起腐烂病的发生。王海玲[32]从腐烂球茎中分离获得巴西曲霉Aspergillus brasiliensis、尖孢镰刀菌F. oxysporum和桔青霉菌Penicillium citrinum等3种致病菌,但是这3种菌复合接种是否引起球茎腐烂,目前尚无明确的报道。WANI等[35]从健康球茎中分离出内生真菌红棕孔韧革菌CSE26菌株Porostereum sp.,经球茎回接及田间植株回接试验,发现该菌产生的水解酶和氯代甲氧苯基代谢物可引起西红花球茎腐烂,但病症较轻,表明红棕孔韧革菌是一种致病性较弱的病原菌。吴李芳[15]分离得到了尖孢镰刀菌和腐皮镰刀菌F. solani,通过回接试验证明:此2种真菌是新发现的能引起西红花球茎腐烂的致病真菌。ZHANG等[36]从浙江省建德市西红花专业合作社采样,并从黑腐病的球茎中分离鉴定了1种新的能引起西红花球茎腐烂的离生青霉菌菌株P. solitum。迄今为止,已公开报道的引起西红花球茎腐烂的致病菌包括曲霉属Aspergillus sp.、镰刀菌属Fusarium sp.、青霉菌属Penicillium sp.、炭疽菌属Anthracnose sp. 和链格孢菌属Alternaria sp.,其中镰刀菌属还会引起其他药用植物如黄芪Astragalus membranaceus[16]、人参Panax ginseng[19]、半夏Pinellia ternata[37]等根茎的腐烂(表1)。因此,防治镰刀菌属真菌病害可减少西红花田间病害的发生,在生产上具有实际应用价值。
表 1 西红花球茎腐烂致病真菌及其来源Table 1 Summary of pathomycete isolation from rotting bulbs of C. sativus2. 西红花内生真菌的分离与功能鉴定
植物内生真菌是指广泛寄生于植物组织或细胞内部,但不会引起宿主感染的真菌[39],通常与宿主形成互惠的共生关系[40]。
2.1 西红花内生真菌的分离
研究表明:同一物种内生真菌的种类和数量会受品种、生长条件、取材的组织部位等因素影响,并常存在显著差异[41]。因此,分离西红花内生真菌需要对植株的不同组织部位(如根、茎、叶等)分别取材。目前,西红花内生真菌的分离主要采用组织分离法,即分别将不同部位的西红花组织切成小块彻底消毒后,将其置于马铃薯葡萄糖培养基上25 ℃培养,待其生长出菌落后挑其边缘进行纯化,已纯化的内生真菌还需要进行形态学鉴定和分子水平鉴定。西红花内生真菌形态学鉴定主要包括真菌的宏观和微观特征。宏观特征如菌落正反面颜色、菌落质地(絮状、毛毡状、质密、疏松)、菌落生长速度、菌落表面是否产生液滴等[42-44];微观特征如菌丝形状、孢子形状(卵形、倒棒形、倒梨形、卵圆形、椭圆形等)、有无隔膜、有无孢子等[45]。西红花内生真菌分子水平鉴定指采用通用引物对真菌基因组DNA特定基因序列进行扩增。目前西红花分子鉴定的引物主要包括:内部转录间隔区引物(ITS)、RNA聚合酶Ⅱ亚基引物(RPB2)和β-微管蛋白基因引物(β-tubulin)[46]。
2.2 西红花内生真菌的功能
内生真菌可从宿主中吸取营养供给自身生长所需,并产生代谢物刺激植物组织的生长与发育,提高宿主对生物或非生物胁迫的耐受性,调控宿主细胞次生代谢产物的生物合成,具有单独生产与宿主相同或相似活性物质的能力,是有益的微生物资源[35]。此外,内生真菌及其代谢产物还具有抑菌[47-49]、固氮[50]、提高植物抗性[50-51]、抗癌[48]等多种功能。可见内生真菌具有促进植物生长、提高抗性的作用。
西红花主要活性成分(如西红花苷、西红花酸等)药用价值较高,但产量低、价格昂贵。因此,许多科研工作者将目光转向了西红花内生真菌的研究。WANI等[52]发现:西红花内生真菌被孢霉Mortierella alpina CS10E4在促进西红花生长、增加类胡萝卜素积累、提高植株抗性等方面具有显著效果;田间试验表明:经过内生处理的西红花植株,球茎总生物量、球茎大小、柱头生物量、顶端出芽芽数、不定根数等形态和生理性状均有显著改善。分子机制可能是该菌通过调控关键代谢途径基因的表达,将代谢流引向促进类胡萝卜素合成的路径,从而显著提高寄主类胡萝卜素的含量。ZHENG等[53]从西红花内生真菌酒色青霉P. vinaceum培养物的活性成分中分离到了喹唑啉生物碱化合物,认为其具有潜在的细胞毒性和抗真菌活性。WANI等[54]研究发现:西红花内生真菌甘瓶霉Phialophora mustea可提高寄主植物对多种环境胁迫因子的耐受性,代谢产物具有潜在的抗菌和抗癌活性。多数内生真菌还会产生大量吲哚乙酸(IAA)以促进宿主植物的生长[42, 54]。此外,WEN等[55]对内生真菌胞外多糖(EPS)的研究发现:EPS能有效清除超氧化物阴离子自由基,是一种潜在的生物活性来源,适用于制药和食品工业。
由此可见,内生菌是重要的生物资源。研究植物内生菌,了解植物与微生物之间的关系,有助于促进西红花的可持续栽培,提高产量。
3. 西红花致病真菌的生物防治
生物防治菌是存在于种植土壤或植物根系表面的微生物,可通过多种机制抑制病原菌,如拮抗作用[56]、溶菌作用、营养和空间竞争[57]、提高植物抗性[58]、促进植物生长[59]、产生抗生素或刺激植物防御反应等。因此,生防菌可作为化学药剂的环保替代品,在降低西红花发病率的同时,对环境和寄主无任何损伤[31]。目前西红花栽培方面研究较为成熟的生防菌有假单胞菌Pseudomonas[60]、木霉菌Trichoderma[61]和芽孢杆菌Bacillus[62]等。
3.1 西红花生防菌的挖掘与验证
芽孢杆菌是一种能够有效防治西红花真菌病害的生防细菌。陶中云等[63]从西红花土壤中分离并鉴定了1株蜂房类芽孢杆菌Paenibacillus alvei ZJUB2011-1菌株,该菌株对西红花球茎腐烂病的防治效率高达57.14%,与多菌灵防治效率相当[64]。吴李芳[15]从西红花根际土壤中分离到1株对西红花球茎腐烂病具有较好防治效果的解淀粉芽孢杆菌Bacillus amyloliquefaciens C612菌株,发现C612菌株通过产生脂肽类抗生素抑制病原菌的生长,并且对西红花有较好的促生长作用。KOUR等[65]从西红花根际土壤中分离了3种芽孢杆菌,分别为苏云金芽孢杆菌B. thuringiensis DC1菌株、巨大芽孢杆菌B. megaterium VC3菌株和解淀粉芽孢杆菌B. amyloliquefaciens DC8菌株;田间试验发现这3株芽孢杆菌都能明显促进西红花植株生长,降低球茎发病率。此外,GUPTA等[66]发现枯草芽孢杆菌B. subtilis、荧光假单胞菌P. fluorescens和棘孢木霉菌T. asperellum不仅降低了西红花病原菌数量和病害发生率,有效防治西红花球茎腐烂病,还有利于延长西红花的花期(表2)。目前,针对芽孢杆菌生物防治和促进植物生长方面已开展了系统的研究,部分菌株已实现商品化,产生了较大的经济效益[67]。
表 2 已报道的西红花生防菌Table 2 Biocontrol bacterium of C. sativus had been reported菌株名称 菌株类型 来源 作 用 参考文献 蜂房类芽孢杆菌 Paenibacillus alvei ZJUB2011-1 细菌 根际土壤 防治球茎腐烂病 [63] 解淀粉芽孢杆菌 Bacillus amyloliquefaciens C612 细菌 根际土壤 抑制病原菌生长 [15] 苏云金芽孢杆菌 B. thuringiensis DC1 细菌 根际土壤 抑制病原菌,促进植株生长 [65] 巨大芽孢杆菌 B. megaterium VC3 细菌 根际土壤 抑制病原菌,促进植株生长 [65] 解淀粉芽孢杆菌 B. amyloliquefaciens DC8 细菌 根际土壤 抑制病原菌,促进植株生长 [65] 枯草芽孢杆菌 B. subtilis 细菌 生防药剂 防治球茎腐烂病 [66] 荧光假单胞菌 Pseudomonas fluorescens 细菌 生防药剂 防治球茎腐烂病 [66] 棘孢木霉菌 Trichoderma asperellum 真菌 生防药剂 防治球茎腐烂病 [66] 解淀粉芽孢杆菌 B. amyloliquefaciens W2 细菌 根际土壤 防治球茎腐烂病 [67] 3.2 生防菌在其他药用植物中的挖掘与验证
生防菌作为化学农药的良好替代品,可改善环境污染、降低农药残留,药用植物生防菌的挖掘与验证也是科学研究的热点。ANISHA等[68]从生姜Zingiber officinale中分离到1株顶孢属真菌Acremonium sp.,具有良好的抑菌活性;进一步研究发现:该菌可产生胶霉毒素(gliotoxin),对病原菌具有较强的拮抗作用,表明该菌具有生物防治潜力。HAN等[69]从人参根际土壤中分离到1株具有较高抗菌活性的紫色色杆菌Chromobacterium sp. JH7菌株,该菌能产生几丁质酶、蛋白酶等抗菌分子,为开发人参生物防治剂提供了理论依据。姜云等[70]研究发现:施用生防菌株FG14可湿性粉剂能有效防治人参锈腐病,效率高达68.69%。将三菌合剂“宁盾”施用于浙贝母Fritillaria thunbergii根腐病地块,发现其对植株有显著促生长、防病作用[71](表3)。综上所述,生防菌对药用植物的绿色高效种植、提升品质具有重要作用和广阔的应用前景。
表 3 生防菌在其他药用植物的挖掘与验证Table 3 The excavation and verification of biocontrol bacteria in other traditional Chinese medicine plants菌株名称 菌株类型 来源 功能 参考文献 顶孢属真菌 Acremonium sp. 真菌 健康生姜 产生胶霉毒素抑制病原菌 [68] 紫色色杆菌 Chromobacterium sp. JH7 细菌 人参根际土壤 产生几丁质酶、蛋白酶抑制病原菌 [69] 深海链霉菌 Streptomyces scopuliridis 细菌 人参根际土壤 产生几丁质酶、蛋白酶抑制病原菌 [69] 灰锈赤链霉菌 S. griseorubiginosus 放线菌 川芎根茎 抑制4种川芎根腐病原菌 [72] 团孢链霉菌 S. agglomeratus 放线菌 川芎根茎 抑制4种川芎根腐病原菌 [72] 解淀粉芽孢杆菌 B. amyloliquefaciens C10 细菌 人参根际土壤 改变真菌群落结构 [73] 萎缩芽孢杆菌 B. atrophaeus SXKF16-1 细菌 黄芪根际土壤 定植于根际土壤,改善土壤微生态环境 [74] 哈茨根霉 Trichoderma harzianum TharDOB-31 真菌 健康姜黄根茎 定植于根茎,产生抗真菌化合物 [75] 4. 展望
西红花优质种质资源匮乏,土地连作障碍,有效的杀菌剂或生物农药匮乏,众多不利因素导致球茎腐烂病日益严重,品质和产量难以保障[15]。要解决这些困扰产业发展的核心问题,可从以下方面集中科研攻关。一是基于现代宏基因组测序技术挖掘西红花球茎腐烂致病菌、生防菌。获得不同菌株并进行功能验证,分析西红花球茎腐烂病与根际土壤微生物群落的关系,为杀菌剂或生物农药的开发提供理论依据[76-77]。如已有研究[76]通过对人参锈腐病的根际土壤、感病人参根部分别进行宏基因组测序,比较土壤微生物群落和感病人参根部微生物群落差异,分析土壤中金属元素等与锈腐病发生的相关性,系统挖掘人参锈腐病的潜在致病菌,探明了连作土壤中金属离子失衡是人参锈腐病的潜在连作障碍诱因。二是基于合成生物学和发酵工程原理,将中药活性物质代谢合成的催化酶基因在大肠埃希菌Escherichia coli、酵母、烟草Nicotiana tabacum等模式原核和真核物种中进行基因表达重构,以实现药效物质的异源高效生物合成,从而解决目前优质中药药源紧缺、药效物质不稳定等问题。目前托品烷生物碱-莨菪碱(hyoscyamine)、青蒿素(artemisinin)等药用活性物质已实现基于合成生物学技术方法的异源生物全合成[78-80]。因此,从分子水平解析西红花苷、西红花酸等主要活性成分代谢合成的催化酶基因或调控基因,能为优质西红花转基因新品种的培育以及基于合成生物学技术手段的西红花主要活性成分的异源生物合成提供理论和应用依据[81-82]。三是脱毒中药种苗的规模化应用可有效缓解中药植物连作引起的病虫害频发的生产问题。目前,滁菊Chrysanthemum morifolium [83]、半夏Pinellia ternata[84]、怀地黄Rehmannia glutinosa [85]等中药材脱毒种苗在生产上的规模化应用有效扭转了土地连作引起的病虫害频发、严重影响生产效能的不利局面。西红花植株病害严重,创制西红花脱毒新种质,能为生产上提供可靠的优质西红花种源,提高生产效益[86-89]。
-
表 1 不同处理对土壤理化性质的影响
Table 1. Effects of different treatments on basic soil chemical properties
处理 pH 有机质/(g·kg−1) 碱解氮/(mg·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) ck 6.18±0.13 b 38.71±2.12 a 192.97±8.17 b 72.85±3.40 a 465.00±13.08 ab E 6.25±0.19 ab 42.75±1.05 a 190.63±12.01 b 72.95±6.95 a 483.30±16.26 a W 6.46±0.18 ab 43.30±4.08 a 214.20±12.14 a 76.58±3.93 a 450.67±16.26 b EW 6.58±0.17 a 43.39±2.13 a 216.30±11.57 a 76.71±5.93 a 469.67±12.58 ab 说明:同列不同字母表示处理间差异显著(P<0.05) 表 2 不同处理对土壤有效态镉质量分数和镉形态的影响
Table 2. Effects of different treatments on soil available Cd and its fractionations
处理 有效镉/(mg·kg−1) 酸可提取态/% 可还原态/% 可氧化态/% 残渣态/% ck 0.31±0.02 b 14.23±1.37 a 37.45±2.29 a 2.53±0.49 b 45.79±2.19 b E 0.36±0.04 a 14.59±1.17 a 38.90±2.04 a 3.13±0.66 ab 43.38±2.63 b W 0.31±0.03 b 11.45±0.76 b 31.29±2.13 b 3.70±0.48 a 53.56±1.51 a EW 0.35±0.01 ab 11.51±0.62 b 29.01±2.42 b 3.22±0.27 ab 56.27±1.90 a 说明:同列不同字母表示处理间差异显著(P<0.05) 表 3 不同处理对植物生物量以及褪色柳光合参数的影响
Table 3. Effects of different treatments on plant biomass and photosynthesis of S. discolor
处理 柳叶干质量/
(g·盆−1)柳枝干质量/
(g·盆−1)东南景天地上部
干质量/(g·盆−1)Tr /
(mmol·m−2·s−1)Pn /
(μmol·m−2·s−1)Ci /
(μmol·mol−1)Gs /
(mol·m−2·s−1)ck 5.70±1.21 a 2.73±0.47 c 1.33±0.26 ab 5.24±0.43 a 11.64±2.12 ab 312.11±19.30 ab 0.28±0.03 a E 6.13±0.71 a 2.64±0.25 c 1.49±0.28 a 4.98±2.33 a 13.96±5.86 a 301.03±11.12 b 0.29±0.13 a W 6.59±0.44 a 3.47±0.23 b 0.83±0.11 c 4.94±1.94 a 6.45±0.85 b 341.40±16.36 a 0.27±0.12 a EW 7.66±1.60 a 5.49±0.39 a 1.09±0.10 bc 5.60±1.59 a 7.83±0.73 ab 340.52±15.43 a 0.32±0.11 a 说明:同列不同字母表示差异显著(P<0.05) 表 4 不同处理对植物镉吸收积累的影响
Table 4. Effects of different treatments on Cd absorption and accumulation in S. discolor and S. alfredii
处理 镉质量分数/(mg·kg−1) 植物镉积累量/(μg·盆−1) 柳叶 柳枝 东南景天地
上部柳叶 柳枝 东南景天地上部 总地上部 ck 6.89±1.04 a 9.25±1.31 a 36.19±2.02 ab 39.98±13.30 a 25.69±8.00 a 48.00±7.63 ab 113.68±15.48 a E 7.35±0.30 a 9.36±1.87 a 39.66±2.32 a 45.02±4.70 a 24.54±3.88 a 58.80±8.80 a 128.36±7.06 a W 3.33±0.65 b 4.34±1.07 b 35.27±1.36 b 21.87±4.03 b 15.20±4.64 a 29.42±4.59 c 66.49±6.32 b EW 2.69±0.49 b 3.48±0.59 b 37.49±1.69 ab 20.44±4.64 b 19.20±4.39 a 40.67±2.00 bc 80.31±4.99 b 说明:同列不同字母表示处理间差异显著(P<0.05) -
[1] MORIARTY F. Ecotoxicology: The Study of Pollutants in Ecosystems[M]. London: Academic Press, 1999: 29 − 35. [2] RASCIO N, NAVARI-IZZO F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? [J]. Plant Sci, 2011, 180(2): 169 − 181. [3] 陈英旭. 土壤重金属的植物污染化学[M]. 北京: 科学出版社, 2008. [4] 徐剑锋, 王雷, 熊瑛, 等. 土壤重金属污染强化植物修复技术研究进展[J]. 环境工程技术学报, 2017, 7(3): 366 − 373. XU Jianfeng, WANG Lei, XIONG Ying, et al. Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil [J]. J Environ Eng Technol, 2017, 7(3): 366 − 373. [5] 刘玥, 牛婷雨, 李天国, 等. 电动力学辅助植物修复重金属污染土壤的特征机制与机遇[J]. 化工进展, 2020, 39(12): 5252 − 5265. LIU Yue, NIU Tingyu, LI Tianguo, et al. Characteristics and opportunities of electrokinetic-assisted phytoremediation of heavy metal contaminated soil [J]. Chem Ind Eng Prog, 2020, 39(12): 5252 − 5265. [6] 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4): 729 − 735. CANG Long, ZHOU Dongmei, WU Danya. Effects of horizontal exchange electric field and EDDS application on ryegrass uptake of copper/zine and soil characteristics [J]. Acta Pedol Sin, 2009, 46(4): 729 − 735. [7] BI Ran, SCHLAAK M, SIEFERT E, et al. Alternating current electrical field effects on lettuce (Lactuca sativa) growing in hydroponic culture with and without cadmium contamination [J]. J Appl Electrochem, 2010, 40: 1217 − 1223. [8] 肖文丹, 叶雪珠, 徐海舟, 等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4): 927 − 937. XIAO Wendan, YE Xuezhu, XU Haizhou, et al. Intensification of phytoremediation of Cd contaminated soil with direct current field and soil amendments in addition to hyperaccumulator Sedum alfredii [J]. Acta Pedol Sin, 2017, 54(4): 927 − 937. [9] CAMESELLE C, CHIRAKKARA R A, REDDY K R. Electrokinetic-enhanced phytoremediation of soils: status and opportunities [J]. Chemosphere, 2013, 93(4): 626 − 636. [10] 邓林, 李柱, 吴龙华, 等. 水分及干燥过程对土壤重金属有效性的影响[J]. 土壤, 2014, 46(6): 1045 − 1051. DENG Lin, LI Zhu, WU Longhua, et al. Influence of moisture and drying process on soil heavy metal availability [J]. Soils, 2014, 46(6): 1045 − 1051. [11] ANGLE J S, BAKER A J M, WHITING S N, et al. Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya [J]. Plant Soil, 2003, 256(2): 325 − 332. [12] 姚桂华. 交流电场-有机物料提高东南景天修复重金属污染土壤效率的研究[D]. 杭州: 浙江农林大学, 2015. YAO Guihua. Effects of Alternating Current (AC) Field and Organic Materials on Improving the Efficiency of Sedum alfredii Hance to Remediate Heavy Metal Contaminated Soil[D]. Hangzhou: Zhejiang A&F University, 2015. [13] 陈绩, 姚桂华, 倪幸, 等. 交流电场联合有机物料强化东南景天修复重金属镉污染土壤[J]. 环境工程学报, 2019, 13(11): 2682 − 2690. CHEN Ji, YAO Guihua, NI Xing, et al. AC electric field combined with organic materials enhancing Sedum alfredii Hance phytoremediation of cadmium-contaminated soil [J]. Chin J Environ Eng, 2019, 13(11): 2682 − 2690. [14] 倪幸, 李雅倩, 王胜男, 等. 交流电场促进柳树修复镉污染土壤[J]. 环境化学, 2019, 38(10): 2376 − 2385. NI Xing, LI Yaqian, WANG Shengnan, et al. Alternating current electric field promotes willow plant to remediate cadmium contaminated soil [J]. Environ Chem, 2019, 38(10): 2376 − 2385. [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [16] TOKALIOĞLU Ş, KARTAL Ş, GÜLTEKIN A. Investigation of heavy-metal uptake by vegetables growing in contaminated soils using the modified BCR sequential extraction method [J]. Int J Environ Anal Chem, 2006, 86(6): 417 − 430. [17] 陈芳清, 黄友珍, 樊大勇, 等. 水淹对狗牙根营养繁殖植株的生理生态学效应[J]. 广西植物, 2010, 30(4): 488 − 492. CHEN Fangqing, HUANG Youzhen, FAN Dayong, et al. Ecophysiological responses of vegetative propagule of Cynodon dactylon to simulated summer flooding [J]. Guihaia, 2010, 30(4): 488 − 492. [18] 常超, 谢宗强, 熊高明, 等. 三峡水库蓄水对消落带土壤理化性质的影响[J]. 自然资源学报, 2011, 26(7): 1236 − 1244. CHANG Chao, XIE Zongqiang, XIONG Gaoming, et al. The effect of flooding on soil physical and chemical properties of riparian zone in the Three Gorges Reservoir [J]. J Nat Resour, 2011, 26(7): 1236 − 1244. [19] 杨予静, 李昌晓, 张晔, 等. 水淹-干旱交替胁迫对湿地松幼苗盆栽土壤营养元素含量的影响[J]. 林业科学, 2013, 49(2): 61 − 71. YANG Yujing, LI Changxiao, ZHANG Ye, et al. Effects of submergence and drought alternation on nutrient contents in the soil growing slash pine (Pinus elliottii) seedlings [J]. Sci Silv Sin, 2013, 49(2): 61 − 71. [20] 万福绪, 杨东. 苏北海堤杉木杨树混交林林木生长及土壤肥力研究[J]. 南京林业大学学报(自然科学版), 2006, 30(2): 43 − 46. WAN Fuxu, YANG Dong. Studies on trees growth and soil fertility characters of mixed stand of Chinese fir and poplar [J]. J Nanjing For Univ Nat Sci Ed, 2006, 30(2): 43 − 46. [21] ASHRAF M, ARFAN M. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging [J]. Biol Plant, 2005, 49(3): 459 − 462. [22] ANELLA L B, WHITLOW T H. Photosynthetic response to flooding of Acer rubrum seedlings from wet and dry sites [J]. Am Midl Nat, 2000, 143(2): 330 − 341. [23] PAN Yunyu, BONTEN L T C, KOOPMANS G F, et al. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage [J]. Geoderma, 2016, 261: 59 − 69. [24] HINDERSMANN I, MANSFELDT T. Trace element solubility in a multimetal-contaminated soil as affected by redox conditions [J]. Water Air Soil Pollut, 2014, 225(10): 2518. doi: 10.1007/s11270-014-2158-8. [25] 钱进, 王子健, 单孝全. 土壤中微量金属元素的植物可给性研究进展[J]. 环境科学, 1995, 16(6): 73 − 75. QIAN Jin, WANG Zijian, SHAN Xiaoquan. Progress in the investigation on plant availability of soil trace metals [J]. Environ Sci, 1995, 16(6): 73 − 75. [26] 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005, 24(12): 1499 − 1502. HAN Chunmei, WANG Linshan, GONG Zongqiang, et al. Chemical forms of soil heavy metals and their environmental significance [J]. Chin J Ecol, 2005, 24(12): 1499 − 1502. [27] 罗启仕, 张锡辉, 王慧, 等. 非均匀电动力学修复技术对土壤性质的影响[J]. 环境污染治理技术与设备, 2004, 5(4): 40 − 45. LUO Qishi, ZHANG Xihui, WANG Hui, et al. Influence of non-uniform electrokinetic remediation technology on soil properties [J]. Techniq Equip Environ Pollut Control, 2004, 5(4): 40 − 45. [28] LI Jianrui, XU Yingming. Immobilization of Cd in a paddy soil using moisture management and amendment [J]. Chemosphere, 2015, 122: 131 − 136. [29] 郑顺安, 郑向群, 张铁亮. 等. 水分条件对紫色土中铅形态转化的影响[J]. 环境化学, 2011, 30(12): 2080 − 2085. ZHENG Shun’an, ZHENG Xiangqun, ZHANG Tieliang, et al. Effect of moisture regime on the fractionation of lead in purple soil [J]. Environ Chem, 2011, 30(12): 2080 − 2085. [30] HU Pengjie, HUANG Jiexue, OUYANG Younan, et al. Water management affects arsenic and cadmium accumulation in different rice cultivars [J]. Environ Geochem Health, 2013, 35(6): 767 − 778. [31] BARTLETT R, JAMES B. Studying dried, stored soil samples: some pitfalls [J]. Soil Sci Soc Am J, 1980, 44(4): 721 − 724. [32] 崔立强, 吴龙华, 李娜, 等. 水分特征对伴矿景天生长和重金属吸收性的影响[J]. 土壤, 2009, 41(4): 572 − 576. CUI Liqiang, WU Longhua, LI Na, et al. Effects of soil moisture on growth and uptake of heavy metals ofSedum plumbizincicola [J]. Soils, 2009, 41(4): 572 − 576. [33] 张洁. 景天属植物对水涝胁迫的响应机理研究[D]. 北京: 北京林业大学, 2019. ZHANG Jie. Response Mechanisms of Sedum spp. to Waterlogging Stress [D]. Beijing: Beijing Forestry University, 2019. [34] 刘俊龙, 吴中能, 欧阳海言, 等. 竹柳持续淹水后的生长状况及耐水性调查研究[J]. 安徽林业科技, 2012, 38(1): 20 − 22. LIU Junlong, WU Zhongneng, OUYANG Haiyan, et al. Research on the growth and flooding tolerance of American bamboo willow after prolonged flooding [J]. Anhui For Sci Technol, 2012, 38(1): 20 − 22. [35] 聂斌. 外加直流电场对植物吸收镉的影响研究[D]. 重庆: 重庆大学, 2015. NIE Bin. The Study of Influence of Direct Current Electrical Fields on Phytoremediation of Cd[D]. Chongqing: Chongqing University, 2015. [36] 温尚斌, 马福荣, 许守民, 等. 高压静电场促进植物吸收离子机理的初步探讨[J]. 生物化学与生物物理进展, 1995, 22(4): 377 − 379. WEN Shangbin, MA Furong, XU Shoumin, et al. The mechanism of ion absorption stimulated by the high voltage eleetrostatie field [J]. Prog Biochem Biophys, 1995, 22(4): 377 − 379. [37] 倪幸. 不同强化措施对提高柳树修复镉污染土壤效率的研究[D]. 杭州: 浙江农林大学, 2019. NI Xing. Effect of Different Strengthening Measures on Improving Efficiency of Willow to Remediate Cadmium Contaminated Soil[D]. Hangzhou: Zhejiang A&F University, 2019. [38] 何俊瑜, 王阳阳, 任艳芳, 等. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报, 2009, 18(5): 1863 − 1868. HE Junyu, WANG Yangyang, REN Yanfang, et al. Effect of cadmium on root morphology and physiological characteristics of rice seedlings [J]. Ecol Environ Sci, 2009, 18(5): 1863 − 1868. [39] 胡宏韬, 程金平. 土壤铜镉污染的电动力学修复实验[J]. 生态环境学报, 2009, 18(2): 511 − 514. HU Hongtao, CHENG Jinping. Experimental study on electrokinetic remediation of copper and cadmium contaminated soils [J]. Ecol Environ Sci, 2009, 18(2): 511 − 514. [40] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4): 539 − 543. DU Caiyan, ZU Yanqun, LI Yuan. Effect of pH and organic matter on the bioavailability Cd and Zn in soil [J]. J Yunnan Agric Univ, 2005, 20(4): 539 − 543. 期刊类型引用(5)
1. 邱远金,张际昭,赵亚琴,阿依别克·热合木都拉,樊丛照,王果平,朱军. 基于Illumina Novaseq高通量测序技术分析番红花不同生长期根际土壤中放线菌群落结构与多样性研究. 时珍国医国药. 2024(13): 3039-3046 . 百度学术
2. 邱远金,赵亚琴,张际昭,樊丛照,阿依别克·热合木都拉,王果平,朱军. 基于高通量测序研究番红花不同生长期根际土壤中真菌群落结构及多样性. 中国现代中药. 2023(03): 574-581 . 百度学术
3. 董丽丽,余青华. 解淀粉芽孢杆菌产酶特性及其抑制禾谷镰刀菌性能研究. 安徽农业科学. 2023(14): 11-14 . 百度学术
4. 李军,高广春,李白,朱志明. 西红花球茎腐烂病发生及综合防控对策. 植物保护. 2023(06): 10-15+39 . 百度学术
5. 吴皆宁,桂思琦,曹佳佳,杜雪,李俊博,李秀娟,开国银,周伟. 西红花茎腐病致病真菌的分离与鉴定. 浙江农林大学学报. 2022(05): 1080-1086 . 本站查看
其他类型引用(0)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200725