留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

十字花科植物黄化突变特性及其分子机制研究进展

吴砚农 郑伟尉 陆伟杰 臧运祥

柯星星, 刘亚坤, 徐雪珍, 等. 功能丧失突变透示ATS1对拟南芥种子发育的非必需作用[J]. 浙江农林大学学报, 2023, 40(4): 707-713. DOI: 10.11833/j.issn.2095-0756.20220738
引用本文: 吴砚农, 郑伟尉, 陆伟杰, 等. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报, 2021, 38(2): 412-419. DOI: 10.11833/j.issn.2095-0756.20200132
KE Xingxing, LIU Yakun, XU Xuezhen, et al. Loss-of-function mutations in ATS1 reveal its dispensable role in normal seed development of Arabidopsis thaliana[J]. Journal of Zhejiang A&F University, 2023, 40(4): 707-713. DOI: 10.11833/j.issn.2095-0756.20220738
Citation: WU Yannong, ZHENG Weiwei, LU Weijie, et al. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A&F University, 2021, 38(2): 412-419. DOI: 10.11833/j.issn.2095-0756.20200132

十字花科植物黄化突变特性及其分子机制研究进展

DOI: 10.11833/j.issn.2095-0756.20200132
基金项目: 国家自然科学基金资助项目(31572130);浙江省自然科学基金资助项目(LY20C150001)
详细信息
    作者简介: 吴砚农( ORCID: 0000-0002-7757-2109),从事蔬菜品质调控及分子机制研究。E-mail: 1435966317@qq.com
    通信作者: 臧运祥(ORCID: 0000-0002-3505-7539),教授,博士,从事蔬菜品质调控及分子机制研究。E-mail: yxzang@zafu.edu.cn
  • 中图分类号: S718.3

Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae

  • 摘要: 十字花科Brassicaceae植物多数生长发育时间短,生长过程中自然发生,或使用物理或化学方法诱导,常会出现一些颜色较淡或金黄的突变个体即黄化突变体。这些突变体表型直观,表现为植株矮小,叶绿素较低,植株光合作用受抑制,产量降低,因此黄化突变常被视为有害突变。但近20 a来黄化突变体日益受到研究者们的重视与青睐,被用于研究植物叶绿体结构、叶绿素合成代谢等方面。本研究简要介绍了十字花科植物常见的黄化突变类型及其主要的外观特征,综述了十字花科植物黄化突变体的叶绿体超微结构、光合色素及其光合性能,并对十字花科植物黄化突变的遗传特性、分子机制进行了讨论,为十字花科植物叶色突变研究及新品种选育提供理论基础。参52
  • 甘油脂包括甘油磷脂和甘油糖脂,是细胞膜及信号分子的重要组成部分,参与广泛的生理生化过程,在植物生长发育过程中发挥重要作用[15]。在高等植物中,甘油脂的合成涉及2条途径,即在质体外进行真核合成途径和质体中进行原核合成途径[67]。在原核合成途径中,由ATS1基因编码的3-磷酸甘油酰基转移酶(glycerol-3-phosphate acyltransferases,GPAT)催化甘油脂生物合成途径的第一步酰化反应,该反应被认为是关键的限速步骤[810]

    有关质体中ATS1基因的克隆与功能已有较多研究[1113]。随着现代分子生物学的发展,人们已从南瓜Cucurbita moschata、红花Carthamus tinctorius、向日葵Helianthus annuus和油菜Brassica napus等植物中分离鉴定了多个与拟南芥Arabidopsis thaliana ATS1同源的基因[1417]。这些ATS1基因表现出多种生理功能,在植物生长发育和抗逆性中发挥着重要作用。如YAN 等[18]研究发现:在烟草Nicotiana tabacum中异源表达甜椒Caspsicum frutescens质体ATS1基因可增强转基因烟草对高温胁迫的耐受性。KANG等[17]报道甘蓝型油菜BnATS1的过表达增加了细胞膜中多不饱和脂肪酸的积累,从而促进了甘蓝型油菜在低温条件下的生长。另有研究表明:ATS1在植物高盐和低磷等非生物胁迫中具有重要作用[1920]

    然而,ATS1在植物正常生长发育中的功能并不完全清楚。KUNST等[21]利用EMS诱变创制了多个拟南芥ats1突变体,尽管这些突变体叶片的质体中脂肪酸组分发生了急剧变化,但是ATS1基因上的点突变并未对种子发育产生明显影响。相反,在高于28 ℃的温度条件下,突变体的生长速度比野生型略快。与上述ats1表型不一致的是,ATS1基因的T-DNA插入纯合突变体呈现败育现象, 并且发现运用RNAi干扰技术下调ATS1基因的表达会导致植株变小、胚胎发育受阻、种子结实率下降[9]。目前,尚不清楚造成这种不一致性的真正原因,但一种可能原因是,转基因植株中的T-DNA可能会干扰其插入位点或上下游基因的功能,从而对表型产生某种影响。

    为了进一步明确ATS1在拟南芥正常生长发育中的功能,本研究利用现代基因编辑技术,采用优化后的CRISPR/Cas9基因编辑载体对ATS1基因进行定点编辑,创建功能丧失型突变体,并分析 ATS1基因功能的丧失对拟南芥生长发育的影响,有助于进一步了解高等植物中甘油脂原核合成途径在植物生长发育过程中的作用。

    野生型拟南芥为哥伦比亚生态型(Col-0),购自美国索尔克生物研究所(Salk Institute for Biological Studies),编号为SALK_063776。

    1.2.1   ats1突变体的构建

    参照 WANG 等[22]和朱丽颖等[23]的方法进行CRISPR/Cas9靶序列的设计和目的基因载体的构建。运用CRISPR在线设计软件(http://www.genome.arizona.edu/crispr/CRISPRsearch.html)筛选目标基因的靶序列。并对选择的靶序列进行分析,最终从拟南芥ATS1基因中分别选取了GC含量较高、基因特异性较强的2个关键片段ATS1 target sequence 1 (5′- CGAAGAGTCGACGAAGCGAG-3′)和 ATS1 target sequence 2 (5′-TAGTCATTCCCGTACTTTCT-3′)作为靶序列。之后,以1 mg·L−1的pCBC-DT1T2 为模板进行四接头引物(5′-GGAAGAGTCGACGAAGCGA-3′,5′-AGAAAGTACGGGAATGACT-3′,5′-GGAAGAGTCGTCGACGAAGCGAG-3′和 5′-AGAAAGTACGGGAATGACTC-3′) PCR 扩增并纯化回收PCR产物。 同时用BsaI酶切回收的PCR产物和骨架载体pHEE401,经T4连接酶连接,获得具有2个靶序列的CRISPR/Cas9基因编辑载体。

    1.2.2   拟南芥的遗传转化

    所用植物材料为拟南芥Col-0,植物生长的昼夜温度为22 ℃/18 ℃,湿度为40%,光照/黑暗时长分别为14 h/10 h。参考李丹丹等[24]的方法使用农杆菌Agrobacterium tumefaciens转化法将基因编辑载体转化至拟南芥。

    1.2.3   拟南芥突变体的筛选与分子鉴定

    以种子专一表达的At2S3基因启动子驱动荧光蛋白报告基因 mCherry 的表达,将这一筛选标记克隆至CRISPR/Cas9编辑载体中[23]。由于mCherry荧光蛋白在蓝光激发下会发出红光,因此可将获得的成熟转基因拟南芥T1代种子置于荧光显微镜下,筛选蓝色激发光下发出红光的种子,即为转基因阳性种子。

    种植筛选获得的T1代转基因阳性种子,30 d后,提取植株叶片的DNA,作为模板进行PCR扩增。根据拟南芥参考基因组,分别在靶序列上下游约100 bp设计PCR引物(ATS1-FP:5′-TCACCAAACACGCTTTAATGAC-3′和ATS1-RP:5′-AGACATGGCTCTCACACTAACG-3′)。将PCR产物经质量浓度为8%的非变性聚丙烯酰胺凝胶电泳(PAGE),筛选出与对照电泳条带不同的株系,即为发生了基因编辑的株系。将这些株系的PCR产物进行测序验证,并收获T2代种子。

    每个株系挑选16粒不含红色荧光的T2代种子进行种植。1个月后提取叶片基因组DNA进行PCR扩增。综合PCR产物的PAGE和测序结果,挑选靶序列发生纯合突变的植株,即获得了不含转基因的ATS1基因突变株系。将这些株系重新编号,并收获T3代种子,进行扩繁,用于后续实验。

    脂质提取步骤参考徐雪珍等[25]的方法。取播种4周的拟南芥叶片至研钵中,加入液氮充分研磨成粉末,称取100 mg样本转入12 mL离心管。经过6 mL氯仿-甲醇-甲酸溶液(体积比为10∶10∶1)和 2 mL氯仿-甲醇-水溶液(体积比为5∶5∶1)提取液的2次抽提,并合并2次上清液,加入3 mL含0.2 mol·L−1磷酸和1.0 mol·L−1氯化钾的混合溶液,提取下层氯仿相。 萃取液用氮气吹干,加入200 μL氯仿溶解萃取物,再加入2 mL 体积分数为1%硫酸-甲醇溶液,80 ℃加热2 h,对油脂的脂键进行充分的水解。之后置于冰上,加入2 mL 正己烷及1 mL质量浓度为 0.9%的生理盐水,对脂肪酸甲酯进行萃取,取上层相转至新的12 mL离心管中,萃取2次,合并萃取液,萃取液通过氮吹法浓缩至100 μL。最后,利用气相色谱仪分析叶片脂肪酸组分。每个株系设置3 个生物学重复。

    取播种后30 d的植株整个地上部,放入12 mL玻璃管中,加入3 mL 体积分数为80%的丙酮溶液, 4 ℃下避光保存 14 h后,测定叶绿素。 每个株系设置5个生物学重复。

    选取播种后28 d的拟南芥植株整个地上部分,称取鲜质量。 每个株系设置 10 个生物学重复。

    选取播种后60 d的植株果荚,测量每个果荚的种子数量,并通过体视显微镜进行拍照。 每个株系设置5 个生物学重复。

    数据以平均值±标准差表示,并通过GraphPad Prism 6 软件进行统计分析。通过t检验或单因素方差分析进行组间差异比较,显著性水平为0.05。

    运用农杆菌介导法将含ATS1靶序列的CRISPR/Cas9基因编辑载体(含mCherry报告基因)转到拟南芥中,并筛选带荧光的T1代转基因种子(图1A)。随后,采用聚丙烯酰胺凝胶电泳法鉴定转基因阳性植株中 ATS1 基因编辑产物的PCR扩增片段特性(图1B)。经连续多代筛选,从不同转基因株系的后代分离群体中获得 3个纯合且稳定遗传的突变体,分别命名为ats1-1、ats1-2、ats1-3。同时,对这些突变体的自交后代进行连续多代的PCR检测与荧光观察,获得不含任何外源T-DNA插入片段的突变体,这些突变体中既不含Cas9基因,也不带荧光蛋白报告基因(mCherry)。

    图 1  转基因拟南芥的mCherry荧光蛋白鉴定与ATS1编辑产物的聚丙烯酰胺凝胶电泳鉴定
    Figure 1  Screening of transgenic plants carrying the mCherry fluorescent protein and those with CRISPR/Cas9-edited ATS1 gene product

    进而,对这些突变体的靶位点附近序列进行测序分析,结果显示这些突变体的突变位点均位于第 1 个外显子上(图2)。在ats1-1突变体中,ATS1基因的92~314 bp (相对起始密码子ATG的位置)处发生215 bp 碱基缺失和8 bp 碱基替换。在ats1-2中,ATS1基因在2个位置发生1 bp 碱基插入,分别位于91 和293 bp 处。在ats1-3中,ATS1基因的91~92 bp之间存在7 bp 碱基插入,而在275~289 bp 间发生11 bp 碱基缺失和4 bp 碱基替换(表1)。上述这些突变大多位于 PAM 序列(NGG)的切割位点附近,其特点是ATS1基因的第1个外显子的碱基数呈非3的倍数的插入或缺失,从而导致移码突变或翻译提前终止,且由之产生的蛋白不含酰基转移酶保守结构域。这些结果表明,上述3个ATS1基因突变体均属功能丧失型突变体。这些突变体可成为ATS1基因功能研究的理想遗传材料。

    图 2  不同ats1突变体中ATS1基因的突变位点序列
    Figure 2  Sequences of mutational sites in ATS1 gene in different ats1 mutants
    表 1  不同ats1突变体名称及其相应突变位点序列信息
    Table 1  Designation of different ats1 mutants and the sequences of corresponding mutational sites
    突变体突变位点
    ats1-1 92~314 bp:215 bp缺失;8 bp替换
    ats1-2 91~92 bp:插入1 bp;293~294 bp:插入1 bp
    ats1-3 91~92 bp:7 bp插入;275~289 bp:11 bp缺失,
     4 bp替换
    下载: 导出CSV 
    | 显示表格

    ATS1是甘油脂原核合成途径中参与第一步酰化反应的关键酶,过去的研究表明,ATS1基因突变会改变膜脂组分及脂肪酸组分,特别是质体中的C16:3含量急剧下降[6]。对生长 4周的拟南芥植株叶片进行脂肪酸组分分析显示:与野生型相比,3个突变体(ats1-1、ats1-2和ats1-3)中不饱和脂肪酸C16:3的含量急剧下降,而不饱和脂肪酸C18:3的含量显著增加(表2),这与过去基于EMS诱变产生的ATS1突变体的脂肪酸组分变化完全一致[6]。因为质体外的甘油脂不含C16:3,其通常存在于质体中的单半乳糖基二酰基甘油 (monogalactosyldiacylglycerol,MGDG)骨架的sn-2位置[6, 21],因此,ats1-1、ats1-2和ats1-3中C16:3的大幅降低,印证了这些突变体中参与甘油脂原核合成途径中第一步酰化反应的ATS1基因的功能丧失。

    表 2  野生型拟南芥与ats1突变体叶片的脂肪酸组分
    Table 2  Leaf fatty acid composition of ats1 mutants and wild-type A. thaliana
    脂肪酸 脂肪酸组分含量/%
    C16:0 C16:1 C16:3 C18:0 C18:1 C18:2 C18:3
    WT  14.91±0.73 a 7.35±0.53 a 11.56±0.38 a 6.17±1.55 a 4.37±0.59 b 14.89±1.30 b 38.50±3.04 b
    ats1-1 11.91±0.65 b 5.55±0.69 b 0.70±0.15 b 3.89±0.87 a 8.65±0.75 a 18.61±0.54 a 49.14±2.24 a
    ats1-2 11.20±0.18 b 5.93±0.89 ab 0.65±0.15 b 4.67±0.32 a 8.89±1.06 a 18.67±0.98 a 48.31±1.68 a
    ats1-3 12.29±0.81 b 6.00±0.93 ab 0.57±0.18 b 6.02±1.62 a 9.08±1.02 a 18.28±0.88 a 46.04±1.45 a
      说明:WT为野生型对照,n=3,不同小写字母表示不同株系间显著差异(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    图3 A所示:在营养生长期,与野生型相比,突变体(ats1-1、ats1-2和ats1-3)有时会出现叶片略微变黄的现象,但植株叶片发育与野生型相比无明显差异。对植株地上部生物量检测结果显示:与野生型相比,突变体植株地上部生物量无显著差异(图3 B)。对植株叶片叶绿素检测结果显示:与野生型相比,突变体植株叶绿素a/b约上升29.5%(图3 C)。拟南芥果荚生长分析显示:与野生型一样,突变体株系的种子发育正常,无败育现象出现(图3 D和E),这一结果不支持XU等[9]的研究结果。本研究结果表明在正常生长条件下ATS1 基因的功能丧失对拟南芥种子发育并不产生可见影响。

    图 3  营养生长与生殖生长阶段野生型拟南芥与ats1突变体的表型比较
    Figure 3  Phenotypic comparison of the wild type and ats1 mutants during the vegetative and reproductive stages

    之前,研究者利用EMS诱变获得的ats1突变体和T-DNA插入突变体,对ATS1基因的功能进行了大量研究,然而基于不同突变体的研究得出的结论不一致[6, 9]。这可能存在2个原因,一是,EMS诱变产生的点突变可能不会使基因产物完全丧失活性,因而在某些特定条件下,突变体的表型变得不明显;二是,T-DNA插入虽然可以导致目标基因的功能完全丧失[9],但T-DNA插入可能会干扰插入位点附近基因的表达,从而对突变体的表型产生额外的影响。为了排除上述因素对ATS1基因功能研究产生的干扰,本研究运用现代基因编辑技术创制了不含外源T-DNA插入片段的ATS1功能丧失型突变体。

    对其中的3个突变体(ats1-1、ats1-2和ats1-3)进行了分子与生化鉴定,发现这些突变体在ATS1第1个外显子上发生了插入、缺失、替换等几种不同类型的突变,这些突变导致非3的倍数的碱基插入或缺失,使阅读框发生移码及翻译提前终止,最终使得ATS1基因丧失功能。与此一致,脂肪酸组分分析显示:所有突变体的叶片中不饱和脂肪酸C16:3 (来源于叶绿体中的甘油糖脂)的含量大幅降低,而C18:3的含量显著升高。这一结果与基于EMS诱变产生的ats1突变体的分析结果相吻合[6]。总之,分子与生化鉴定的结果表明本研究获得的突变体为ATS1功能丧失型突变体。

    目前,对ATS1基因在植物生长发育中的作用存在某些争议。由EMS诱变产生的ats1突变体呈正常的种子发育过程[21],而当用RNAi干扰技术下调ATS1基因的表达,拟南芥的种子发育异常,结实率下降[9]。为了完善人们对ATS1基因功能的认知,本研究利用不含外源DNA插入片段的多个ATS1功能丧失型突变体分析其在正常生长发育过程中的作用。表型分析显示:在正常生长条件下,这些突变体植株生长良好,除了其叶片有时会略显黄色,种子生长发育正常、无败育现象,这一表型与源于EMS诱变的ats1突变体分析结果一致[21],因此有充足理由推断拟南芥ATS1并非种子发育所必需的。

    ATS1对种子发育的非必需性,需要重新评估甘油脂原核合成途径对植物正常生长发育的贡献,并调查植物细胞的质体中是否存在其他酰基转移酶参与甘油脂合成的第1步酰化反应。另外,期望本研究获得的功能丧失型突变体,能够更好地剖析植物细胞中真核合成途径与原核合成途径产生的不同甘油脂分子之间的交换机制。

  • [1] 赵波. 甘蓝型油菜矮秆基因定位、克隆及功能分析[D]. 武汉: 华中农业大学, 2017.

    ZHAO Bo. Gentic Mapping, Cloning and Functional Analysis of Dwarf Genes in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2017.
    [2] 张甜. 芥菜紫叶基因Bj.Pur定位及候选基因分析[D]. 武汉: 华中农业大学, 2017.

    ZHANG Tian. Mapping and Candidate Gene Analysis of Bj.Pur, a Gene Controlling Purple Leaf in Brassica juncea[D]. Wuhan: Huazhong Agricultural University, 2017.
    [3] 赖艳, 付秋实, 吕建春, 等. 一个新的薄皮甜瓜叶色突变体的生理特性及超微结构分析[J]. 四川农业大学学报, 2018, 36(3): 372 − 379.

    LAI Yan, FU Qiushi, LÜ Jianchun, et al. Analysis of physiological characteristics and chloroplast ultrastructure of a new leaf color mutant in melon [J]. J Sichuan Agric Univ, 2018, 36(3): 372 − 379.
    [4] 刘红艳, 周芳, 李俊, 等. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856 − 1863.

    LIU Hongyan, ZHOU Fang, LI Jun, et al. Anatomical structure and photosynthetic characteristics of a yellow leaf mutant YL1 in sesame(Sesamum indicum L.) [J]. Acta Agronomica Sin, 2017, 43(12): 1856 − 1863.
    [5] 杨小苗, 吴新亮, 刘玉凤, 等. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用[J]. 应用生态学报, 2018, 29(6): 1983 − 1989.

    YANG Xiaomiao, WU Xinliang, LIU Yufeng, et al. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS [J]. Chin J Appl Ecol, 2018, 29(6): 1983 − 1989.
    [6] 迟鸣雨. 青梗菜黄化突变体生理特性及转录组分析[D]. 沈阳: 沈阳农业大学, 2017.

    CHI Mingyu. Transcriptome and Physiological Characterization Analysis of a Chlorosis Mutant of Pachoi[D]. Shenyang: Shenyang Agricultural University, 2017.
    [7] 郭士伟, 张云华, 金永庆, 等. 小白菜(Brassica chinensis L.)黄苗突变体的叶绿素荧光特性栽[J]. 作物学报, 2003, 29(6): 958 − 960.

    GUO Shiwei, ZHANG Yunhua, JIN Yongqing, et al. Characterization of chlorophyll fluorescence in a mutant of Brassica chinensis L. with xanthan seedling leaves [J]. Acta Agronomica Sin, 2003, 29(6): 958 − 960.
    [8] 张琨, 刘志勇, 单晓菲, 等. 青梗菜黄化突变体pylm遗传特性分析[J]. 沈阳农业大学学报, 2017, 48(1): 1 − 8.

    ZHANG Kun, LIU Zhiyong, SHAN Xiaofei, et al. Genetic analysis of a yellow mutant pylm in pakchoi [J]. J Shenyang Agric Univ, 2017, 48(1): 1 − 8.
    [9] 杨冲, 张扬勇, 方智远, 等. 甘蓝叶色黄化突变体YL-1的光合生理特性及其叶绿体的超微结构[J]. 园艺学报, 2014, 41(6): 1133 − 1144.

    YANG Chong, ZHANG Yangyong, FANG Zhiyuan, et al. Photosynthetic physiological characteristics and chloroplast ultrastructure of yellow leaf mutant YL-1 in cabbage [J]. Acta Hortic Sin, 2014, 41(6): 1133 − 1144.
    [10] 杜江涛. 大白菜金黄叶色突变基因lcm2的克隆及鉴定[D]. 沈阳: 沈阳农业大学, 2018.

    DU Jiangtao. Cloning and Identification of a Golden Leaf Gene lcm2 in Chinese Cabbage[D]. Shenyang: Shenyang Agricultural University, 2018.
    [11] 侯爱琳. 大白菜叶片黄化突变基因lcm3的克隆与鉴定[D]. 沈阳: 沈阳农业大学, 2018.

    HOU Ailin. Cloning and Identification of lcm3, a Leaf Chlorosis Mutantion Gene in Chinese Cabbage[D]. Shenyang: Shenyang Agricultural University, 2018.
    [12] ZHAO Hua, YU Lei, HUAI Zexun, et al. Mapping and candidate gene identification defining BnChd1-1, a locus involved in chlorophyll biosynthesis in Brassica napus [J]. Acta Physiol Plant, 2014, 36(4): 859 − 870.
    [13] 董遵, 刘敬阳, 马红梅, 等. 甘蓝型油菜黄化(苗)突变体的叶绿素含量及超微结构[J]. 中国油料作物学报, 2000, 22(3): 27 − 29, 34.

    DONG Zun, LIU Jingyang, MA Hongmei, et al. Chlorophyll contents and chloroplast ultrastructure of chlorophyll deficient mutant in B. napus [J]. Chin J Oil Crop Sci, 2000, 22(3): 27 − 29, 34.
    [14] 陈艳丽. 甘蓝型油菜黄化突变体的基因定位[D]. 武汉: 华中农业大学, 2011.

    CHEN Yanli. Genetic Mapping of the Yellow Mutant Gene in Brassca napus[D]. Wuhan: Huazhong Agricultural University, 2011.
    [15] ZHU Lixia, ZENG Xinhua, CHEN Yanli, et al. Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (BnaC.ygl) in Brassica napus [J]. Mol Breed, 2014, 34(2): 603 − 614.
    [16] 杨胜洪, 杜林方, 赵云, 等. 抽薹期叶绿素缺乏油菜突变体类囊体膜的研究[J]. 云南植物研究, 2001, 23(1): 97 − 104.

    YANG Shenghong, DU Linfang, ZHAO Yun, et al. Study on the thylakoid membranes from a chlorophyll-deficient oilseed rape mutant at the bolting stage [J]. Acta Bot Yunnan, 2001, 23(1): 97 − 104.
    [17] FRICK G, SU Qingxiang, APEL K, et al. An Arabidopsis porB porC double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested [J]. Plant J Cell Mol Biol, 2003, 35(2): 141 − 153.
    [18] BANG W Y, JEONG I S, KIM D W, et al. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling [J]. Plant Cell Physiol, 2008, 49(9): 1350 − 1363.
    [19] PRIVAT I, HAKIMI M A, BUHOT L, et al. Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3 [J]. Plant Mol Biol, 2003, 51(3): 385 − 399.
    [20] KUMAR A M, SÖLL D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis [J]. Plant Physiol, 2000, 122(1): 49 − 56.
    [21] KOBAYASHI K, KONDO M, FUKUDA H, et al. Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis [J]. Proc Nat Acad Sci, 2007, 104(43): 17216 − 17221.
    [22] 白大勇. 拟南芥真叶白化突变体cfl1的基因克隆与初步功能分析[D]. 开封: 河南大学, 2013.

    BAI Dayong. Map-based Cloning and Functional Analysis of Tue-Leaves-Etiolation Mutant cfl1 in Arabidopsis thaliana[D]. Kaifeng: Henan University, 2013.
    [23] 肖华贵, 杨焕文, 饶勇, 等. 甘蓝型油菜黄化突变体的光合特性及叶绿素荧光参数分析[J]. 作物学报, 2013, 39(3): 520 − 529.

    XIAO Huagui, YANG Huanwen, RAO Yong, et al. Photosynthetic characteristics and chlorophyll fluorescence kinetic parameters analyses of chlorophyll-reduced mutant in Brassica napus L. [J]. Acta Agronomica Sin, 2013, 39(3): 520 − 529.
    [24] CHANG C S J, WU M S H. COP1-Mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis [J]. Plant Physiol, 2011, 156(1): 228 − 239.
    [25] 李玮, 于澄宇, 胡胜武. 芥菜型油菜叶片黄化突变体的初步研究[J]. 西北农林科技大学学报(自然科学版), 2007, 35(9): 79 − 82.

    LI Wei, YU Chengyu, HU Shengwu. Primary investigation on a chlorsis mutant in Brassica juncea L. [J]. J Northwest A&F Univ Nat Sci Ed, 2007, 35(9): 79 − 82.
    [26] GAO Hongbo, SAGE T L, OSTERYOUNG K W. FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology [J]. Proc Nat Acad Sci, 2006, 103(17): 6759 − 6764.
    [27] KIM Y K, LEE J Y, CHO H S, et al. Inactivation of organellar glutamyl- and seryl-trna synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants [J]. J Biol Chem, 2005, 280(44): 37098 − 37106.
    [28] 赵云, 王茂林, 李江, 等. 幼叶黄化油菜(Brassica napus L.)突变体Cr3529叶绿体超微结构观察[J]. 四川大学学报(自然科学版), 2003, 40(5): 974 − 977.

    ZHAO Yun, WANG Maolin, LI Jiang, et al. Observation of the chloroplast in chlorophyll-reduced seeding mutant Cr3529, Brassica napus L. [J]. J Sichuan Univ Nat Sci Ed, 2003, 40(5): 974 − 977.
    [29] 吴砚农. 小白菜黄化突变体生理特性及遗传特性分析[D]. 杭州: 浙江农林大学, 2019.

    WU Yannong. Analysis of Physiological Characteristics and Genetic Characteristics of Pakchoi Yellowing Mutant[D]. Hangzhou: Zhejiang A&F University, 2019.
    [30] AUSTIN J, WEBBER A N. Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number [J]. Photosynth Res, 2005, 85(3): 373 − 384.
    [31] OKAZAKI K, KABEYA Y, SUZUKI K, et al. The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation [J]. Plant Cell, 2009, 21(6): 1769 − 1780.
    [32] 牟钰. 白菜黄化突变基因py2的精细定位[D]. 沈阳: 沈阳农业大学, 2018.

    MU Yu. Fine Mapping of py2, a Gene Referred to Yellow Leaf Mutant in Packoi (Brassica campestris L. ssp. chinensis)[D]. Shenyang: Shenyang Agricultural University, 2018.
    [33] 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展[J]. 生态科学, 2019, 38(3): 225 − 234.

    FANG Yiran, XUE Li. Research advances in the effect of salt stress on plant chlorophyll fluorescence [J]. Ecol Sci, 2019, 38(3): 225 − 234.
    [34] TSANG E W T, YANG Jingyi, CHANG Qing, et al. Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde aminotransferase antisense gene [J]. Plant Mol Biol, 2003, 51(2): 191 − 201.
    [35] 田颖, 黄谦心, 刘海衡, 等. 芥菜型油菜黄化突变体L638-y的遗传及黄化基因gr1的分子标记[J]. 西北农林科技大学学报(自然科学版), 2012, 40(12): 90 − 96.

    TIAN Ying, HUANG Qianxin, LIU Haiheng, et al. Imheritance of chlorophyll-deficient mutant L638-y in Brassica juncea L. and molecular markers for chlorophyll-deficient gene gr1 [J]. J Northwest A&F Univ Nat Sci Ed, 2012, 40(12): 90 − 96.
    [36] 吴自明, 张欣, 万建民, 等. 叶绿素生物合成的分子调控[J]. 植物生理学报, 2008, 44(6): 1064 − 1070.

    WU Ziming, ZHANG Xin, WAN Jianmin, et al. Molecular regulation of chlorophyll biosynthesis [J]. Plant Physiol Commun, 2008, 44(6): 1064 − 1070.
    [37] NAGATA N. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species [J]. Plant Cell, 2005, 17(1): 233 − 240.
    [38] 孙捷音, 张年辉, 杜林方. 油菜叶绿素b减少突变体Cr3529叶绿素生物合成的研究[J]. 西北植物研究, 2007, 27(10): 1962 − 1966.

    SUN Jieyin, ZHANG Nianhui, DU Linfang. Chlorophyll biosynthesis in a chlorophyll b-deficient oilseed rape mutant Cr3529 [J]. Acta Bot Boreal-Occident Sin, 2007, 27(10): 1962 − 1966.
    [39] 吕明, 刘海衡, 毛虎德, 等. 芥菜型油菜黄化突变体叶片叶绿素合成代谢变化[J]. 西北植物学报, 2010, 30(11): 2177 − 2183.

    LÜ Ming, LIU Haiheng, MAO Hude, et al. Changes of chlorophyll synthesis metabolism in chlorophyll-deficient mutant in Brassica juncea [J]. Acta Bot Boreal-Occident Sin, 2010, 30(11): 2177 − 2183.
    [40] PONTIER D, ALBRIEUX C, JOYARD J, et al. Knock-out of the magnesium protoporphyrin Ⅸ methyltransferase gene in Arabidopsis: effects on chloroplast development and on chloroplast-to-nucleus signaling [J]. J Biol Chem, 2007, 282(4): 2297 − 2304.
    [41] LARKIN R M. GUN4, a regulator of chlorophyll synthesis and intracellular signaling [J]. Science, 2003, 299(5608): 902 − 906.
    [42] KOBAYASHI K, FUJII S, SASAKI D, et al. Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis[J]. Front Plant Sci, 2014, 5(11): 272. doi: 10.3389/fpls.2014.00272.
    [43] HUANG Yishiuan, LI Hsoumin. Arabidopsis CHLI2 can substitute for CHLI1 [J]. Plant Physiol, 2009, 150(2): 636 − 645.
    [44] WATERS M T, LANGDALE J A. The making of a chloroplast [J]. EMBO J, 2009, 28(19): 2861 − 2873.
    [45] CHANG C S J, LI Y H, CHEN L T, et al. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation [J]. Plant J, 2008, 54(2): 205 − 219.
    [46] 张年辉, 杜林方, 赵云, 等. 叶绿素缺乏油菜突变体的LHCⅡ多肽组成、蛋白含量与cab基因转录研究[J]. 西北植物学报, 2004, 24(3): 484 − 487.

    ZHANG Nianhui, DU Linfang, ZHAO Yun, et al. Study on the polypeptide composition and content of LHC Ⅱ and the cab gene transcription inchlorophyll-reduced mutant of oilseed rape seedlings [J]. Acta Bot Boreali-Occident Sin, 2004, 24(3): 484 − 487.
    [47] MIURA E, KATO Y, MATSUSHIMA R, et al. The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants [J]. Plant Cell, 2007, 19(4): 1313 − 1328.
    [48] MOCHIZUKI N, BRUSSLAN J A, LARKIN R, et al. Arabidopsis genomes uncoupled 5(GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction [J]. Proc Nat Acad Sci, 2001, 98(4): 2053 − 2058.
    [49] NAESTED H. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development [J]. J Cell Sci, 2004, 117(20): 4807 − 4818.
    [50] SAKAMOTO W. Coordinated regulation and complex formation of Yellow Variegated1 and Yellow Variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of Photosystem Ⅱ in Arabidopsis thylakoid membranes [J]. Plant Cell, 2003, 15(12): 2843 − 2855.
    [51] SJOGREN L L E, STANNE T M, ZHENG B, et al. Structural and functional insights into the chloroplast ATP-dependent clp protease in Arabidopsis [J]. Plant Cell, 2006, 18(10): 2635 − 2649.
    [52] ZALTSMAN A, ORI N, ADAM Z. Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem Ⅱ repair in Arabidopsis [J]. Plant Cell, 2005, 17(10): 2782 − 2790.
  • [1] 周夏雯, 石从广, 周芳伟, 徐梁, 杨少宗, 何秋伶.  植物叶色突变体分类、变异机制与应用的研究进展 . 浙江农林大学学报, 2025, 42(2): 422-432. doi: 10.11833/j.issn.2095-0756.20240397
    [2] 何慈颖, 娄和强, 吴家胜.  香榧油脂及其合成调控机制研究进展 . 浙江农林大学学报, 2023, 40(4): 714-722. doi: 10.11833/j.issn.2095-0756.20230224
    [3] 苗大鹏, 贾瑞瑞, 李胜皓, 席烁, 朱葛, 文书生.  木本植物不定根发生机制研究进展 . 浙江农林大学学报, 2022, 39(4): 902-912. doi: 10.11833/j.issn.2095-0756.20210652
    [4] 陆伟杰, 郑伟尉, 吴砚农, 臧运祥.  十字花科植物蜡质形成特性及分子机制研究进展 . 浙江农林大学学报, 2021, 38(1): 205-213. doi: 10.11833/j.issn.2095-0756.20200138
    [5] 钱宇汀, 薛晓峰, 曾燕如, 陈文充, 叶晓明, 喻卫武, 戴文圣.  香榧瘿螨为害对香榧叶片结构及叶绿素质量分数的影响 . 浙江农林大学学报, 2020, 37(2): 296-302. doi: 10.11833/j.issn.2095-0756.2020.02.014
    [6] 王柯杨, 卜柯丽, 马元丹, 栗青丽, 王灵杰, 高岩, 高海波, 张汝民.  毛竹茎秆发育过程中不同节间叶绿素荧光的变化 . 浙江农林大学学报, 2019, 36(4): 697-703. doi: 10.11833/j.issn.2095-0756.2019.04.009
    [7] 刘婧冉, 杜长霞, 樊怀福.  植物嫁接砧穗愈合机制研究进展 . 浙江农林大学学报, 2018, 35(3): 552-561. doi: 10.11833/j.issn.2095-0756.2018.03.022
    [8] 张洁, 尹德洁, 关海燕, 屈琦琦, 董丽.  景天属植物研究综述 . 浙江农林大学学报, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [9] 李珅, 林爱真, 杨媛, 沈亚芳, 饶盈, 羊健, 刘云辉, 王洋, 周伟.  丹参酮生物合成分子调控机制的研究进展 . 浙江农林大学学报, 2018, 35(2): 367-375. doi: 10.11833/j.issn.2095-0756.2018.02.023
    [10] 崔静, 吴记贵, 黄伯高, 蒋万杰, 范雅倩, 程瑾.  兰科植物的生殖隔离 . 浙江农林大学学报, 2016, 33(4): 695-702. doi: 10.11833/j.issn.2095-0756.2016.04.020
    [11] 魏玮, 郭嘉莲, 万琳涛, 徐林峰, 丁明全, 周伟.  小麦粒重形成的分子调控机制研究综述 . 浙江农林大学学报, 2016, 33(2): 348-356. doi: 10.11833/j.issn.2095-0756.2016.02.022
    [12] 李亚丹, 杜华强, 周国模, 谷成燕, 徐小军, 孙少波, 高国龙.  雷竹叶绿素与高光谱植被指数关系及其反演模型 . 浙江农林大学学报, 2015, 32(3): 335-345. doi: 10.11833/j.issn.2095-0756.2015.03.002
    [13] 吕铖香, 张明如, 邹伶俐.  模拟酸雨与光强处理对芒萁叶绿素及荧光特性的影响 . 浙江农林大学学报, 2015, 32(1): 52-59. doi: 10.11833/j.issn.2095-0756.2015.01.008
    [14] 何勇清, 方佳, 余敏芬, 方仲相, 江波, 潘寅辉, 郑炳松.  植物质膜内在水通道蛋白PIPs的分子生物学研究进展 . 浙江农林大学学报, 2012, 29(3): 446-452. doi: 10.11833/j.issn.2095-0756.2012.03.020
    [15] 程建中, 杨萍, 桂仁意.  植物硒形态分析的研究综述 . 浙江农林大学学报, 2012, 29(2): 288-395. doi: 10.11833/j.issn.2095-0756.2012.02.020
    [16] 程莹, 李根有, 夏国华, 黄晌决, 黄宇锋.  楤木属植物组织培养研究综述 . 浙江农林大学学报, 2011, 28(6): 968-972. doi: 10.11833/j.issn.2095-0756.2011.06.022
    [17] 孔红, 成仿云.  滇牡丹分类处理的细胞学与分子生物学证据 . 浙江农林大学学报, 2010, 27(4): 601-605. doi: 10.11833/j.issn.2095-0756.2010.04.021
    [18] 王卫国, 尤汉杰, 陈浩亮, 张宏伟, 金孝锋.  浙江十字花科一地理分布新记录属种 . 浙江农林大学学报, 2009, 26(2): 294-296.
    [19] 曾小红, 伍建榕, 马焕成.  接种根瘤菌的台湾相思对干旱胁迫的生化响应 . 浙江农林大学学报, 2008, 25(2): 181-185.
    [20] 林武星.  自身他感作用物对木麻黄幼苗叶绿素及糖类的影响 . 浙江农林大学学报, 2007, 24(1): 12-16.
  • 期刊类型引用(2)

    1. 蔡霖,肖正康,孙锦山,曹建杰,刘蔚漪,辉朝茂. 云南沧源竹资源空间分布现状分析. 世界竹藤通讯. 2025(01): 28-35 . 百度学术
    2. 叶鹏,叶昌民,周彤悦,卢禹君,杨帆,汤孟平. 浙江省近自然毛竹林空间结构特征. 浙江农林大学学报. 2020(02): 228-234 . 本站查看

    其他类型引用(6)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200132

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/2/412

计量
  • 文章访问数:  1603
  • HTML全文浏览量:  343
  • PDF下载量:  216
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-07-25
  • 网络出版日期:  2021-04-01
  • 刊出日期:  2021-04-01

十字花科植物黄化突变特性及其分子机制研究进展

doi: 10.11833/j.issn.2095-0756.20200132
    基金项目:  国家自然科学基金资助项目(31572130);浙江省自然科学基金资助项目(LY20C150001)
    作者简介:

    吴砚农( ORCID: 0000-0002-7757-2109),从事蔬菜品质调控及分子机制研究。E-mail: 1435966317@qq.com

    通信作者: 臧运祥(ORCID: 0000-0002-3505-7539),教授,博士,从事蔬菜品质调控及分子机制研究。E-mail: yxzang@zafu.edu.cn
  • 中图分类号: S718.3

摘要: 十字花科Brassicaceae植物多数生长发育时间短,生长过程中自然发生,或使用物理或化学方法诱导,常会出现一些颜色较淡或金黄的突变个体即黄化突变体。这些突变体表型直观,表现为植株矮小,叶绿素较低,植株光合作用受抑制,产量降低,因此黄化突变常被视为有害突变。但近20 a来黄化突变体日益受到研究者们的重视与青睐,被用于研究植物叶绿体结构、叶绿素合成代谢等方面。本研究简要介绍了十字花科植物常见的黄化突变类型及其主要的外观特征,综述了十字花科植物黄化突变体的叶绿体超微结构、光合色素及其光合性能,并对十字花科植物黄化突变的遗传特性、分子机制进行了讨论,为十字花科植物叶色突变研究及新品种选育提供理论基础。参52

English Abstract

柯星星, 刘亚坤, 徐雪珍, 等. 功能丧失突变透示ATS1对拟南芥种子发育的非必需作用[J]. 浙江农林大学学报, 2023, 40(4): 707-713. DOI: 10.11833/j.issn.2095-0756.20220738
引用本文: 吴砚农, 郑伟尉, 陆伟杰, 等. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报, 2021, 38(2): 412-419. DOI: 10.11833/j.issn.2095-0756.20200132
KE Xingxing, LIU Yakun, XU Xuezhen, et al. Loss-of-function mutations in ATS1 reveal its dispensable role in normal seed development of Arabidopsis thaliana[J]. Journal of Zhejiang A&F University, 2023, 40(4): 707-713. DOI: 10.11833/j.issn.2095-0756.20220738
Citation: WU Yannong, ZHENG Weiwei, LU Weijie, et al. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A&F University, 2021, 38(2): 412-419. DOI: 10.11833/j.issn.2095-0756.20200132
  • 十字花科Brassicaceae植物多为1年生或多年生的草本植物,包含小白菜Brassica rapa ssp. chinensis、甘蓝Brassica oleracea var. capitata、油菜Brassica napus、萝卜Raphanus sativus等蔬菜作物,还有二月兰Orychophragmus violaceus等观赏植物,以及板蓝根Isatis tinctoria等药用植物等。十字花科植物中富含叶绿素,且叶与茎中的叶绿素远高于其他色素,因此外观上呈现绿色,但在彩叶植物或者叶绿素缺失植物中,由于其他色素大幅增加或叶绿素大幅减少而呈现彩色或黄色等。植物中存在着数量巨大的各类突变体,常作为研究植物生理生化机制与基因组功能的重要材料[1-3]。其中一类叶绿素缺失,植株表型黄化的突变体,称为黄化突变体[4-5]。由于黄化性状易观察,可以直观呈现植物体内叶绿素的多寡,且影响植物光合作用及生长发育,因此黄化突变体是研究叶绿素合成代谢的优良材料。本研究对十字花科植物中发现的黄化突变进行分类,总结黄化突变体形态结构及光合色素含量的变化规律,探求黄化形成原因与分子机制,归纳黄化性状遗传模式,为十字花科植物的叶绿素代谢及叶绿体发育等研究提供参考。

    • 十字花科植物中已发现多个叶绿素缺失导致的黄化突变体。小白菜自交系‘564’和品种‘寒青’‘Hanqing’、‘华冠’‘Huaguan’中均发现黄化突变体[6-8]。杨冲等[9]从意大利引进的甘蓝杂交种Hosom自交分离后代中发现叶色黄化、植株矮小的突变体YL-1。杜江涛[10]和侯爱琳[11]对大白菜Brassica rapa ssp. pekinensis DH系‘FT’进行甲基磺酸乙酯(EMS)诱变,分别获得了稳定的黄化突变体lcm2、lcm3。通过自发突变、EMS诱变、氮离子束处理等方式,甘蓝型油菜中也获得了多个黄化突变体,如ny、bnaC.ygl[12-15]。杨胜洪等[16]发现:抽薹期的油菜黄化突变体叶片的叶绿素含量和叶绿素与蛋白质比值只有野生型的一半。此外,FRICK等[17]发现:拟南芥Arabidopsis thalianaporB-1porC-1双突变体在子叶期只含有少量的叶绿素a,形成了一个幼苗致死的黄色表型。

      通过转基因技术也可获得黄化突变体。BANG等[18]研究发现:拟南芥CHL27-T敲除突变体生长迟缓,并且伴随着由叶绿体光系统Ⅱ的反应中心损坏引起的发育缺陷。PRIVAT等[19]发现:反义表达质体SIG2转录因子的拟南芥植物表现出叶绿素缺失的表征,并且只表现在子叶中。KUMAR等[20]通过反义表达HEMA基因,获得了表现出不同程度叶绿素缺失性状的拟南芥转基因植株,如叶片斑块状黄化和全株黄化。以上研究表明:黄化突变表现为植株全株黄化或部分黄化,且黄化性状可稳定遗传。

    • 叶绿素是植物生长必不可少的光合色素,如果叶绿素缺失突变导致叶绿素完全不可合成,或叶绿素含量无法保证植株最低程度的光合作用,植株表现出白化,则易发生致死性突变。KOBAYASHI等[21]报道了1种类囊体膜脂质单氨基半乳糖二酰甘油(MGDG)合成酶1完全缺陷的拟南芥突变体,只在蔗糖存在的情况下才能萌发为细小的白化植株,且幼苗缺乏半乳糖,光合膜被破坏,光合能力受损严重。拟南芥白化突变体cfl1的真叶有白色坏死斑点,叶片发育畸形且不对称,叶边缘缺刻严重,生长缓慢,植株矮小,结实率低[22]。白化突变植株与黄化突变植株相比,叶绿素缺失更为严重,植株生长受到的影响也更大,甚至导致植株无法存活。

    • 在目前发现的黄化突变体中,部分黄化突变体在生长过程中黄化性状减弱,植株随时间延长逐渐复绿。郭士伟等[7]发现小白菜黄化突变体在6叶龄前子叶和真叶均呈淡黄色,在6叶龄后又逐渐复绿,且不受环境影响。甘蓝型油菜黄化突变体ny在苗期前期叶片黄化明显,其后叶色缓慢转变,中后期及衰老期叶片复绿[23]。黄化突变体复绿原因现在还未完全探明,需要进一步深入研究。

    • 多数黄化突变体表现出营养生长缓慢,生殖发育迟缓等现象。拟南芥CHL27敲除后的黄化突变体植株矮小,叶片均匀呈浅绿色,莲座叶弯曲,开花较晚,角果弯曲[18]lzf1突变体幼苗叶绿体发育延迟[24]。青梗菜是小白菜中一类束腰亮绿的优质品种,其564y突变体播种后5 d出现叶色差异,叶片黄化,下胚轴伸长,伴随植株细弱易倒,大部分生长指标明显低于野生型[6]。在甘蓝型油菜和芥菜Brassica juncea型油菜中发现的黄化突变体性状表现相似,均出现初花期推迟,花期较短等特点[8, 25]。甘蓝黄化突变体yl-1,虽然仍能结球,但单球质量只有对照的39.0%[9]。甘蓝型油菜黄化突变体Bnchd1,苗期叶脉间黄化,抽薹期薹叶呈淡绿色,整个生命周期内植株矮化,叶绿体形态异常并伴随着叶绿素提早降解现象,种子产量极低[12]。这些研究表明:黄化突变后植株的生长及发育阶段转变都受到不同程度的影响。

    • 叶绿体由被膜、类囊体和基质3部分构成,若叶绿体的类囊体受到破坏,植物的光合作用及其他生理过程都会受到不同程度的影响。多数黄化突变体具有类囊体结构变异和基粒片层数减少等特征[26]。拟南芥FZL基因敲除突变体中类囊体形态异常,基粒堆叠杂乱,基粒和基质类囊体的相对比例发生改变[27]。烟草Nicotiana tabacum黄化突变体中叶绿体体积变小,数目减少并缺乏大部分类囊体膜,部分叶绿体表现出双重形态[28]。甘蓝型油菜的bnaC.ygl突变体与正常植株T6的叶绿体形状都呈正常纺锤状,但突变体叶绿体的基粒垛叠较少,类囊体膜也明显减少[14]。部分黄化突变体叶绿体中的嗜锇颗粒及淀粉粒含量也会发生变化。青梗菜564y突变体中叶绿体垛叠数明显变少,基粒片层结构难以观测,叶绿体淀粉粒数目较多[6]。甘蓝型油菜黄化突变体中,叶绿体的数量、形状、膜结构均受影响,且类囊体缺失,叶绿体内无淀粉粒,嗜锇颗粒较多,而复绿的叶片细胞内则与正常叶片表现相近[13],甘蓝型油菜突变体cr3529中也有类似特征[26]。吴砚农[29]对小白菜黄化突变体BcL14y-1和BcL14y-2研究发现:BcL14y-1黄化程度较轻,其叶绿体内类囊体垛叠数量有所减少,BcL14y-2黄化程度较重,叶绿体形状不规则,除类囊体垛叠数大量减少外,基粒片层排列混乱,嗜锇颗粒聚集,有过量淀粉粒囤积。拟南芥arc突变体的每个叶肉细胞只有2~15个较大的叶绿体,虽然叶绿体个数减少,但作为补偿,单个质体体积增大,从而保持叶肉细胞体积恒定[30]。OKAZAKI等[31]研究发现:拟南芥过表达质体分裂蛋白(plastid division proteins,PDV)后,叶绿体数量增加但体积减小,而PDV表达水平降低则出现相反结果。正常绿色植物的叶绿体成纺锤状紧贴细胞壁,基粒垛叠数较多且片层结构规整,有少量淀粉粒和嗜锇颗粒分布,而黄化突变植株的叶绿体则会出现不同程度的变异,导致这些变异的原因及分子机制需要进一步深入研究。

    • 多数表现出黄化性状的突变体中,叶绿素含量显著低于野生型,而类胡萝卜素发挥了主导作用,因此叶片呈现出黄色表型。叶绿素包括叶绿素a和叶绿素b,在不同的黄化突变体中,两者质量下降幅度有所不同。陈艳丽[14]发现甘蓝型油菜黄化突变体bnaC.ygl中,叶绿素a和叶绿素b的质量分数分别下降了40.3%和57.7%,叶绿素a/b相较非突变品系T6显著提高,在其他不同的芥菜型油菜黄化突变体和甘蓝型油菜黄化突变体中也有类似表现[9, 18, 22-23]。在青梗菜黄化突变体pylm中,叶绿素a、叶绿素b质量分数分别下降了62.0%和75.0%,类胡萝卜素质量分数也下降了58.0%[8],叶片中的血红素显著上升[32]。大白菜黄化突变体lcm2的叶绿素a、叶绿素b质量分数分别下降了60.25%和70.91%[10],而lcm3的叶绿素a、叶绿素b质量分数则分别降低了33.0%和53.0%[11]。从前人研究结果可以看出:在各类黄化突变体中,叶绿素a和叶绿素b显著下降,尤其是叶绿素b,因此,叶绿素a和叶绿素b在光系统反应中的功能差异及其机制值得进一步研究。

    • 光合作用的能力强弱与植物的生长发育及生殖阶段转变有关。在逆境条件下,叶绿素荧光参数也是衡量光合能力的重要指标[33],黄化突变通常缺失叶绿素,意味着光合能力降低。与野生型相比,青梗菜564y黄化突变体净光合速率显著降低,气孔导度、蒸腾速率稍低,胞间二氧化碳摩尔分数稍高,同时各项荧光动力学参数均降低[6]。油菜黄化突变体ny五叶期的净光合速率,心叶仅为野生型的57.96%,平展叶也只有69.62%,同时各项荧光参数显著低于野生型[23]。甘蓝黄化突变体yl-1在苗期时,净光合速率显著低于野生型,而随着植株生长,突变体逐渐恢复部分光合能力,但仍差异显著[9]。由于叶绿体结构改变及叶绿素含量降低,黄化植株的光合能力总体低于野生型植株。

    • 黄化突变体的叶绿素合成或叶绿体组成受到影响,多由核基因突变造成的。黄化突变中显性突变较少。TSANG等[34]构建的谷氨酸1-半醛氨基转移酶(GSA-AT)甘蓝型油菜反义构建体(GSA),T1代转基因株系中叶绿素含量减少,T2代转基因株系的幼苗分离为深绿色、浅绿色和黄色3种不同的表型,这表明GSA反义基因为显性遗传。

      多数黄化突变为隐性突变,包括单核隐性突变和多核隐性突变2种类型。甘蓝型油菜黄化突变体bnaC.ygl的黄化性状由1对隐性核基因控制,为单核隐性突变[14-15]。芥菜型油菜突变体l638-y的黄化性状由2对隐性核基因GR1与GR2控制[25, 35];甘蓝型油菜叶绿素缺失突变体Bnchd1的黄化性状由2个隐性基因BnChd1-1和BnChd1-2控制[12];青梗菜黄化突变体pylm由2对隐性重叠基因(PY1和PY2)互作控制[8]

    • 黄化突变直接原因为叶绿素缺失,因叶绿素合成途径受阻所致。参考吴自明等[36]对被子植物叶绿素合成途径及反应所需酶的总结,整理出以谷氨酸和α-酮戊二酸为原料,依次合成L-谷氨酰-tRNA、谷氨酸酯-1-半醛、δ-氨基酮戊酸、胆色素原、羟甲基胆后色素原、尿卟琳Ⅲ、粪卟啉原Ⅲ、原卟啉原Ⅸ、原卟啉Ⅸ、镁原卟啉Ⅸ、镁原卟啉Ⅸ单甲酯、二乙烯原叶绿素酸酯、原叶绿素酸酯、叶绿素酸酯,最终合成叶绿素a和叶绿素b的途径。

      这些中间产物由20多个基因编码的15种酶参与合成[37]。甘蓝型油菜叶绿素b缺失突变体cr3529的叶绿素合成受阻于胆色素原合成尿卟啉Ⅲ的反应步骤[38]。芥菜型油菜黄化突变体l638-y的黄化性状主要由叶绿素合成途径中粪卟啉原Ⅲ-原卟啉Ⅸ位点受阻引起[39]。拟南芥镁原卟啉Ⅸ甲基转移酶(CHLM)敲除突变体,由于镁原卟啉Ⅸ下游的阻断,导致叶绿素生物合成中间物质的积累[40]。LARKIN[41]使用除草剂Norflurazon阻止叶绿体发育,利用LHCB报告基因在叶绿体没有正常发育的情况下,鉴定了5个LHCB受抑制的突变体(gun1~gun5),其中gun2、gun3、gun4、gun5影响质体酶合成所需的4种物质以及叶绿素前体物质镁原卟啉Ⅸ的水平。KOBAYASHI等[42]通过拟南芥叶绿素缺失突变体研究了类囊体脂基质主要物质MgdG、GgdG合成的关键酶MGD1和DGD1在拟南芥中的表达谱,发现MGD1和DGD1的表达受光诱导,其中细胞分裂素信号转导和长下胚轴5介导的光信号转导都起着关键作用。HUANG等[43]发现镁螯合酶(CHLI)的I亚基由拟南芥中的2个基因CHLI1和CHLI2编码,CHLI1和CHLI2的双敲除突变体为白化性状,而CHLI1单敲除突变体为淡绿色,这表明CHLI2在一定程度上可以替代CHLI1。镁原卟啉Ⅸ是血红素和叶绿素的生物合成途径中的最后1个共同中间体,因此血红素合成途径出现突变,也会影响叶绿素的合成。青梗菜pylm黄化突变体的叶片血红素含量显著高于对照,说明血红素具有反馈调节作用,血红素过量积累反馈抑制谷氨酰-tRNA还原酶的活性,抑制δ-氨基酮戊酸的合成[32]

    • 叶绿体的合成是一个复杂的过程,多数叶绿体蛋白由核基因编码,再通过细胞质的加工处理,最终在叶绿体内发挥功能[44]。光调节锌指蛋白1(LZF1)在拟南芥脱黄化过程中起正调节作用[45]。拟南芥Dynamin超家族新成员FZL,为类似FZO的1种膜重塑蛋白,其过表达后导致类囊体组织缺陷,但其表达水平不影响叶绿体的形态及超微结构[27]。沉默氨酰还原酶(ARSs)后,GluRS和SerRS无法正常表达,导致叶绿体异常,类囊体发育不全,表现出严重的黄化性状,但许多编码叶绿体或线粒体靶向蛋白的核基因表达以及叶绿素的生物合成没有改变[28]

      甘蓝型油菜cr3529突变体中,类囊体膜蛋白LHCⅡ的组成未发生改变,但捕光色素蛋白复合物含量明显减少[46]。MIURA等[47]对拟南芥叶斑突变体var2进行了研究,认为蛋白质合成和降解之间的平衡是导致拟南芥叶色表型的决定因素之一。GUN2和GUN3是已知光致变种hy1和hy2的等位基因,是从血红素合成植物嗜铬蛋白所必需的,而GUN5与另一个镁螯合酶亚基(ChlI)突变体表型的比较表明:ChlH蛋白在质体信号转导途径中具有特定的功能[48]。拟南芥VAR3基因突变后,体细胞区域的叶绿体缺失或发育迟缓,栅栏细胞数量大量减少[49],在SAKAMOTO[50]的研究中也有类似报道。SJOGREN等[51]研究证明了拟南芥CLP蛋白酶对叶绿体发育和功能起到至关重要的作用。ZALTSMAN等[52]研究发现:FTSH蛋白酶在叶绿体生物合成和类囊体的维持中起重要作用,且其中部分FTSH基因可能存在冗余,不同的FTSH基因突变体之间的杂交会出现白化、不育等多种新的表型。

    • 叶绿素是植物进行光合作用的主要色素,在光合作用的光吸收中起核心作用。目前模式植物拟南芥中叶绿素合成代谢、叶绿体结构功能已经了解得比较清楚。在此基础上,利用其他十字花科植物黄化突变体,研究十字花科植物黄化形成的分子机制,将为十字花科植物的相关研究奠定坚实基础。首先增加叶绿素含量,提高光合效率从而达到增产目的;其次将叶色变异应用于高光能育种研究,避免强光下光系统受到伤害,提高植物对强光的耐受性;再次利用叶色突变体植物具有的特殊利用价值,为创造叶色丰富的观赏品种提供宝贵资源。十字花科植物黄化突变不论在理论研究还是实践应用方面都将是重要的研究方向。

参考文献 (52)

目录

/

返回文章
返回