-
随着工矿业的发展,矿业冶炼、工业废水及废弃物排放等含镉(Cd)污染物不断进入土壤,土壤镉污染问题日益严重。镉不仅损害植物的生长发育,影响植株的生理代谢,还会在农作物中富集,通过食物链进入人体,威胁人体健康[1],进行镉污染土壤修复研究刻不容缓。土壤镉污染修复技术主要有物理修复、化学修复、生物修复以及多措施联合修复等。与传统的理化修复方法相比,植物修复技术成本低、操作简易,应用广泛[2-3]。但植物材料易受环境等因素影响,因此需要优化植物提取土壤重金属的条件[4]。结合电动修复技术可以提高植物修复效率,具有良好发展前景[5]。研究证实交流电场可以促进黑麦草Lolium perenne[6]、莴苣Lactuca sativa[7]、东南景天Sedum alfredii[8]等植物的生长,加快植物对重金属的吸收积累。植物联合电动修复技术不仅能提高土壤中重金属的有效性,还能促进植物生长和对重金属的富集[9],强化植物吸收修复效率,提升植物修复技术的实际应用前景。水分是贯穿土壤-植物-大气系统的动力因素,不仅直接影响植物的生长,还会通过改变土壤pH、氧化还原状况等影响土壤物质转化,从而间接影响重金属在土壤固-液两相的分配,影响土壤中重金属的有效性和植物对土壤重金属的吸收[10]。ANGLE等[11]对遏蓝菜Thlaspi caerulescens、崖雪球Alyssum murale等的研究表明:随着土壤含水量的增加,植物生物量和对重金属积累能力也随之增加。然而,国内外在关于电场、水分对植物生长和金属吸收性方面研究报道很少。因此本研究以褪色柳Salix discolor、东南景天为对象,采用混栽盆栽试验,研究电场和水分对褪色柳和东南景天生长和对土壤重金属镉吸收积累的影响,为进一步优化提升植物修复土壤重金属镉提供技术支撑。
-
由表1可知:与对照(ck)相比,高水分+电场处理(EW)下土壤pH显著升高(P<0.05),电场(E)或高水分(W)单独处理对土壤pH无显著影响。W和EW处理下土壤碱解氮质量分数显著提高11.00%、12.09%(P<0.05),E处理下无显著变化。不同处理下土壤中有机质、有效磷质量分数均无显著影响。
表 1 不同处理对土壤理化性质的影响
Table 1. Effects of different treatments on basic soil chemical properties
处理 pH 有机质/(g·kg−1) 碱解氮/(mg·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) ck 6.18±0.13 b 38.71±2.12 a 192.97±8.17 b 72.85±3.40 a 465.00±13.08 ab E 6.25±0.19 ab 42.75±1.05 a 190.63±12.01 b 72.95±6.95 a 483.30±16.26 a W 6.46±0.18 ab 43.30±4.08 a 214.20±12.14 a 76.58±3.93 a 450.67±16.26 b EW 6.58±0.17 a 43.39±2.13 a 216.30±11.57 a 76.71±5.93 a 469.67±12.58 ab 说明:同列不同字母表示处理间差异显著(P<0.05) -
与ck相比,E处理下土壤有效态镉质量分数显著提高了16.13%(P<0.05),其他处理无显著变化。利用BCR法得到土壤不同形态镉比例,由表2可知:W和EW处理下,土壤酸可提取态镉和可还原态镉比例分别显著降低了2.78%、6.16%和2.72%、8.44%(P<0.05),土壤残渣态镉比例则显著提高(P<0.05)。W处理下,土壤可氧化态镉比例显著提高(P<0.05),E处理对土壤所有镉形态均无显著影响(P>0.05)。
表 2 不同处理对土壤有效态镉质量分数和镉形态的影响
Table 2. Effects of different treatments on soil available Cd and its fractionations
处理 有效镉/(mg·kg−1) 酸可提取态/% 可还原态/% 可氧化态/% 残渣态/% ck 0.31±0.02 b 14.23±1.37 a 37.45±2.29 a 2.53±0.49 b 45.79±2.19 b E 0.36±0.04 a 14.59±1.17 a 38.90±2.04 a 3.13±0.66 ab 43.38±2.63 b W 0.31±0.03 b 11.45±0.76 b 31.29±2.13 b 3.70±0.48 a 53.56±1.51 a EW 0.35±0.01 ab 11.51±0.62 b 29.01±2.42 b 3.22±0.27 ab 56.27±1.90 a 说明:同列不同字母表示处理间差异显著(P<0.05) -
由表3可知:与ck相比,W处理后,柳叶、柳枝生物量分别提高15.61%和27.11%(P<0.05),东南景天生物量显著降低60.24%(P<0.05);EW处理后,柳叶、柳枝生物量分别提高34.39%和101.10%(P<0.05),东南景天显著降低22.02%(P<0.05);E处理对柳叶、柳枝及东南景天生物量均未产生显著影响。不同处理对褪色柳各项光合参数均未造成显著影响。综合来看,EW处理促进褪色柳生长的效果最佳,其柳叶、柳枝生物量分别是W处理的1.16和1.58倍,是E处理的1.25和2.08倍。
表 3 不同处理对植物生物量以及褪色柳光合参数的影响
Table 3. Effects of different treatments on plant biomass and photosynthesis of S. discolor
处理 柳叶干质量/
(g·盆−1)柳枝干质量/
(g·盆−1)东南景天地上部
干质量/(g·盆−1)Tr /
(mmol·m−2·s−1)Pn /
(μmol·m−2·s−1)Ci /
(μmol·mol−1)Gs /
(mol·m−2·s−1)ck 5.70±1.21 a 2.73±0.47 c 1.33±0.26 ab 5.24±0.43 a 11.64±2.12 ab 312.11±19.30 ab 0.28±0.03 a E 6.13±0.71 a 2.64±0.25 c 1.49±0.28 a 4.98±2.33 a 13.96±5.86 a 301.03±11.12 b 0.29±0.13 a W 6.59±0.44 a 3.47±0.23 b 0.83±0.11 c 4.94±1.94 a 6.45±0.85 b 341.40±16.36 a 0.27±0.12 a EW 7.66±1.60 a 5.49±0.39 a 1.09±0.10 bc 5.60±1.59 a 7.83±0.73 ab 340.52±15.43 a 0.32±0.11 a 说明:同列不同字母表示差异显著(P<0.05) -
由表4可知:与ck相比,W和EW处理的柳叶镉质量分数分别显著降低106.91%、156.13%(P<0.05),柳枝镉质量分数分别显著降低113.13%、165.80%(P<0.05);柳叶镉积累量分别显著降低82.81%、95.60%(P<0.05),东南景天地上部镉积累量分别降低63.15%和18.02%。而E处理中柳叶、东南景天地上部镉质量分数与对照相比分别提高6.68%、9.59%;柳叶、东南景天地上部镉积累量与ck相比分别提高12.61%、22.50%。各处理褪色柳和东南景天地上部镉总积累量由高到低依次为:E、ck、EW、W。
表 4 不同处理对植物镉吸收积累的影响
Table 4. Effects of different treatments on Cd absorption and accumulation in S. discolor and S. alfredii
处理 镉质量分数/(mg·kg−1) 植物镉积累量/(μg·盆−1) 柳叶 柳枝 东南景天地
上部柳叶 柳枝 东南景天地上部 总地上部 ck 6.89±1.04 a 9.25±1.31 a 36.19±2.02 ab 39.98±13.30 a 25.69±8.00 a 48.00±7.63 ab 113.68±15.48 a E 7.35±0.30 a 9.36±1.87 a 39.66±2.32 a 45.02±4.70 a 24.54±3.88 a 58.80±8.80 a 128.36±7.06 a W 3.33±0.65 b 4.34±1.07 b 35.27±1.36 b 21.87±4.03 b 15.20±4.64 a 29.42±4.59 c 66.49±6.32 b EW 2.69±0.49 b 3.48±0.59 b 37.49±1.69 ab 20.44±4.64 b 19.20±4.39 a 40.67±2.00 bc 80.31±4.99 b 说明:同列不同字母表示处理间差异显著(P<0.05)
Effects of AC electric field and soil moisture on phytoremediation of cadmium contaminated soil by mixed planting of Salix discolor and Sedum alfredii
-
摘要:
目的 研究交流电场和土壤水分对褪色柳Salix discolor-东南景天Sedum alfredii混栽模式下镉污染土壤修复效率的影响。 方法 通过土壤盆栽试验,研究不同水分[湿润(60%土壤田间持水量)、高水分(100%土壤田间持水量)]和不同交流电场(0和0.5 V·cm−1)的组合处理,对土壤镉活性、褪色柳和东南景天生长及镉吸收与积累的影响。 结果 交流电场显著提高土壤有效态镉质量分数、促进褪色柳和东南景天地上部对镉的积累,与对照相比,有效态镉质量分数显著提高16.13%(P<0.05),柳叶、东南景天地上部镉积累量分别提高12.61%、22.50%;高水分+电场处理有利于提高土壤pH、碱解氮质量分数,以及残渣态镉所占比例,与对照相比分别提高6.47%、12.09%、22.89%(P<0.05),但会影响褪色柳、东南景天积累重金属镉,与对照相比,柳叶、东南景天地上部镉积累量分别降低95.60%(P<0.05)、18.02%。 结论 土壤湿润条件下施加电场有利于褪色柳-东南景天修复镉污染土壤,褪色柳和东南景天地上部镉总积累量分别是其他处理的1.13~1.93倍。表4参40 Abstract:Objective This study is aimed to examine the effects of alternating current (AC) electric field and soil moisture on the remediation efficiency of cadmium (Cd) contaminated soil via the mixed planting of Salix discolor and Sedum alfredii. Method With a soil pot experiment, an investigation is conducted of the effects of 2 soil water treatments (moist, keeping 60% of the soil field capacity, and high water content, equivalent to paddy field condition, flooding) combined with 2 AC electric field gradients (0, 0.5 V·cm−1) on soil Cd availability and plant growth of S. discolor and S. alfredii. Result The application of 0.5 V·cm−1 AC electric field significantly increased soil available Cd concentration [by 16.13% (P<0.05)], and promoted the absorption and accumulation of Cd in S. discolor and S. afredii, the soil available Cd and Cd accumulation in leaves of S. discolor and the above-ground parts of S. afredii were significantly higher (by 12.61% and 22.50% respectively) than those of the control. The integrated application of high moisture and electric field contributed to the increase of soil pH, alkali-hydrolysable nitrogen concentration and the proportion of residual cadmium by 6.47%, 12.09% and 22.89% (P<0.05) compared with those of the control. This integrated application reduced the accumulation of Cd in S. discolor and S. afredii, the accumulation of Cd in leaves of S. discolor and the above-ground parts of S. afredii were lower than that of the control by 95.60% (P<0.05) and 18.02% respectively. Conclusion Under moist condition, the AC electric field was beneficial to the phytoremediation of Cd contaminated soil via the mixed planting of S. discolor and S. afredii. And the Cd accumulated in the above-ground parts of S. discolor and S. afredii was 1.13−1.93 times of that achieved with other treatments. [Ch, 4 tab. 40 ref.] -
Key words:
- soil moisture /
- AC electric field /
- Salix discolor /
- Sedum alfredii /
- mixed planting /
- soil cadmium /
- phytoremediation
-
表 1 不同处理对土壤理化性质的影响
Table 1. Effects of different treatments on basic soil chemical properties
处理 pH 有机质/(g·kg−1) 碱解氮/(mg·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) ck 6.18±0.13 b 38.71±2.12 a 192.97±8.17 b 72.85±3.40 a 465.00±13.08 ab E 6.25±0.19 ab 42.75±1.05 a 190.63±12.01 b 72.95±6.95 a 483.30±16.26 a W 6.46±0.18 ab 43.30±4.08 a 214.20±12.14 a 76.58±3.93 a 450.67±16.26 b EW 6.58±0.17 a 43.39±2.13 a 216.30±11.57 a 76.71±5.93 a 469.67±12.58 ab 说明:同列不同字母表示处理间差异显著(P<0.05) 表 2 不同处理对土壤有效态镉质量分数和镉形态的影响
Table 2. Effects of different treatments on soil available Cd and its fractionations
处理 有效镉/(mg·kg−1) 酸可提取态/% 可还原态/% 可氧化态/% 残渣态/% ck 0.31±0.02 b 14.23±1.37 a 37.45±2.29 a 2.53±0.49 b 45.79±2.19 b E 0.36±0.04 a 14.59±1.17 a 38.90±2.04 a 3.13±0.66 ab 43.38±2.63 b W 0.31±0.03 b 11.45±0.76 b 31.29±2.13 b 3.70±0.48 a 53.56±1.51 a EW 0.35±0.01 ab 11.51±0.62 b 29.01±2.42 b 3.22±0.27 ab 56.27±1.90 a 说明:同列不同字母表示处理间差异显著(P<0.05) 表 3 不同处理对植物生物量以及褪色柳光合参数的影响
Table 3. Effects of different treatments on plant biomass and photosynthesis of S. discolor
处理 柳叶干质量/
(g·盆−1)柳枝干质量/
(g·盆−1)东南景天地上部
干质量/(g·盆−1)Tr /
(mmol·m−2·s−1)Pn /
(μmol·m−2·s−1)Ci /
(μmol·mol−1)Gs /
(mol·m−2·s−1)ck 5.70±1.21 a 2.73±0.47 c 1.33±0.26 ab 5.24±0.43 a 11.64±2.12 ab 312.11±19.30 ab 0.28±0.03 a E 6.13±0.71 a 2.64±0.25 c 1.49±0.28 a 4.98±2.33 a 13.96±5.86 a 301.03±11.12 b 0.29±0.13 a W 6.59±0.44 a 3.47±0.23 b 0.83±0.11 c 4.94±1.94 a 6.45±0.85 b 341.40±16.36 a 0.27±0.12 a EW 7.66±1.60 a 5.49±0.39 a 1.09±0.10 bc 5.60±1.59 a 7.83±0.73 ab 340.52±15.43 a 0.32±0.11 a 说明:同列不同字母表示差异显著(P<0.05) 表 4 不同处理对植物镉吸收积累的影响
Table 4. Effects of different treatments on Cd absorption and accumulation in S. discolor and S. alfredii
处理 镉质量分数/(mg·kg−1) 植物镉积累量/(μg·盆−1) 柳叶 柳枝 东南景天地
上部柳叶 柳枝 东南景天地上部 总地上部 ck 6.89±1.04 a 9.25±1.31 a 36.19±2.02 ab 39.98±13.30 a 25.69±8.00 a 48.00±7.63 ab 113.68±15.48 a E 7.35±0.30 a 9.36±1.87 a 39.66±2.32 a 45.02±4.70 a 24.54±3.88 a 58.80±8.80 a 128.36±7.06 a W 3.33±0.65 b 4.34±1.07 b 35.27±1.36 b 21.87±4.03 b 15.20±4.64 a 29.42±4.59 c 66.49±6.32 b EW 2.69±0.49 b 3.48±0.59 b 37.49±1.69 ab 20.44±4.64 b 19.20±4.39 a 40.67±2.00 bc 80.31±4.99 b 说明:同列不同字母表示处理间差异显著(P<0.05) -
[1] MORIARTY F. Ecotoxicology: The Study of Pollutants in Ecosystems[M]. London: Academic Press, 1999: 29 − 35. [2] RASCIO N, NAVARI-IZZO F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? [J]. Plant Sci, 2011, 180(2): 169 − 181. [3] 陈英旭. 土壤重金属的植物污染化学[M]. 北京: 科学出版社, 2008. [4] 徐剑锋, 王雷, 熊瑛, 等. 土壤重金属污染强化植物修复技术研究进展[J]. 环境工程技术学报, 2017, 7(3): 366 − 373. XU Jianfeng, WANG Lei, XIONG Ying, et al. Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil [J]. J Environ Eng Technol, 2017, 7(3): 366 − 373. [5] 刘玥, 牛婷雨, 李天国, 等. 电动力学辅助植物修复重金属污染土壤的特征机制与机遇[J]. 化工进展, 2020, 39(12): 5252 − 5265. LIU Yue, NIU Tingyu, LI Tianguo, et al. Characteristics and opportunities of electrokinetic-assisted phytoremediation of heavy metal contaminated soil [J]. Chem Ind Eng Prog, 2020, 39(12): 5252 − 5265. [6] 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4): 729 − 735. CANG Long, ZHOU Dongmei, WU Danya. Effects of horizontal exchange electric field and EDDS application on ryegrass uptake of copper/zine and soil characteristics [J]. Acta Pedol Sin, 2009, 46(4): 729 − 735. [7] BI Ran, SCHLAAK M, SIEFERT E, et al. Alternating current electrical field effects on lettuce (Lactuca sativa) growing in hydroponic culture with and without cadmium contamination [J]. J Appl Electrochem, 2010, 40: 1217 − 1223. [8] 肖文丹, 叶雪珠, 徐海舟, 等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4): 927 − 937. XIAO Wendan, YE Xuezhu, XU Haizhou, et al. Intensification of phytoremediation of Cd contaminated soil with direct current field and soil amendments in addition to hyperaccumulator Sedum alfredii [J]. Acta Pedol Sin, 2017, 54(4): 927 − 937. [9] CAMESELLE C, CHIRAKKARA R A, REDDY K R. Electrokinetic-enhanced phytoremediation of soils: status and opportunities [J]. Chemosphere, 2013, 93(4): 626 − 636. [10] 邓林, 李柱, 吴龙华, 等. 水分及干燥过程对土壤重金属有效性的影响[J]. 土壤, 2014, 46(6): 1045 − 1051. DENG Lin, LI Zhu, WU Longhua, et al. Influence of moisture and drying process on soil heavy metal availability [J]. Soils, 2014, 46(6): 1045 − 1051. [11] ANGLE J S, BAKER A J M, WHITING S N, et al. Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya [J]. Plant Soil, 2003, 256(2): 325 − 332. [12] 姚桂华. 交流电场-有机物料提高东南景天修复重金属污染土壤效率的研究[D]. 杭州: 浙江农林大学, 2015. YAO Guihua. Effects of Alternating Current (AC) Field and Organic Materials on Improving the Efficiency of Sedum alfredii Hance to Remediate Heavy Metal Contaminated Soil[D]. Hangzhou: Zhejiang A&F University, 2015. [13] 陈绩, 姚桂华, 倪幸, 等. 交流电场联合有机物料强化东南景天修复重金属镉污染土壤[J]. 环境工程学报, 2019, 13(11): 2682 − 2690. CHEN Ji, YAO Guihua, NI Xing, et al. AC electric field combined with organic materials enhancing Sedum alfredii Hance phytoremediation of cadmium-contaminated soil [J]. Chin J Environ Eng, 2019, 13(11): 2682 − 2690. [14] 倪幸, 李雅倩, 王胜男, 等. 交流电场促进柳树修复镉污染土壤[J]. 环境化学, 2019, 38(10): 2376 − 2385. NI Xing, LI Yaqian, WANG Shengnan, et al. Alternating current electric field promotes willow plant to remediate cadmium contaminated soil [J]. Environ Chem, 2019, 38(10): 2376 − 2385. [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [16] TOKALIOĞLU Ş, KARTAL Ş, GÜLTEKIN A. Investigation of heavy-metal uptake by vegetables growing in contaminated soils using the modified BCR sequential extraction method [J]. Int J Environ Anal Chem, 2006, 86(6): 417 − 430. [17] 陈芳清, 黄友珍, 樊大勇, 等. 水淹对狗牙根营养繁殖植株的生理生态学效应[J]. 广西植物, 2010, 30(4): 488 − 492. CHEN Fangqing, HUANG Youzhen, FAN Dayong, et al. Ecophysiological responses of vegetative propagule of Cynodon dactylon to simulated summer flooding [J]. Guihaia, 2010, 30(4): 488 − 492. [18] 常超, 谢宗强, 熊高明, 等. 三峡水库蓄水对消落带土壤理化性质的影响[J]. 自然资源学报, 2011, 26(7): 1236 − 1244. CHANG Chao, XIE Zongqiang, XIONG Gaoming, et al. The effect of flooding on soil physical and chemical properties of riparian zone in the Three Gorges Reservoir [J]. J Nat Resour, 2011, 26(7): 1236 − 1244. [19] 杨予静, 李昌晓, 张晔, 等. 水淹-干旱交替胁迫对湿地松幼苗盆栽土壤营养元素含量的影响[J]. 林业科学, 2013, 49(2): 61 − 71. YANG Yujing, LI Changxiao, ZHANG Ye, et al. Effects of submergence and drought alternation on nutrient contents in the soil growing slash pine (Pinus elliottii) seedlings [J]. Sci Silv Sin, 2013, 49(2): 61 − 71. [20] 万福绪, 杨东. 苏北海堤杉木杨树混交林林木生长及土壤肥力研究[J]. 南京林业大学学报(自然科学版), 2006, 30(2): 43 − 46. WAN Fuxu, YANG Dong. Studies on trees growth and soil fertility characters of mixed stand of Chinese fir and poplar [J]. J Nanjing For Univ Nat Sci Ed, 2006, 30(2): 43 − 46. [21] ASHRAF M, ARFAN M. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging [J]. Biol Plant, 2005, 49(3): 459 − 462. [22] ANELLA L B, WHITLOW T H. Photosynthetic response to flooding of Acer rubrum seedlings from wet and dry sites [J]. Am Midl Nat, 2000, 143(2): 330 − 341. [23] PAN Yunyu, BONTEN L T C, KOOPMANS G F, et al. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage [J]. Geoderma, 2016, 261: 59 − 69. [24] HINDERSMANN I, MANSFELDT T. Trace element solubility in a multimetal-contaminated soil as affected by redox conditions [J]. Water Air Soil Pollut, 2014, 225(10): 2518. doi: 10.1007/s11270-014-2158-8. [25] 钱进, 王子健, 单孝全. 土壤中微量金属元素的植物可给性研究进展[J]. 环境科学, 1995, 16(6): 73 − 75. QIAN Jin, WANG Zijian, SHAN Xiaoquan. Progress in the investigation on plant availability of soil trace metals [J]. Environ Sci, 1995, 16(6): 73 − 75. [26] 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005, 24(12): 1499 − 1502. HAN Chunmei, WANG Linshan, GONG Zongqiang, et al. Chemical forms of soil heavy metals and their environmental significance [J]. Chin J Ecol, 2005, 24(12): 1499 − 1502. [27] 罗启仕, 张锡辉, 王慧, 等. 非均匀电动力学修复技术对土壤性质的影响[J]. 环境污染治理技术与设备, 2004, 5(4): 40 − 45. LUO Qishi, ZHANG Xihui, WANG Hui, et al. Influence of non-uniform electrokinetic remediation technology on soil properties [J]. Techniq Equip Environ Pollut Control, 2004, 5(4): 40 − 45. [28] LI Jianrui, XU Yingming. Immobilization of Cd in a paddy soil using moisture management and amendment [J]. Chemosphere, 2015, 122: 131 − 136. [29] 郑顺安, 郑向群, 张铁亮. 等. 水分条件对紫色土中铅形态转化的影响[J]. 环境化学, 2011, 30(12): 2080 − 2085. ZHENG Shun’an, ZHENG Xiangqun, ZHANG Tieliang, et al. Effect of moisture regime on the fractionation of lead in purple soil [J]. Environ Chem, 2011, 30(12): 2080 − 2085. [30] HU Pengjie, HUANG Jiexue, OUYANG Younan, et al. Water management affects arsenic and cadmium accumulation in different rice cultivars [J]. Environ Geochem Health, 2013, 35(6): 767 − 778. [31] BARTLETT R, JAMES B. Studying dried, stored soil samples: some pitfalls [J]. Soil Sci Soc Am J, 1980, 44(4): 721 − 724. [32] 崔立强, 吴龙华, 李娜, 等. 水分特征对伴矿景天生长和重金属吸收性的影响[J]. 土壤, 2009, 41(4): 572 − 576. CUI Liqiang, WU Longhua, LI Na, et al. Effects of soil moisture on growth and uptake of heavy metals ofSedum plumbizincicola [J]. Soils, 2009, 41(4): 572 − 576. [33] 张洁. 景天属植物对水涝胁迫的响应机理研究[D]. 北京: 北京林业大学, 2019. ZHANG Jie. Response Mechanisms of Sedum spp. to Waterlogging Stress [D]. Beijing: Beijing Forestry University, 2019. [34] 刘俊龙, 吴中能, 欧阳海言, 等. 竹柳持续淹水后的生长状况及耐水性调查研究[J]. 安徽林业科技, 2012, 38(1): 20 − 22. LIU Junlong, WU Zhongneng, OUYANG Haiyan, et al. Research on the growth and flooding tolerance of American bamboo willow after prolonged flooding [J]. Anhui For Sci Technol, 2012, 38(1): 20 − 22. [35] 聂斌. 外加直流电场对植物吸收镉的影响研究[D]. 重庆: 重庆大学, 2015. NIE Bin. The Study of Influence of Direct Current Electrical Fields on Phytoremediation of Cd[D]. Chongqing: Chongqing University, 2015. [36] 温尚斌, 马福荣, 许守民, 等. 高压静电场促进植物吸收离子机理的初步探讨[J]. 生物化学与生物物理进展, 1995, 22(4): 377 − 379. WEN Shangbin, MA Furong, XU Shoumin, et al. The mechanism of ion absorption stimulated by the high voltage eleetrostatie field [J]. Prog Biochem Biophys, 1995, 22(4): 377 − 379. [37] 倪幸. 不同强化措施对提高柳树修复镉污染土壤效率的研究[D]. 杭州: 浙江农林大学, 2019. NI Xing. Effect of Different Strengthening Measures on Improving Efficiency of Willow to Remediate Cadmium Contaminated Soil[D]. Hangzhou: Zhejiang A&F University, 2019. [38] 何俊瑜, 王阳阳, 任艳芳, 等. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报, 2009, 18(5): 1863 − 1868. HE Junyu, WANG Yangyang, REN Yanfang, et al. Effect of cadmium on root morphology and physiological characteristics of rice seedlings [J]. Ecol Environ Sci, 2009, 18(5): 1863 − 1868. [39] 胡宏韬, 程金平. 土壤铜镉污染的电动力学修复实验[J]. 生态环境学报, 2009, 18(2): 511 − 514. HU Hongtao, CHENG Jinping. Experimental study on electrokinetic remediation of copper and cadmium contaminated soils [J]. Ecol Environ Sci, 2009, 18(2): 511 − 514. [40] 杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4): 539 − 543. DU Caiyan, ZU Yanqun, LI Yuan. Effect of pH and organic matter on the bioavailability Cd and Zn in soil [J]. J Yunnan Agric Univ, 2005, 20(4): 539 − 543. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200725