留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交流电场和水分对褪色柳-东南景天混栽修复镉污染土壤的影响

刘波 陈绩 马嘉伟 方先芝 赵科理 柳丹 叶正钱

刘波, 陈绩, 马嘉伟, 方先芝, 赵科理, 柳丹, 叶正钱. 交流电场和水分对褪色柳-东南景天混栽修复镉污染土壤的影响[J]. 浙江农林大学学报, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725
引用本文: 刘波, 陈绩, 马嘉伟, 方先芝, 赵科理, 柳丹, 叶正钱. 交流电场和水分对褪色柳-东南景天混栽修复镉污染土壤的影响[J]. 浙江农林大学学报, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725
LIU Bo, CHEN Ji, MA Jiawei, FANG Xianzhi, ZHAO Keli, LIU Dan, YE Zhengqian. Effects of AC electric field and soil moisture on phytoremediation of cadmium contaminated soil by mixed planting of Salix discolor and Sedum alfredii [J]. Journal of Zhejiang A&F University, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725
Citation: LIU Bo, CHEN Ji, MA Jiawei, FANG Xianzhi, ZHAO Keli, LIU Dan, YE Zhengqian. Effects of AC electric field and soil moisture on phytoremediation of cadmium contaminated soil by mixed planting of Salix discolor and Sedum alfredii [J]. Journal of Zhejiang A&F University, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725

交流电场和水分对褪色柳-东南景天混栽修复镉污染土壤的影响

doi: 10.11833/j.issn.2095-0756.20200725
基金项目: 浙江省重点研发计划项目(2018C03028)
详细信息
    作者简介: 刘波(ORCID: 0000-0003-0206-8634),从事资源利用与植物保护研究。E-mail: 1341248569@qq.com
    通信作者: 叶正钱(ORCID: 0000-0002-6321-815X),教授,从事土壤重金属污染修复研究。E-mail: yezhq@zafu.edu.cn
  • 中图分类号: X53

Effects of AC electric field and soil moisture on phytoremediation of cadmium contaminated soil by mixed planting of Salix discolor and Sedum alfredii

  • 摘要:   目的  研究交流电场和土壤水分对褪色柳Salix discolor-东南景天Sedum alfredii混栽模式下镉污染土壤修复效率的影响。  方法  通过土壤盆栽试验,研究不同水分[湿润(60%土壤田间持水量)、高水分(100%土壤田间持水量)]和不同交流电场(0和0.5 V·cm−1)的组合处理,对土壤镉活性、褪色柳和东南景天生长及镉吸收与积累的影响。  结果  交流电场显著提高土壤有效态镉质量分数、促进褪色柳和东南景天地上部对镉的积累,与对照相比,有效态镉质量分数显著提高16.13%(P<0.05),柳叶、东南景天地上部镉积累量分别提高12.61%、22.50%;高水分+电场处理有利于提高土壤pH、碱解氮质量分数,以及残渣态镉所占比例,与对照相比分别提高6.47%、12.09%、22.89%(P<0.05),但会影响褪色柳、东南景天积累重金属镉,与对照相比,柳叶、东南景天地上部镉积累量分别降低95.60%(P<0.05)、18.02%。  结论  土壤湿润条件下施加电场有利于褪色柳-东南景天修复镉污染土壤,褪色柳和东南景天地上部镉总积累量分别是其他处理的1.13~1.93倍。表4参40
  • 表  1  不同处理对土壤理化性质的影响

    Table  1.   Effects of different treatments on basic soil chemical properties

    处理pH有机质/(g·kg−1)碱解氮/(mg·kg−1)有效磷/(mg·kg−1)速效钾/(mg·kg−1)
    ck 6.18±0.13 b38.71±2.12 a192.97±8.17 b72.85±3.40 a465.00±13.08 ab
    E 6.25±0.19 ab42.75±1.05 a190.63±12.01 b72.95±6.95 a483.30±16.26 a
    W 6.46±0.18 ab43.30±4.08 a214.20±12.14 a76.58±3.93 a450.67±16.26 b
    EW6.58±0.17 a43.39±2.13 a216.30±11.57 a76.71±5.93 a469.67±12.58 ab
      说明:同列不同字母表示处理间差异显著(P<0.05)
    下载: 导出CSV

    表  2  不同处理对土壤有效态镉质量分数和镉形态的影响

    Table  2.   Effects of different treatments on soil available Cd and its fractionations

    处理有效镉/(mg·kg−1)酸可提取态/%可还原态/%可氧化态/%残渣态/%
    ck 0.31±0.02 b14.23±1.37 a37.45±2.29 a2.53±0.49 b45.79±2.19 b
    E 0.36±0.04 a14.59±1.17 a38.90±2.04 a3.13±0.66 ab43.38±2.63 b
    W 0.31±0.03 b11.45±0.76 b31.29±2.13 b3.70±0.48 a53.56±1.51 a
    EW0.35±0.01 ab11.51±0.62 b29.01±2.42 b3.22±0.27 ab56.27±1.90 a
      说明:同列不同字母表示处理间差异显著(P<0.05)
    下载: 导出CSV

    表  3  不同处理对植物生物量以及褪色柳光合参数的影响

    Table  3.   Effects of different treatments on plant biomass and photosynthesis of S. discolor

    处理柳叶干质量/
    (g·盆−1)
    柳枝干质量/
    (g·盆−1)
    东南景天地上部
    干质量/(g·盆−1)
    Tr /
    (mmol·m−2·s−1)
    Pn /
    (μmol·m−2·s−1)
    Ci /
    (μmol·mol−1)
    Gs /
    (mol·m−2·s−1)
    ck 5.70±1.21 a2.73±0.47 c1.33±0.26 ab5.24±0.43 a11.64±2.12 ab312.11±19.30 ab0.28±0.03 a
    E 6.13±0.71 a2.64±0.25 c1.49±0.28 a4.98±2.33 a13.96±5.86 a301.03±11.12 b0.29±0.13 a
    W 6.59±0.44 a3.47±0.23 b0.83±0.11 c4.94±1.94 a6.45±0.85 b341.40±16.36 a0.27±0.12 a
    EW7.66±1.60 a5.49±0.39 a1.09±0.10 bc5.60±1.59 a7.83±0.73 ab340.52±15.43 a0.32±0.11 a
      说明:同列不同字母表示差异显著(P<0.05)
    下载: 导出CSV

    表  4  不同处理对植物镉吸收积累的影响

    Table  4.   Effects of different treatments on Cd absorption and accumulation in S. discolor and S. alfredii

    处理镉质量分数/(mg·kg−1)植物镉积累量/(μg·盆−1)
    柳叶
    柳枝
    东南景天地
    上部
    柳叶
    柳枝
    东南景天地上部
    总地上部
    ck 6.89±1.04 a9.25±1.31 a36.19±2.02 ab39.98±13.30 a25.69±8.00 a48.00±7.63 ab113.68±15.48 a
    E 7.35±0.30 a9.36±1.87 a39.66±2.32 a45.02±4.70 a24.54±3.88 a58.80±8.80 a128.36±7.06 a
    W 3.33±0.65 b4.34±1.07 b35.27±1.36 b21.87±4.03 b15.20±4.64 a29.42±4.59 c66.49±6.32 b
    EW2.69±0.49 b3.48±0.59 b37.49±1.69 ab20.44±4.64 b19.20±4.39 a40.67±2.00 bc80.31±4.99 b
      说明:同列不同字母表示处理间差异显著(P<0.05)
    下载: 导出CSV
  • [1] MORIARTY F. Ecotoxicology: The Study of Pollutants in Ecosystems[M]. London: Academic Press, 1999: 29 − 35.
    [2] RASCIO N, NAVARI-IZZO F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? [J]. Plant Sci, 2011, 180(2): 169 − 181.
    [3] 陈英旭. 土壤重金属的植物污染化学[M]. 北京: 科学出版社, 2008.
    [4] 徐剑锋, 王雷, 熊瑛, 等. 土壤重金属污染强化植物修复技术研究进展[J]. 环境工程技术学报, 2017, 7(3): 366 − 373.

    XU Jianfeng, WANG Lei, XIONG Ying, et al. Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil [J]. J Environ Eng Technol, 2017, 7(3): 366 − 373.
    [5] 刘玥, 牛婷雨, 李天国, 等. 电动力学辅助植物修复重金属污染土壤的特征机制与机遇[J]. 化工进展, 2020, 39(12): 5252 − 5265.

    LIU Yue, NIU Tingyu, LI Tianguo, et al. Characteristics and opportunities of electrokinetic-assisted phytoremediation of heavy metal contaminated soil [J]. Chem Ind Eng Prog, 2020, 39(12): 5252 − 5265.
    [6] 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4): 729 − 735.

    CANG Long, ZHOU Dongmei, WU Danya. Effects of horizontal exchange electric field and EDDS application on ryegrass uptake of copper/zine and soil characteristics [J]. Acta Pedol Sin, 2009, 46(4): 729 − 735.
    [7] BI Ran, SCHLAAK M, SIEFERT E, et al. Alternating current electrical field effects on lettuce (Lactuca sativa) growing in hydroponic culture with and without cadmium contamination [J]. J Appl Electrochem, 2010, 40: 1217 − 1223.
    [8] 肖文丹, 叶雪珠, 徐海舟, 等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4): 927 − 937.

    XIAO Wendan, YE Xuezhu, XU Haizhou, et al. Intensification of phytoremediation of Cd contaminated soil with direct current field and soil amendments in addition to hyperaccumulator Sedum alfredii [J]. Acta Pedol Sin, 2017, 54(4): 927 − 937.
    [9] CAMESELLE C, CHIRAKKARA R A, REDDY K R. Electrokinetic-enhanced phytoremediation of soils: status and opportunities [J]. Chemosphere, 2013, 93(4): 626 − 636.
    [10] 邓林, 李柱, 吴龙华, 等. 水分及干燥过程对土壤重金属有效性的影响[J]. 土壤, 2014, 46(6): 1045 − 1051.

    DENG Lin, LI Zhu, WU Longhua, et al. Influence of moisture and drying process on soil heavy metal availability [J]. Soils, 2014, 46(6): 1045 − 1051.
    [11] ANGLE J S, BAKER A J M, WHITING S N, et al. Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya [J]. Plant Soil, 2003, 256(2): 325 − 332.
    [12] 姚桂华. 交流电场-有机物料提高东南景天修复重金属污染土壤效率的研究[D]. 杭州: 浙江农林大学, 2015.

    YAO Guihua. Effects of Alternating Current (AC) Field and Organic Materials on Improving the Efficiency of Sedum alfredii Hance to Remediate Heavy Metal Contaminated Soil[D]. Hangzhou: Zhejiang A&F University, 2015.
    [13] 陈绩, 姚桂华, 倪幸, 等. 交流电场联合有机物料强化东南景天修复重金属镉污染土壤[J]. 环境工程学报, 2019, 13(11): 2682 − 2690.

    CHEN Ji, YAO Guihua, NI Xing, et al. AC electric field combined with organic materials enhancing Sedum alfredii Hance phytoremediation of cadmium-contaminated soil [J]. Chin J Environ Eng, 2019, 13(11): 2682 − 2690.
    [14] 倪幸, 李雅倩, 王胜男, 等. 交流电场促进柳树修复镉污染土壤[J]. 环境化学, 2019, 38(10): 2376 − 2385.

    NI Xing, LI Yaqian, WANG Shengnan, et al. Alternating current electric field promotes willow plant to remediate cadmium contaminated soil [J]. Environ Chem, 2019, 38(10): 2376 − 2385.
    [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [16] TOKALIOĞLU Ş, KARTAL Ş, GÜLTEKIN A. Investigation of heavy-metal uptake by vegetables growing in contaminated soils using the modified BCR sequential extraction method [J]. Int J Environ Anal Chem, 2006, 86(6): 417 − 430.
    [17] 陈芳清, 黄友珍, 樊大勇, 等. 水淹对狗牙根营养繁殖植株的生理生态学效应[J]. 广西植物, 2010, 30(4): 488 − 492.

    CHEN Fangqing, HUANG Youzhen, FAN Dayong, et al. Ecophysiological responses of vegetative propagule of Cynodon dactylon to simulated summer flooding [J]. Guihaia, 2010, 30(4): 488 − 492.
    [18] 常超, 谢宗强, 熊高明, 等. 三峡水库蓄水对消落带土壤理化性质的影响[J]. 自然资源学报, 2011, 26(7): 1236 − 1244.

    CHANG Chao, XIE Zongqiang, XIONG Gaoming, et al. The effect of flooding on soil physical and chemical properties of riparian zone in the Three Gorges Reservoir [J]. J Nat Resour, 2011, 26(7): 1236 − 1244.
    [19] 杨予静, 李昌晓, 张晔, 等. 水淹-干旱交替胁迫对湿地松幼苗盆栽土壤营养元素含量的影响[J]. 林业科学, 2013, 49(2): 61 − 71.

    YANG Yujing, LI Changxiao, ZHANG Ye, et al. Effects of submergence and drought alternation on nutrient contents in the soil growing slash pine (Pinus elliottii) seedlings [J]. Sci Silv Sin, 2013, 49(2): 61 − 71.
    [20] 万福绪, 杨东. 苏北海堤杉木杨树混交林林木生长及土壤肥力研究[J]. 南京林业大学学报(自然科学版), 2006, 30(2): 43 − 46.

    WAN Fuxu, YANG Dong. Studies on trees growth and soil fertility characters of mixed stand of Chinese fir and poplar [J]. J Nanjing For Univ Nat Sci Ed, 2006, 30(2): 43 − 46.
    [21] ASHRAF M, ARFAN M. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging [J]. Biol Plant, 2005, 49(3): 459 − 462.
    [22] ANELLA L B, WHITLOW T H. Photosynthetic response to flooding of Acer rubrum seedlings from wet and dry sites [J]. Am Midl Nat, 2000, 143(2): 330 − 341.
    [23] PAN Yunyu, BONTEN L T C, KOOPMANS G F, et al. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage [J]. Geoderma, 2016, 261: 59 − 69.
    [24] HINDERSMANN I, MANSFELDT T. Trace element solubility in a multimetal-contaminated soil as affected by redox conditions [J]. Water Air Soil Pollut, 2014, 225(10): 2518. doi: 10.1007/s11270-014-2158-8.
    [25] 钱进, 王子健, 单孝全. 土壤中微量金属元素的植物可给性研究进展[J]. 环境科学, 1995, 16(6): 73 − 75.

    QIAN Jin, WANG Zijian, SHAN Xiaoquan. Progress in the investigation on plant availability of soil trace metals [J]. Environ Sci, 1995, 16(6): 73 − 75.
    [26] 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005, 24(12): 1499 − 1502.

    HAN Chunmei, WANG Linshan, GONG Zongqiang, et al. Chemical forms of soil heavy metals and their environmental significance [J]. Chin J Ecol, 2005, 24(12): 1499 − 1502.
    [27] 罗启仕, 张锡辉, 王慧, 等. 非均匀电动力学修复技术对土壤性质的影响[J]. 环境污染治理技术与设备, 2004, 5(4): 40 − 45.

    LUO Qishi, ZHANG Xihui, WANG Hui, et al. Influence of non-uniform electrokinetic remediation technology on soil properties [J]. Techniq Equip Environ Pollut Control, 2004, 5(4): 40 − 45.
    [28] LI Jianrui, XU Yingming. Immobilization of Cd in a paddy soil using moisture management and amendment [J]. Chemosphere, 2015, 122: 131 − 136.
    [29] 郑顺安, 郑向群, 张铁亮. 等. 水分条件对紫色土中铅形态转化的影响[J]. 环境化学, 2011, 30(12): 2080 − 2085.

    ZHENG Shun’an, ZHENG Xiangqun, ZHANG Tieliang, et al. Effect of moisture regime on the fractionation of lead in purple soil [J]. Environ Chem, 2011, 30(12): 2080 − 2085.
    [30] HU Pengjie, HUANG Jiexue, OUYANG Younan, et al. Water management affects arsenic and cadmium accumulation in different rice cultivars [J]. Environ Geochem Health, 2013, 35(6): 767 − 778.
    [31] BARTLETT R, JAMES B. Studying dried, stored soil samples: some pitfalls [J]. Soil Sci Soc Am J, 1980, 44(4): 721 − 724.
    [32] 崔立强, 吴龙华, 李娜, 等. 水分特征对伴矿景天生长和重金属吸收性的影响[J]. 土壤, 2009, 41(4): 572 − 576.

    CUI Liqiang, WU Longhua, LI Na, et al. Effects of soil moisture on growth and uptake of heavy metals ofSedum plumbizincicola [J]. Soils, 2009, 41(4): 572 − 576.
    [33] 张洁. 景天属植物对水涝胁迫的响应机理研究[D]. 北京: 北京林业大学, 2019.

    ZHANG Jie. Response Mechanisms of Sedum spp. to Waterlogging Stress [D]. Beijing: Beijing Forestry University, 2019.
    [34] 刘俊龙, 吴中能, 欧阳海言, 等. 竹柳持续淹水后的生长状况及耐水性调查研究[J]. 安徽林业科技, 2012, 38(1): 20 − 22.

    LIU Junlong, WU Zhongneng, OUYANG Haiyan, et al. Research on the growth and flooding tolerance of American bamboo willow after prolonged flooding [J]. Anhui For Sci Technol, 2012, 38(1): 20 − 22.
    [35] 聂斌. 外加直流电场对植物吸收镉的影响研究[D]. 重庆: 重庆大学, 2015.

    NIE Bin. The Study of Influence of Direct Current Electrical Fields on Phytoremediation of Cd[D]. Chongqing: Chongqing University, 2015.
    [36] 温尚斌, 马福荣, 许守民, 等. 高压静电场促进植物吸收离子机理的初步探讨[J]. 生物化学与生物物理进展, 1995, 22(4): 377 − 379.

    WEN Shangbin, MA Furong, XU Shoumin, et al. The mechanism of ion absorption stimulated by the high voltage eleetrostatie field [J]. Prog Biochem Biophys, 1995, 22(4): 377 − 379.
    [37] 倪幸. 不同强化措施对提高柳树修复镉污染土壤效率的研究[D]. 杭州: 浙江农林大学, 2019.

    NI Xing. Effect of Different Strengthening Measures on Improving Efficiency of Willow to Remediate Cadmium Contaminated Soil[D]. Hangzhou: Zhejiang A&F University, 2019.
    [38] 何俊瑜, 王阳阳, 任艳芳, 等. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报, 2009, 18(5): 1863 − 1868.

    HE Junyu, WANG Yangyang, REN Yanfang, et al. Effect of cadmium on root morphology and physiological characteristics of rice seedlings [J]. Ecol Environ Sci, 2009, 18(5): 1863 − 1868.
    [39] 胡宏韬, 程金平. 土壤铜镉污染的电动力学修复实验[J]. 生态环境学报, 2009, 18(2): 511 − 514.

    HU Hongtao, CHENG Jinping. Experimental study on electrokinetic remediation of copper and cadmium contaminated soils [J]. Ecol Environ Sci, 2009, 18(2): 511 − 514.
    [40] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4): 539 − 543.

    DU Caiyan, ZU Yanqun, LI Yuan. Effect of pH and organic matter on the bioavailability Cd and Zn in soil [J]. J Yunnan Agric Univ, 2005, 20(4): 539 − 543.
  • [1] 颜越, 金荷仙, 王瑛, 陈超怡, 范颖佳, 柳丹.  间作模式对社区花园可食植物生理特性及铅吸收的影响 . 浙江农林大学学报, 2023, 40(2): 338-347. doi: 10.11833/j.issn.2095-0756.20220365
    [2] 石傲傲, 郑毅, 张坤, 邓志华, 角慈梅, 孙仕仙.  香根草对扑草净污染水体的净化潜力 . 浙江农林大学学报, 2021, 38(6): 1245-1252. doi: 10.11833/j.issn.2095-0756.20200595
    [3] 孙占薇, 马岚, 梅雪梅, 刘京晶, 王福星, 张金阁, 燕琳.  晋西黄土区不同水文年土壤水分特征及其主要影响因子分析 . 浙江农林大学学报, 2021, 38(1): 10-20. doi: 10.11833/j.issn.2095-0756.20200260
    [4] 金迪, 张明如, 王佳佳, 高磊, 侯平.  遮光与水分胁迫对盆栽芒萁光合与叶绿素荧光参数的影响 . 浙江农林大学学报, 2020, 37(6): 1054-1063. doi: 10.11833/j.issn.2095-0756.20190666
    [5] 匡媛媛, 范弢.  滇东南喀斯特小生境土壤水分差异性及其影响因素 . 浙江农林大学学报, 2020, 37(3): 531-539. doi: 10.11833/j.issn.2095-0756.20190383
    [6] 徐勇峰, 郭俨辉, 季淮, 吴翼, 韩建刚, 李萍萍.  洪泽湖湿地杨树林土壤水分变化及其与气象因子的关系 . 浙江农林大学学报, 2018, 35(1): 20-28. doi: 10.11833/j.issn.2095-0756.2018.01.003
    [7] 徐炜杰, 郭佳, 赵敏, 王任远, 侯淑贞, 杨芸, 钟斌, 郭华, 刘晨, 沈颖, 柳丹.  重金属污染土壤植物根系分泌物研究进展 . 浙江农林大学学报, 2017, 34(6): 1137-1148. doi: 10.11833/j.issn.2095-0756.2017.06.023
    [8] 钟斌, 陈俊任, 彭丹莉, 刘晨, 郭华, 吴家森, 叶正钱, 柳丹.  速生林木对重金属污染土壤植物修复技术研究进展 . 浙江农林大学学报, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [9] 巩合德, 燕腾, 彭一航, 郑丽, 马月伟.  哀牢山多花山矾幼苗在森林及模拟森林光环境条件下的生长特征 . 浙江农林大学学报, 2015, 32(2): 237-243. doi: 10.11833/j.issn.2095-0756.2015.02.010
    [10] 赵婷, 韩小娇, 刘明英, 乔桂荣, 蒋晶, 姜彦成, 卓仁英.  东南景天耐镉相关基因SaFer的克隆与功能初步分析 . 浙江农林大学学报, 2015, 32(1): 25-32. doi: 10.11833/j.issn.2095-0756.2015.01.004
    [11] 李真, 刘明英, 韩小娇, 乔桂荣, 蒋晶, 邢世岩, 卓仁英.  东南景天捕光叶绿素a/b结合蛋白基因SaLhcb2的分离及功能 . 浙江农林大学学报, 2014, 31(6): 838-846. doi: 10.11833/j.issn.2095-0756.2014.06.003
    [12] 胡杨勇, 马嘉伟, 叶正钱, 柳丹, 赵科理.  东南景天Sedum alfredii修复重金属污染土壤的研究进展 . 浙江农林大学学报, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
    [13] 宋红改, 蒋晶, 乔桂荣, 杨晔, 周婧, 潘銮银, 卓仁英.  利用酵母建立植物抗逆基因快速筛选体系 . 浙江农林大学学报, 2010, 27(6): 890-895. doi: 10.11833/j.issn.2095-0756.2010.06.014
    [14] 张圆圆, 窦春英, 姚芳, 叶正钱.  氮素营养对重金属超积累植物东南景天吸收积累锌和镉的影响 . 浙江农林大学学报, 2010, 27(6): 831-838. doi: 10.11833/j.issn.2095-0756.2010.06.005
    [15] 汪敏华, 周静, 崔键.  红壤水分条件对春季柑橘叶片生长形态 . 浙江农林大学学报, 2009, 26(1): 17-21.
    [16] 李安定, 喻理飞, 韦小丽.  喀斯特区土壤水分动态模拟及实地造林的研究 . 浙江农林大学学报, 2008, 25(2): 211-215.
    [17] 聂发辉, 吴彩斌, 吴双桃.  商陆对镉的富集特征 . 浙江农林大学学报, 2006, 23(4): 400-405.
    [18] 邓恒芳, 王克勤.  土壤水分对石榴光合速率的影响 . 浙江农林大学学报, 2005, 22(3): 277-281.
    [19] 李艳梅, 王克勤, 刘芝芹, 王建英.  云南干热河谷微地形改造对土壤水分动态的影响 . 浙江农林大学学报, 2005, 22(3): 259-265.
    [20] 吴祖映, 储家森, 唐明荣, 柴世民, 童祝平.  土壤水分状况对池杉形态结构及生长状况的影响 . 浙江农林大学学报, 1996, 13(3): 364-366.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200725

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/6/1238

计量
  • 文章访问数:  686
  • HTML全文浏览量:  112
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2021-04-30
  • 网络出版日期:  2021-06-04
  • 刊出日期:  2021-12-08

交流电场和水分对褪色柳-东南景天混栽修复镉污染土壤的影响

doi: 10.11833/j.issn.2095-0756.20200725
    基金项目:  浙江省重点研发计划项目(2018C03028)
    作者简介:

    刘波(ORCID: 0000-0003-0206-8634),从事资源利用与植物保护研究。E-mail: 1341248569@qq.com

    通信作者: 叶正钱(ORCID: 0000-0002-6321-815X),教授,从事土壤重金属污染修复研究。E-mail: yezhq@zafu.edu.cn
  • 中图分类号: X53

摘要:   目的  研究交流电场和土壤水分对褪色柳Salix discolor-东南景天Sedum alfredii混栽模式下镉污染土壤修复效率的影响。  方法  通过土壤盆栽试验,研究不同水分[湿润(60%土壤田间持水量)、高水分(100%土壤田间持水量)]和不同交流电场(0和0.5 V·cm−1)的组合处理,对土壤镉活性、褪色柳和东南景天生长及镉吸收与积累的影响。  结果  交流电场显著提高土壤有效态镉质量分数、促进褪色柳和东南景天地上部对镉的积累,与对照相比,有效态镉质量分数显著提高16.13%(P<0.05),柳叶、东南景天地上部镉积累量分别提高12.61%、22.50%;高水分+电场处理有利于提高土壤pH、碱解氮质量分数,以及残渣态镉所占比例,与对照相比分别提高6.47%、12.09%、22.89%(P<0.05),但会影响褪色柳、东南景天积累重金属镉,与对照相比,柳叶、东南景天地上部镉积累量分别降低95.60%(P<0.05)、18.02%。  结论  土壤湿润条件下施加电场有利于褪色柳-东南景天修复镉污染土壤,褪色柳和东南景天地上部镉总积累量分别是其他处理的1.13~1.93倍。表4参40

English Abstract

刘波, 陈绩, 马嘉伟, 方先芝, 赵科理, 柳丹, 叶正钱. 交流电场和水分对褪色柳-东南景天混栽修复镉污染土壤的影响[J]. 浙江农林大学学报, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725
引用本文: 刘波, 陈绩, 马嘉伟, 方先芝, 赵科理, 柳丹, 叶正钱. 交流电场和水分对褪色柳-东南景天混栽修复镉污染土壤的影响[J]. 浙江农林大学学报, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725
LIU Bo, CHEN Ji, MA Jiawei, FANG Xianzhi, ZHAO Keli, LIU Dan, YE Zhengqian. Effects of AC electric field and soil moisture on phytoremediation of cadmium contaminated soil by mixed planting of Salix discolor and Sedum alfredii [J]. Journal of Zhejiang A&F University, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725
Citation: LIU Bo, CHEN Ji, MA Jiawei, FANG Xianzhi, ZHAO Keli, LIU Dan, YE Zhengqian. Effects of AC electric field and soil moisture on phytoremediation of cadmium contaminated soil by mixed planting of Salix discolor and Sedum alfredii [J]. Journal of Zhejiang A&F University, 2021, 38(6): 1238-1244. doi: 10.11833/j.issn.2095-0756.20200725
  • 随着工矿业的发展,矿业冶炼、工业废水及废弃物排放等含镉(Cd)污染物不断进入土壤,土壤镉污染问题日益严重。镉不仅损害植物的生长发育,影响植株的生理代谢,还会在农作物中富集,通过食物链进入人体,威胁人体健康[1],进行镉污染土壤修复研究刻不容缓。土壤镉污染修复技术主要有物理修复、化学修复、生物修复以及多措施联合修复等。与传统的理化修复方法相比,植物修复技术成本低、操作简易,应用广泛[2-3]。但植物材料易受环境等因素影响,因此需要优化植物提取土壤重金属的条件[4]。结合电动修复技术可以提高植物修复效率,具有良好发展前景[5]。研究证实交流电场可以促进黑麦草Lolium perenne[6]、莴苣Lactuca sativa[7]、东南景天Sedum alfredii[8]等植物的生长,加快植物对重金属的吸收积累。植物联合电动修复技术不仅能提高土壤中重金属的有效性,还能促进植物生长和对重金属的富集[9],强化植物吸收修复效率,提升植物修复技术的实际应用前景。水分是贯穿土壤-植物-大气系统的动力因素,不仅直接影响植物的生长,还会通过改变土壤pH、氧化还原状况等影响土壤物质转化,从而间接影响重金属在土壤固-液两相的分配,影响土壤中重金属的有效性和植物对土壤重金属的吸收[10]。ANGLE等[11]对遏蓝菜Thlaspi caerulescens、崖雪球Alyssum murale等的研究表明:随着土壤含水量的增加,植物生物量和对重金属积累能力也随之增加。然而,国内外在关于电场、水分对植物生长和金属吸收性方面研究报道很少。因此本研究以褪色柳Salix discolor、东南景天为对象,采用混栽盆栽试验,研究电场和水分对褪色柳和东南景天生长和对土壤重金属镉吸收积累的影响,为进一步优化提升植物修复土壤重金属镉提供技术支撑。

    • 供试土壤采自温州市农业科学研究院试验基地,为重金属镉污染的耕地土壤。取0~20 cm表层土壤,放于阴凉处风干,过2 mm筛备用。供试土壤理化性质:土壤pH 6.30;有机质41.50 g·kg−1;碱解氮242.00 mg·kg−1;有效磷72.30 mg·kg−1;速效钾354.00 mg·kg−1;有效态镉0.28 mg·kg−1;全镉2.47 mg·kg−1

      供试柳树由江苏宿迁名世园艺提供。将长势良好且相近的褪色柳枝条剪成15 cm长的插条,超纯水洗净备用。东南景天取自浙江省衢州市一古老铅锌矿,栽培于浙江农林大学平山试验基地,选用大小相近东南景天苗植株作为供试材料。

    • 将4 kg风干土搅拌均匀后装盆(上直径202 mm,高198 mm,下直径170 mm),褪色柳枝条和东南景天幼苗各5株移栽入盆,随机排列。设置2种电场强度和2种土壤水分,共 4个处理:以不通电、湿润(土壤田间持水量保持为60%)处理为对照(ck),通电、湿润处理为E组,不通电、高水分(土壤田间持水量为100%)处理为W组,通电、高水分处理为EW组。试验前调节各处理土壤含水量,在E组和EW组中每盆插入2根石墨棒,设定电场强度为0.5 V·cm−1[12-14]。各处理重复3次。2019年5月开始试验,隔1周调整1次电压,每日称量加水以保持土壤水分;2019年12月收获植物样品,采集土样。

    • 土壤pH采用pH计电位法测定,水土体积质量比为2.5∶1.0;碱解氮、有效磷、速效钾质量分数分别采用碱解扩散法、碳酸氢钠提取-钼锑抗比色法和醋酸铵浸提-火焰光度法测定;土壤有机质采用重铬酸钾外加热法测定[15]。土壤镉全量采用三酸[三酸分别为硝酸(HNO3)、高氯酸(HClO4)、氢氟酸(HF),体积比为5∶1∶1]进行消煮,土壤有效镉采用二乙基三胺五乙酸(DTPA)试剂提取,镉形态分级参照欧洲共同体参考物机构(European Communities Bureau of Reference)改进的三步提取法(BCR)[16],消煮液和提取液最后用石墨炉原子吸收仪(岛津AA-7000)测定。

      将所采植物样品分为柳叶、柳枝、东南景天地上部3个部分,用自来水和去离子水各清洗1次,105 ℃杀青15 min,80 ℃下烘干至恒量,磨细过20目筛,供分析测定。植物样品经硫酸-过氧化氢消煮后,用石墨炉原子吸收仪(岛津AA-7000)测定镉质量分数。采用便携式光合作用仪(Li-6400XT)于9:00−11:00在25 ℃下测定褪色柳光合参数[17],分别为净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、细胞间隙二氧化碳摩尔分数(Ci)。

    • 利用SPSS 21软件进行统计分析数据。计算植物镉积累量(μg·盆−1):ACd=wCd×B,其中wCd为植物Cd质量分数(mg·kg−1),B为植物生物量(g·盆−1)。

    • 表1可知:与对照(ck)相比,高水分+电场处理(EW)下土壤pH显著升高(P<0.05),电场(E)或高水分(W)单独处理对土壤pH无显著影响。W和EW处理下土壤碱解氮质量分数显著提高11.00%、12.09%(P<0.05),E处理下无显著变化。不同处理下土壤中有机质、有效磷质量分数均无显著影响。

      表 1  不同处理对土壤理化性质的影响

      Table 1.  Effects of different treatments on basic soil chemical properties

      处理pH有机质/(g·kg−1)碱解氮/(mg·kg−1)有效磷/(mg·kg−1)速效钾/(mg·kg−1)
      ck 6.18±0.13 b38.71±2.12 a192.97±8.17 b72.85±3.40 a465.00±13.08 ab
      E 6.25±0.19 ab42.75±1.05 a190.63±12.01 b72.95±6.95 a483.30±16.26 a
      W 6.46±0.18 ab43.30±4.08 a214.20±12.14 a76.58±3.93 a450.67±16.26 b
      EW6.58±0.17 a43.39±2.13 a216.30±11.57 a76.71±5.93 a469.67±12.58 ab
        说明:同列不同字母表示处理间差异显著(P<0.05)
    • 与ck相比,E处理下土壤有效态镉质量分数显著提高了16.13%(P<0.05),其他处理无显著变化。利用BCR法得到土壤不同形态镉比例,由表2可知:W和EW处理下,土壤酸可提取态镉和可还原态镉比例分别显著降低了2.78%、6.16%和2.72%、8.44%(P<0.05),土壤残渣态镉比例则显著提高(P<0.05)。W处理下,土壤可氧化态镉比例显著提高(P<0.05),E处理对土壤所有镉形态均无显著影响(P>0.05)。

      表 2  不同处理对土壤有效态镉质量分数和镉形态的影响

      Table 2.  Effects of different treatments on soil available Cd and its fractionations

      处理有效镉/(mg·kg−1)酸可提取态/%可还原态/%可氧化态/%残渣态/%
      ck 0.31±0.02 b14.23±1.37 a37.45±2.29 a2.53±0.49 b45.79±2.19 b
      E 0.36±0.04 a14.59±1.17 a38.90±2.04 a3.13±0.66 ab43.38±2.63 b
      W 0.31±0.03 b11.45±0.76 b31.29±2.13 b3.70±0.48 a53.56±1.51 a
      EW0.35±0.01 ab11.51±0.62 b29.01±2.42 b3.22±0.27 ab56.27±1.90 a
        说明:同列不同字母表示处理间差异显著(P<0.05)
    • 表3可知:与ck相比,W处理后,柳叶、柳枝生物量分别提高15.61%和27.11%(P<0.05),东南景天生物量显著降低60.24%(P<0.05);EW处理后,柳叶、柳枝生物量分别提高34.39%和101.10%(P<0.05),东南景天显著降低22.02%(P<0.05);E处理对柳叶、柳枝及东南景天生物量均未产生显著影响。不同处理对褪色柳各项光合参数均未造成显著影响。综合来看,EW处理促进褪色柳生长的效果最佳,其柳叶、柳枝生物量分别是W处理的1.16和1.58倍,是E处理的1.25和2.08倍。

      表 3  不同处理对植物生物量以及褪色柳光合参数的影响

      Table 3.  Effects of different treatments on plant biomass and photosynthesis of S. discolor

      处理柳叶干质量/
      (g·盆−1)
      柳枝干质量/
      (g·盆−1)
      东南景天地上部
      干质量/(g·盆−1)
      Tr /
      (mmol·m−2·s−1)
      Pn /
      (μmol·m−2·s−1)
      Ci /
      (μmol·mol−1)
      Gs /
      (mol·m−2·s−1)
      ck 5.70±1.21 a2.73±0.47 c1.33±0.26 ab5.24±0.43 a11.64±2.12 ab312.11±19.30 ab0.28±0.03 a
      E 6.13±0.71 a2.64±0.25 c1.49±0.28 a4.98±2.33 a13.96±5.86 a301.03±11.12 b0.29±0.13 a
      W 6.59±0.44 a3.47±0.23 b0.83±0.11 c4.94±1.94 a6.45±0.85 b341.40±16.36 a0.27±0.12 a
      EW7.66±1.60 a5.49±0.39 a1.09±0.10 bc5.60±1.59 a7.83±0.73 ab340.52±15.43 a0.32±0.11 a
        说明:同列不同字母表示差异显著(P<0.05)
    • 表4可知:与ck相比,W和EW处理的柳叶镉质量分数分别显著降低106.91%、156.13%(P<0.05),柳枝镉质量分数分别显著降低113.13%、165.80%(P<0.05);柳叶镉积累量分别显著降低82.81%、95.60%(P<0.05),东南景天地上部镉积累量分别降低63.15%和18.02%。而E处理中柳叶、东南景天地上部镉质量分数与对照相比分别提高6.68%、9.59%;柳叶、东南景天地上部镉积累量与ck相比分别提高12.61%、22.50%。各处理褪色柳和东南景天地上部镉总积累量由高到低依次为:E、ck、EW、W。

      表 4  不同处理对植物镉吸收积累的影响

      Table 4.  Effects of different treatments on Cd absorption and accumulation in S. discolor and S. alfredii

      处理镉质量分数/(mg·kg−1)植物镉积累量/(μg·盆−1)
      柳叶
      柳枝
      东南景天地
      上部
      柳叶
      柳枝
      东南景天地上部
      总地上部
      ck 6.89±1.04 a9.25±1.31 a36.19±2.02 ab39.98±13.30 a25.69±8.00 a48.00±7.63 ab113.68±15.48 a
      E 7.35±0.30 a9.36±1.87 a39.66±2.32 a45.02±4.70 a24.54±3.88 a58.80±8.80 a128.36±7.06 a
      W 3.33±0.65 b4.34±1.07 b35.27±1.36 b21.87±4.03 b15.20±4.64 a29.42±4.59 c66.49±6.32 b
      EW2.69±0.49 b3.48±0.59 b37.49±1.69 ab20.44±4.64 b19.20±4.39 a40.67±2.00 bc80.31±4.99 b
        说明:同列不同字母表示处理间差异显著(P<0.05)
    • 土壤速效养分是土壤肥力的重要指标,一定程度上反映了近期土壤对植物养分的供应情况[18]。土壤碱解氮主要来源于有机氮的矿化分解,属于有效氮,是土壤中能够被植物直接吸收利用的氮素[19-20]。本研究发现:施加电场对土壤理化性质无显著影响;高水分+电场处理显著提高碱解氮质量分数,但对有效磷、速效钾无显著影响。研究[21-22]发现:长期高水分处理会使植株叶片叶绿素发生降解,导致叶片衰老凋落,可能是土壤碱解氮质量分数升高的原因。同时,长时间的高水分处理会使土壤二氧化碳排放受阻,反应产生碳酸盐,提高土壤pH[23-24]

    • 重金属的生物活性不仅与其总量有关,更大程度上由其存在形态决定。重金属的不同形态会产生不同的环境效应,直接影响其迁移和在自然界的循环[25-26]。本研究发现:施加电场显著提高了土壤有效镉质量分数,土壤金属离子活性的提高,有利于残渣态镉向交换态镉转化[6, 27]。同时发现:高水分处理下,酸可提取态镉、可还原态镉比例显著降低,残渣态镉比例显著提高,这与LI等[28]的研究结果一致。推测原因在于长期高水分处理下,土壤氧化还原电位(Eh)降低,土壤还原状况加强,土壤中还原态阳离子(如铁、锰离子)和阴离子(如硫离子)相对含量增加,硫离子与镉形成难溶的硫化物沉淀的机率提高[29-30]。水分还会影响铁离子的氧化还原过程[31],长期高水分处理促进氧化铁还原,形成新的镉氧化物。因此,土壤高水分处理降低了土壤镉的有效性。

    • 水分是影响植物生长发育的重要因素[32]。本研究表明:高水分处理后东南景天生物量的降低可能是由于土壤水分含量高导致根际缺氧,从而抑制了其正常生长[33]。而褪色柳喜湿耐涝,具有较强的耐水性,为耐水湿类树种[34],在高水分处理中表现为更有利于其生长。电场+高水分加快了褪色柳细胞分裂、分化,促进褪色柳对营养元素的吸收,从而使褪色柳地上部的生物量提高[35-36]

    • 褪色柳生长迅速,东南景天吸收重金属的能力强,作为重要的镉富集和超积累植物,褪色柳-东南景天混栽有利于单位面积土壤上植物对土壤中镉的高效吸收[37]。在评价植物对镉污染土壤修复效率时,主要考虑地上部镉积累量[8]。研究发现:湿润条件下施加电场,有利于褪色柳和东南景天生长;同时提高了土壤有效镉质量分数,促进植物根系对镉的吸收[38],有利于褪色柳、东南景天对其的积累[39]。高水分处理下,土壤pH升高,土壤溶液中多价阳离子和氢氧根离子(OH)增多,加大了氢氧化镉沉淀生成的机率,使土壤镉的有效性降低[40];与此同时,高水分下东南景天生物量也降低,褪色柳和东南景天对土壤中镉的积累受到抑制。

      因此,土壤湿润条件比淹水处理更有利于褪色柳-东南景天混栽对土壤中重金属镉的吸收和积累。受时间限制,本研究仅在褪色柳苗期进行,就积累镉质量分数的顺序来看,东南景天地上部要好于柳叶和柳枝。

    • 交流电场的施加可提高土壤有效镉质量分数,促进褪色柳-东南景天地上部对镉的积累,对土壤理化性质及土壤中镉形态分布无显著影响。高水分处理提高了土壤碱解氮质量分数以及可氧化态镉和残渣态镉比例,但会抑制东南景天生长,降低褪色柳、东南景天对镉的积累。因此,适宜水分条件下,施加电场有利于褪色柳-东南景天混栽对土壤中重金属镉的吸收和积累。

参考文献 (40)

目录

    /

    返回文章
    返回