留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

十字花科植物黄化突变特性及其分子机制研究进展

吴砚农 郑伟尉 陆伟杰 臧运祥

吴砚农, 郑伟尉, 陆伟杰, 臧运祥. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200132
引用本文: 吴砚农, 郑伟尉, 陆伟杰, 臧运祥. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200132
WU Yannong, ZHENG Weiwei, LU Weijie, ZANG Yunxiang. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200132
Citation: WU Yannong, ZHENG Weiwei, LU Weijie, ZANG Yunxiang. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200132

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

十字花科植物黄化突变特性及其分子机制研究进展

doi: 10.11833/j.issn.2095-0756.20200132
基金项目: 国家自然科学基金资助项目(31572130);浙江省自然科学基金资助项目(LY20C150001)
详细信息
    作者简介: 吴砚农,从事蔬菜品质调控及分子机制研究。E-mail: 1435966317@qq.com
    通信作者: 臧运祥,教授,博士,从事蔬菜品质调控及分子机制研究。E-mail: yxzang@zafu.edu.cn
  • 中图分类号: S718.3

Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae

  • 摘要: 十字花科Brassicaceae植物多数生长发育时间短,生长过程中自然发生,或使用物理或化学方法诱导,常会出现一些颜色较淡或金黄的突变个体即黄化突变体。这些突变体表型直观,表现为植株矮小,叶绿素较低,植株光合作用受抑制,产量降低,因此黄化突变常被视为有害突变。但近20 a来黄化突变体日益受到研究者们的重视与青睐,被用于研究植物叶绿体结构、叶绿素合成代谢等方面。本研究简要介绍了十字花科植物常见的黄化突变类型及其主要的外观特征,综述了十字花科植物黄化突变体的叶绿体超微结构、光合色素及其光合性能,并对十字花科植物黄化突变的遗传特性、分子机制进行了讨论,为十字花科植物叶色突变研究及新品种选育提供理论基础。参52
  • [1] 赵波.甘蓝型油菜矮秆基因定位、克隆及功能分析[D]. 武汉: 华中农业大学, 2017.

    ZHAO Bo. Gentic Mapping, Cloning and Functional Analysis of Dwarf Genes in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2017.
    [2] 张甜. 芥菜紫叶基因Bj.Pur定位及候选基因分析[D]. 武汉: 华中农业大学, 2017.

    ZHANG Tian. Mapping and Candidate Gene Analysis of Bj.Pur, a Gene Controlling Purple Leaf in Brassica juncea[D]. Wuhan: Huazhong Agricultural University, 2017.
    [3] 赖艳, 付秋实, 吕建春, 等. 一个新的薄皮甜瓜叶色突变体的生理特性及超微结构分析[J]. 四川农业大学学报, 2018, <bold>36</bold>(3): 372 − 379.

    LAI Yan, FU Qiushi, LÜ Jianchun,<italic> et al</italic>. Analysis of physiological characteristics and chloroplast ultrastructure of a new leaf color mutant in melon [J]. <italic>J Sichuan Agric Univ</italic>, 2018, <bold>36</bold>(3): 372 − 379.
    [4] 刘红艳, 周芳, 李俊, 等. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, <bold>43</bold>(12): 1856 − 1863. doi:  10.3724/SP.J.1006.2017.01856

    LIU Hongyan, ZHOU Fang, LI Jun,<italic> et al</italic>. Anatomical structure and photosynthetic characteristics of a yellow leaf mutant YL1 in sesame(<italic>Sesamum indicum</italic> L.) [J]. <italic>Acta Agronomica Sin</italic>, 2017, <bold>43</bold>(12): 1856 − 1863. doi:  10.3724/SP.J.1006.2017.01856
    [5] 杨小苗, 吴新亮, 刘玉凤, 等. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用[J]. 应用生态学报, 2018, <bold>29</bold>(6): 1983 − 1989.

    YANG Xiaomiao, WU Xinliang, LIU Yufeng,<italic> et al</italic>. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS [J]. <italic>Chin J Appl Ecol</italic>, 2018, <bold>29</bold>(6): 1983 − 1989.
    [6] 迟鸣雨. 青梗菜黄化突变体生理特性及转录组分析[D]. 沈阳: 沈阳农业大学, 2017.

    CHI Mingyu. Transcriptome and Physiological Characterization Analysis of a Chlorosis Mutant of Pachoi[D]. Shenyang: Shenyang Agricultural University, 2017.
    [7] 郭士伟, 张云华, 金永庆, 等. 小白菜(<italic>Brassica chinensis</italic> L.)黄苗突变体的叶绿素荧光特性栽[J]. 作物学报, 2003, <bold>29</bold>(6): 958 − 960.

    GUO Shiwei, ZHANG Yunhua, JIN Yongqing,<italic> et al</italic>. Characterization of chlorophyll fluorescence in a mutant of <italic>Brassica chinensis</italic> L. with xanthan seedling leaves [J]. <italic>Acta Agronomica Sin</italic>, 2003, <bold>29</bold>(6): 958 − 960.
    [8] 张琨, 刘志勇, 单晓菲, 等. 青梗菜黄化突变体<italic>pylm</italic>遗传特性分析[J]. 沈阳农业大学学报, 2017, <bold>48</bold>(1): 1 − 8.

    ZHANG Kun, LIU Zhiyong, SHAN Xiaofei,<italic> et al</italic>. Genetic analysis of a yellow mutant <italic>pylm</italic> in pakchoi [J]. <italic>J Shenyang Agric Univ</italic>, 2017, <bold>48</bold>(1): 1 − 8.
    [9] 杨冲, 张扬勇, 方智远, 等. 甘蓝叶色黄化突变体YL-1的光合生理特性及其叶绿体的超微结构[J]. 园艺学报, 2014, <bold>41</bold>(6): 1133 − 1144.

    YANG Chong, ZHANG Yangyong, FANG Zhiyuan,<italic> et al</italic>. Photosynthetic physiological characteristics and chloroplast ultrastructure of yellow leaf mutant YL-1 in cabbage [J]. <italic>Acta Hortic Sin</italic>, 2014, <bold>41</bold>(6): 1133 − 1144.
    [10] 杜江涛. 大白菜金黄叶色突变基因lcm2的克隆及鉴定[D]. 沈阳: 沈阳农业大学, 2018.

    DU Jiangtao. Cloning and Identification of a Golden Leaf Gene lcm2 in Chinese Cabbage[D]. Shenyang: Shenyang Agricultural University, 2018.
    [11] 侯爱琳. 大白菜叶片黄化突变基因lcm3的克隆与鉴定[D]. 沈阳: 沈阳农业大学, 2018.

    HOU Ailin. Cloning and Identification of lcm3, a Leaf Chlorosis Mutantion Gene in Chinese Cabbage[D]. Shenyang: Shenyang Agricultural University, 2018.
    [12] ZHAO Hua, YU Lei, HUAI Zexun,<italic> et al</italic>. Mapping and candidate gene identification defining BnChd1-1, a locus involved in chlorophyll biosynthesis in <italic>Brassica napus</italic> [J]. <italic>Acta Physiol Plant</italic>, 2014, <bold>36</bold>(4): 859 − 870. doi:  10.1007/s11738-013-1464-x
    [13] 董遵, 刘敬阳, 马红梅, 等. 甘蓝型油菜黄化(苗)突变体的叶绿素含量及超微结构[J]. 中国油料作物学报, 2000, <bold>22</bold>(3): 27 − 29, 34.

    DONG Zun, LIU Jingyang, MA Hongmei,<italic> et al</italic>. Chlorophyll contents and chloroplast ultrastructure of chlorophyll deficient mutant in <italic>B. napus</italic> [J]. <italic>Chin J Oil Crop Sci</italic>, 2000, <bold>22</bold>(3): 27 − 29, 34.
    [14] 陈艳丽. 甘蓝型油菜黄化突变体的基因定位[D]. 武汉: 华中农业大学, 2011.

    CHEN Yanli. Genetic Mapping of the Yellow Mutant Gene in Brassca napus[D]. Wuhan: Huazhong Agricultural University, 2011.
    [15] ZHU Lixia, ZENG Xinhua, CHEN Yanli,<italic> et al</italic>. Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (<italic>BnaC.ygl</italic>) in <italic>Brassica napus</italic> [J]. <italic>Mol Breed</italic>, 2014, <bold>34</bold>(2): 603 − 614. doi:  10.1007/s11032-014-0060-0
    [16] 杨胜洪, 杜林方, 赵云, 等. 抽薹期叶绿素缺乏油菜突变体类囊体膜的研究[J]. 云南植物研究, 2001, <bold>23</bold>(1): 97 − 104.

    YANG Shenghong, DU Linfang, ZHAO Yun,<italic> et al</italic>. Study on the thylakoid membranes from a chlorophyll-deficient oilseed rape mutant at the bolting stage [J]. <italic>Acta Bot Yunnan</italic>, 2001, <bold>23</bold>(1): 97 − 104.
    [17] FRICK G, SU Qingxiang, APEL K,<italic> et al</italic>. An <italic>Arabidopsis</italic> porB porC double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested [J]. <italic>Plant J Cell Mol Biol</italic>, 2003, <bold>35</bold>(2): 141 − 153. doi:  10.1046/j.1365-313X.2003.01798.x
    [18] BANG W Y, JEONG I S, KIM D W,<italic> et al</italic>. Role of <italic>Arabidopsis</italic> CHL27 protein for photosynthesis, chloroplast development and gene expression profiling [J]. <italic>Plant Cell Physiol</italic>, 2008, <bold>49</bold>(9): 1350 − 1363. doi:  10.1093/pcp/pcn111
    [19] PRIVAT I, HAKIMI M A, BUHOT L,<italic> et al</italic>. Characterization of <italic>Arabidopsis</italic> plastid sigma-like transcription factors SIG1, SIG2 and SIG3 [J]. <italic>Plant Mol Biol</italic>, 2003, <bold>51</bold>(3): 385 − 399. doi:  10.1023/A:1022095017355
    [20] KUMAR A M, SÖLL D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in <italic>Arabidopsis</italic> [J]. <italic>Plant Physiol</italic>, 2000, <bold>122</bold>(1): 49 − 56. doi:  10.1104/pp.122.1.49
    [21] KOBAYASHI K, KONDO M, FUKUDA H,<italic> et al</italic>. Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis [J]. <italic>Proc Nat Acad Sci</italic>, 2007, <bold>104</bold>(43): 17216 − 17221. doi:  10.1073/pnas.0704680104
    [22] 白大勇. 拟南芥真叶白化突变体cfl1的基因克隆与初步功能分析[D]. 开封: 河南大学, 2013.

    BAI Dayong. Map-based Cloning and Functional Analysis of Tue-Leaves-Etiolation Mutant cfl1 in Arabidopsis thaliana[D]. Kaifeng: Henan University, 2013.
    [23] 肖华贵, 杨焕文, 饶勇, 等. 甘蓝型油菜黄化突变体的光合特性及叶绿素荧光参数分析[J]. 作物学报, 2013, <bold>39</bold>(3): 520 − 529. doi:  10.3724/SP.J.1006.2013.00520

    XIAO Huagui, YANG Huanwen, RAO Yong,<italic> et al</italic>. Photosynthetic characteristics and chlorophyll fluorescence kinetic parameters analyses of chlorophyll-reduced mutant in <italic>Brassica napus</italic> L. [J]. <italic>Acta Agronomica Sin</italic>, 2013, <bold>39</bold>(3): 520 − 529. doi:  10.3724/SP.J.1006.2013.00520
    [24] CHANG C S J, WU M S H. COP1-Mediated degradation of BBX22/LZF1 optimizes seedling development in <italic>Arabidopsis</italic> [J]. <italic>Plant Physiol</italic>, 2011, <bold>156</bold>(1): 228 − 239. doi:  10.1104/pp.111.175042
    [25] 李玮, 于澄宇, 胡胜武. 芥菜型油菜叶片黄化突变体的初步研究[J]. 西北农林科技大学学报(自然科学版), 2007, <bold>35</bold>(9): 79 − 82.

    LI Wei, YU Chengyu, HU Shengwu. Primary investigation on a chlorsis mutant in <italic>Brassica juncea</italic> L. [J]. <italic>J Northwest A</italic>&<italic>F Univ Nat Sci Ed</italic>, 2007, <bold>35</bold>(9): 79 − 82.
    [26] GAO Hongbo, SAGE T L, OSTERYOUNG K W. FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology [J]. <italic>Proc Nat Acad Sci</italic>, 2006, <bold>103</bold>(17): 6759 − 6764. doi:  10.1073/pnas.0507287103
    [27] KIM Y K, LEE J Y, CHO H S,<italic> et al</italic>. Inactivation of organellar glutamyl- and seryl-trna synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants [J]. <italic>J Biol Chem</italic>, 2005, <bold>280</bold>(44): 37098 − 37106. doi:  10.1074/jbc.M504805200
    [28] 赵云, 王茂林, 李江, 等. 幼叶黄化油菜(<italic>Brassica napus</italic> L.)突变体<italic>Cr</italic>3529叶绿体超微结构观察[J]. 四川大学学报(自然科学版), 2003, <bold>40</bold>(5): 974 − 977.

    ZHAO Yun, WANG Maolin, LI Jiang,<italic> et al</italic>. Observation of the chloroplast in chlorophyll-reduced seeding mutant <italic>Cr</italic>3529, <italic>Brassica napus</italic> L. [J]. <italic>J Sichuan Univ Nat Sci Ed</italic>, 2003, <bold>40</bold>(5): 974 − 977.
    [29] 吴砚农. 小白菜黄化突变体生理特性及遗传特性分析[D]. 杭州: 浙江农林大学, 2019.

    WU Yannong. Analysis of Physiological Characteristics and Genetic Characteristics of Pakchoi Yellowing Mutant[D]. Hangzhou: Zhejiang A&F University, 2019.
    [30] AUSTIN J, WEBBER A N. Photosynthesis in <italic>Arabidopsis thaliana</italic> mutants with reduced chloroplast number [J]. <italic>Photosynth Res</italic>, 2005, <bold>85</bold>(3): 373 − 384. doi:  10.1007/s11120-005-7708-x
    [31] OKAZAKI K, KABEYA Y, SUZUKI K,<italic> et al</italic>. The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation [J]. <italic>Plant Cell</italic>, 2009, <bold>21</bold>(6): 1769 − 1780. doi:  10.1105/tpc.109.067785
    [32] 牟钰. 白菜黄化突变基因py2的精细定位[D]. 沈阳: 沈阳农业大学, 2018.

    MU Yu. Fine Mapping of py2, a Gene Referred to Yellow Leaf Mutant in Packoi (Brassica campestris L. ssp. chinensis)[D]. Shenyang: Shenyang Agricultural University, 2018.
    [33] 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展[J]. 生态科学, 2019, <bold>38</bold>(3): 225 − 234.

    FANG Yiran, XUE Li. Research advances in the effect of salt stress on plant chlorophyll fluorescence [J]. <italic>Ecol Sci</italic>, 2019, <bold>38</bold>(3): 225 − 234.
    [34] TSANG E W T, YANG Jingyi, CHANG Qing,<italic> et al</italic>. Chlorophyll reduction in the seed of <italic>Brassica napus</italic> with a glutamate 1-semialdehyde aminotransferase antisense gene [J]. <italic>Plant Mol Biol</italic>, 2003, <bold>51</bold>(2): 191 − 201. doi:  10.1023/A:1021102118801
    [35] 田颖, 黄谦心, 刘海衡, 等. 芥菜型油菜黄化突变体<italic>L</italic>638-<italic>y</italic>的遗传及黄化基因<italic>gr</italic>1的分子标记[J]. 西北农林科技大学学报(自然科学版), 2012, <bold>40</bold>(12): 90 − 96.

    TIAN Ying, HUANG Qianxin, LIU Haiheng,<italic> et al</italic>. Imheritance of chlorophyll-deficient mutant <italic>L</italic>638<italic>-y</italic> in <italic>Brassica juncea</italic> L. and molecular markers for chlorophyll-deficient gene <italic>gr</italic>1 [J]. <italic>J Northwest A</italic>&<italic>F Univ Nat Sci Ed</italic>, 2012, <bold>40</bold>(12): 90 − 96.
    [36] 吴自明, 张欣, 万建民, 等. 叶绿素生物合成的分子调控[J]. 植物生理学报, 2008, <bold>44</bold>(6): 1064 − 1070.

    WU Ziming, ZHANG Xin, WAN Jianmin,<italic> et al</italic>. Molecular regulation of chlorophyll biosynthesis [J]. <italic>Plant Physiol Commun</italic>, 2008, <bold>44</bold>(6): 1064 − 1070.
    [37] NAGATA N. Identification of a vinyl reductase gene for chlorophyll synthesis in <italic>Arabidopsis thaliana</italic> and implications for the evolution of prochlorococcus species [J]. <italic>Plant Cell</italic>, 2005, <bold>17</bold>(1): 233 − 240. doi:  10.1105/tpc.104.027276
    [38] SUN Jieyin, ZHANG Nianhui, DU Linfang. Chlorophyll biosynthesis in a chlorophyll b-deficient oilseed rape mutant <italic>Cr</italic>3529 [J]. <italic>Acta Bot Boreali-Occident Sin</italic>, 2007, <bold>27</bold>(10): 1962 − 1966.
    [39] 吕明, 刘海衡, 毛虎德, 等. 芥菜型油菜黄化突变体叶片叶绿素合成代谢变化[J]. 西北植物学报, 2010, <bold>30</bold>(11): 2177 − 2183.

    LÜ Ming, LIU Haiheng, MAO Hude,<italic> et al</italic>. Changes of chlorophyll synthesis metabolism in chlorophyll-deficient mutant in <italic>Brassica juncea</italic> [J]. <italic>Acta Bot Boreali-Occident Sin</italic>, 2010, <bold>30</bold>(11): 2177 − 2183.
    [40] PONTIER D, ALBRIEUX C, JOYARD J,<italic> et al</italic>. Knock-out of the magnesium protoporphyrin Ⅸ methyltransferase gene in <italic>Arabidopsis</italic>: effects on chloroplast development and on chloroplast-to-nucleus signaling [J]. <italic>J Biol Chem</italic>, 2007, <bold>282</bold>(4): 2297 − 2304. doi:  10.1074/jbc.M610286200
    [41] LARKIN R M. GUN4, a regulator of chlorophyll synthesis and intracellular signaling [J]. <italic>Science</italic>, 2003, <bold>299</bold>(5608): 902 − 906. doi:  10.1126/science.1079978
    [42] KOBAYASHI K, FUJII S, SASAKI D, et al. Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis[J]. Front Plant Sci, 2014, 5(11): 272. doi:  10.3389/fpls.2014.00272.
    [43] HUANG Yishiuan, LI Hsoumin. <italic>Arabidopsis</italic> <italic>CHLI</italic>2 can substitute for <italic>CHLI</italic>1 [J]. <italic>Plant Physiol</italic>, 2009, <bold>150</bold>(2): 636 − 645. doi:  10.1104/pp.109.135368
    [44] WATERS M T, LANGDALE J A. The making of a chloroplast [J]. <italic>EMBO J</italic>, 2009, <bold>28</bold>(19): 2861 − 2873. doi:  10.1038/emboj.2009.264
    [45] CHANG C S J, LI Y H, CHEN L T,<italic> et al</italic>. <italic>LZF</italic>1, a HY5-regulated transcriptional factor, functions in <italic>Arabidopsis</italic> de-etiolation [J]. <italic>Plant J</italic>, 2008, <bold>54</bold>(2): 205 − 219. doi:  10.1111/j.1365-313X.2008.03401.x
    [46] 张年辉, 杜林方, 赵云, 等. 叶绿素缺乏油菜突变体的LHCⅡ多肽组成、蛋白含量与<italic>cab</italic>基因转录研究[J]. 西北植物学报, 2004, <bold>24</bold>(3): 484 − 487.

    ZHANG Nianhui, DU Linfang, ZHAO Yun,<italic> et al</italic>. Study on the polypeptide composition and content of LHC Ⅱ and the <italic>cab</italic> gene transcription inchlorophyll-reduced mutant of oilseed rape seedlings [J]. <italic>Acta Bot Boreali-Occident Sin</italic>, 2004, <bold>24</bold>(3): 484 − 487.
    [47] MIURA E, KATO Y, MATSUSHIMA R,<italic> et al</italic>. The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in <italic>Arabidopsis yellow variegated</italic> mutants [J]. <italic>Plant Cell</italic>, 2007, <bold>19</bold>(4): 1313 − 1328. doi:  10.1105/tpc.106.049270
    [48] MOCHIZUKI N, BRUSSLAN J A, LARKIN R,<italic> et al</italic>. <italic>Arabidopsis</italic> genomes uncoupled 5(GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction [J]. <italic>Proc Nat Acad Sci</italic>, 2001, <bold>98</bold>(4): 2053 − 2058. doi:  10.1073/pnas.98.4.2053
    [49] NAESTED H. <italic>Arabidopsis</italic> VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development [J]. <italic>J Cell Sci</italic>, 2004, <bold>117</bold>(20): 4807 − 4818. doi:  10.1242/jcs.01360
    [50] SAKAMOTO W. Coordinated regulation and complex formation of Yellow Variegated1 and Yellow Variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of Photosystem Ⅱ in <italic>Arabidopsis</italic> thylakoid membranes [J]. <italic>Plant Cell</italic>, 2003, <bold>15</bold>(12): 2843 − 2855. doi:  10.1105/tpc.017319
    [51] SJOGREN L L E, STANNE T M, ZHENG B,<italic> et al</italic>. Structural and functional insights into the chloroplast ATP-dependent clp protease in <italic>Arabidopsis</italic> [J]. <italic>Plant Cell</italic>, 2006, <bold>18</bold>(10): 2635 − 2649. doi:  10.1105/tpc.106.044594
    [52] ZALTSMAN A, ORI N, ADAM Z. Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem Ⅱ repair in <italic>Arabidopsis</italic> [J]. <italic>Plant Cell</italic>, 2005, <bold>17</bold>(10): 2782 − 2790. doi:  10.1105/tpc.105.035071
  • [1] 陆伟杰, 郑伟尉, 吴砚农, 臧运祥.  十字花科植物蜡质形成特性及其分子机制研究进展 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200138
    [2] 钱宇汀, 薛晓峰, 曾燕如, 陈文充, 叶晓明, 喻卫武, 戴文圣.  香榧瘿螨为害对香榧叶片结构及叶绿素质量分数的影响 . 浙江农林大学学报, 2020, 37(2): 296-302. doi: 10.11833/j.issn.2095-0756.2020.02.014
    [3] 王柯杨, 卜柯丽, 马元丹, 栗青丽, 王灵杰, 高岩, 高海波, 张汝民.  毛竹茎秆发育过程中不同节间叶绿素荧光的变化 . 浙江农林大学学报, 2019, 36(4): 697-703. doi: 10.11833/j.issn.2095-0756.2019.04.009
    [4] 刘婧冉, 杜长霞, 樊怀福.  植物嫁接砧穗愈合机制研究进展 . 浙江农林大学学报, 2018, 35(3): 552-561. doi: 10.11833/j.issn.2095-0756.2018.03.022
    [5] 张洁, 尹德洁, 关海燕, 屈琦琦, 董丽.  景天属植物研究综述 . 浙江农林大学学报, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [6] 李珅, 林爱真, 杨媛, 沈亚芳, 饶盈, 羊健, 刘云辉, 王洋, 周伟.  丹参酮生物合成分子调控机制的研究进展 . 浙江农林大学学报, 2018, 35(2): 367-375. doi: 10.11833/j.issn.2095-0756.2018.02.023
    [7] 崔静, 吴记贵, 黄伯高, 蒋万杰, 范雅倩, 程瑾.  兰科植物的生殖隔离 . 浙江农林大学学报, 2016, 33(4): 695-702. doi: 10.11833/j.issn.2095-0756.2016.04.020
    [8] 魏玮, 郭嘉莲, 万琳涛, 徐林峰, 丁明全, 周伟.  小麦粒重形成的分子调控机制研究综述 . 浙江农林大学学报, 2016, 33(2): 348-356. doi: 10.11833/j.issn.2095-0756.2016.02.022
    [9] 吴雪, 杜长霞, 杨冰冰, 樊怀福.  植物水通道蛋白研究综述 . 浙江农林大学学报, 2015, 32(5): 789-796. doi: 10.11833/j.issn.2095-0756.2015.05.020
    [10] 吕铖香, 张明如, 邹伶俐.  模拟酸雨与光强处理对芒萁叶绿素及荧光特性的影响 . 浙江农林大学学报, 2015, 32(1): 52-59. doi: 10.11833/j.issn.2095-0756.2015.01.008
    [11] 李亚丹, 杜华强, 周国模, 谷成燕, 徐小军, 孙少波, 高国龙.  雷竹叶绿素与高光谱植被指数关系及其反演模型 . 浙江农林大学学报, 2015, 32(3): 335-345. doi: 10.11833/j.issn.2095-0756.2015.03.002
    [12] 何勇清, 方佳, 余敏芬, 方仲相, 江波, 潘寅辉, 郑炳松.  植物质膜内在水通道蛋白PIPs的分子生物学研究进展 . 浙江农林大学学报, 2012, 29(3): 446-452. doi: 10.11833/j.issn.2095-0756.2012.03.020
    [13] 程建中, 杨萍, 桂仁意.  植物硒形态分析的研究综述 . 浙江农林大学学报, 2012, 29(2): 288-395. doi: 10.11833/j.issn.2095-0756.2012.02.020
    [14] 马进, 刘志高, 郑钢.  差异蛋白质组学及其在植物盐胁迫响应研究中的应用 . 浙江农林大学学报, 2011, 28(1): 139-143. doi: 10.11833/j.issn.2095-0756.2011.01.022
    [15] 程莹, 李根有, 夏国华, 黄晌决, 黄宇锋.  楤木属植物组织培养研究综述 . 浙江农林大学学报, 2011, 28(6): 968-972. doi: 10.11833/j.issn.2095-0756.2011.06.022
    [16] 孔红, 成仿云.  滇牡丹分类处理的细胞学与分子生物学证据 . 浙江农林大学学报, 2010, 27(4): 601-605. doi: 10.11833/j.issn.2095-0756.2010.04.021
    [17] 王卫国, 尤汉杰, 陈浩亮, 张宏伟, 金孝锋.  浙江十字花科一地理分布新记录属种 . 浙江农林大学学报, 2009, 26(2): 294-296.
    [18] 曾小红, 伍建榕, 马焕成.  接种根瘤菌的台湾相思对干旱胁迫的生化响应 . 浙江农林大学学报, 2008, 25(2): 181-185.
    [19] 张岚, 高素萍.  园林植物化感作用研究现状与问题探讨 . 浙江农林大学学报, 2007, 24(4): 497-503.
    [20] 林武星.  自身他感作用物对木麻黄幼苗叶绿素及糖类的影响 . 浙江农林大学学报, 2007, 24(1): 12-16.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200132

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020/6/1

计量
  • 文章访问数:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-07-25

十字花科植物黄化突变特性及其分子机制研究进展

doi: 10.11833/j.issn.2095-0756.20200132
    基金项目:  国家自然科学基金资助项目(31572130);浙江省自然科学基金资助项目(LY20C150001)
    作者简介:

    吴砚农,从事蔬菜品质调控及分子机制研究。E-mail: 1435966317@qq.com

    通信作者: 臧运祥,教授,博士,从事蔬菜品质调控及分子机制研究。E-mail: yxzang@zafu.edu.cn
  • 中图分类号: S718.3

摘要: 十字花科Brassicaceae植物多数生长发育时间短,生长过程中自然发生,或使用物理或化学方法诱导,常会出现一些颜色较淡或金黄的突变个体即黄化突变体。这些突变体表型直观,表现为植株矮小,叶绿素较低,植株光合作用受抑制,产量降低,因此黄化突变常被视为有害突变。但近20 a来黄化突变体日益受到研究者们的重视与青睐,被用于研究植物叶绿体结构、叶绿素合成代谢等方面。本研究简要介绍了十字花科植物常见的黄化突变类型及其主要的外观特征,综述了十字花科植物黄化突变体的叶绿体超微结构、光合色素及其光合性能,并对十字花科植物黄化突变的遗传特性、分子机制进行了讨论,为十字花科植物叶色突变研究及新品种选育提供理论基础。参52

English Abstract

吴砚农, 郑伟尉, 陆伟杰, 臧运祥. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200132
引用本文: 吴砚农, 郑伟尉, 陆伟杰, 臧运祥. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200132
WU Yannong, ZHENG Weiwei, LU Weijie, ZANG Yunxiang. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200132
Citation: WU Yannong, ZHENG Weiwei, LU Weijie, ZANG Yunxiang. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200132

返回顶部

目录

    /

    返回文章
    返回