-
毛竹Phyllostachys edulis林是中国南方重要的森林类型,具有生长快、周期短、产量高、用途广等特点,对稳定调节碳平衡和护坡也有积极作用[1-2]。空间结构是森林生长过程的驱动因子,对森林未来的发展具有决定性作用[3]。毛竹林的空间结构指毛竹个体之间的相互关系,包括毛竹空间分布格局、竞争指数和年龄隔离度等[4]。近年来,对毛竹林空间结构的研究日益增多[5-8]。研究表明:与距离有关的空间结构指数可以精确描述毛竹林的结构特征,对分析和调控毛竹林结构与功能关系至关重要[9]。目前,对毛竹林空间结构的研究主要集中于某地如浙江省龙游县溪口镇、浙江省天目山自然保护区等地的典型毛竹林的空间结构特征[5-6]、动态变化分析[8-10]及非空间结构因子的关系[10-12]等,对大尺度上不同地区的毛竹林空间结构差异性研究尚少有报道。浙江省是中国毛竹主产区。根据第8次全国森林资源连续清查结果(2009-2013),全国毛竹林面积443.01万hm2,浙江省毛竹林面积71.6万hm2,占全国的16.16%,全国排名第3位。开展浙江省毛竹林空间结构特征研究,对精准掌握毛竹林的结构信息,提高全省毛竹林经营决策水平具有重要意义。
-
浙江省位于27°01′~31°10′N,118°01′~123°08′E,面积10.55万km2。年均气温为16.0~19.0 ℃,四季分明,光照充足,雨水充沛,是亚热带湿润季风气候。浙江有“七山一水二分田”之说,山地和丘陵占74.63%,比较适合毛竹林的生长。毛竹广泛分布于海拔为400~800 m的丘陵、低山山麓地带。
-
为增强调查样地的代表性,根据浙江省森林资源一类调查的系统抽样样地中毛竹林样地分布较多的区域,确定调查地点为浙江省南部的丽水市庆元县和温州市泰顺县、西部的衢州市常山县,中部的金华市武义县和绍兴市诸暨市,东部的宁波市宁海县、余姚市和台州市黄岩区,北部的湖州市安吉县、杭州市临安区共10个县市(区),选择少受人为干扰的近自然毛竹林典型地段,在不同坡向(东、南、西、北)和不同坡位(上坡、中坡、下坡)设置样地,样地面积为10 m × 10 m,共设置54个样地。其中,在庆元县、泰顺县、黄岩区、安吉县各设置了4个样地,在常山县、武义县、临安区、诸暨市、宁海县各设置了6个样地,余姚市设置了8个样地。各样地用全球定位系统(GPS)进行定位,用罗盘仪测量样地边界,调查每株毛竹的x和y坐标(m)、年龄、胸径、竹高、冠幅、生长状态等因子;同时,记录样地内的诸如海拔、坡向、坡度、坡位、腐殖质厚度、土层厚度等立地因子。
-
聚集指数是检验种群空间分布格局的常用指数[3]。计算公式为:
$$ R = \frac{{\frac{1}{N}\sum\limits_{i = 1}^N {{r_i}} }}{{\frac{1}{2}\sqrt {\frac{F}{N}} }}。 $$ (1) 式(1)中:ri表示第i株毛竹到其最近邻毛竹的距离;F表示样地面积;N表示样地内毛竹总株数;R是林分聚集指数。若R>1,那么这块样地的毛竹林属于均匀分布;R=1,则属于随机分布;R<1,则属于聚集分布。
-
采用基于Voronoi图的Hegyi竞争指数[14]。计算公式为:
$$ {I_{{\rm{C}}i}} = \sum\limits_{j = 1}^{{n_i}} {\frac{{{d_i}}}{{{d_i}{L_{ij}}}}}。 $$ (2) 式(2)中:di是第i株对象竹的胸径;dj是第j株相邻竹的胸径;Lij是第i株对象竹到第j株相邻竹的距离;ni是基于Voronoi图的所有相邻竹株数;ICi是第i株对象竹的竞争指数。取样地内全部竹子竞争指数的平均值作为林分竞争指数。计算公式为:
$$ {I_{\rm{C}}} = \frac{1}{N}\sum\limits_{i = 1}^N {{I_{{\rm{C}}i}}}。 $$ (3) 式(3)中:IC为林分竞争指数;N为样地内毛竹总株数;ICi为第i空间结构单元中对象竹的竞争指数。
-
本研究采用全混交度描述毛竹林的年龄隔离度[15]。全混交度的计算公式为:
$$ {M_{{{\rm{C}}_i}}}{\rm{ = }}\frac{1}{2}\left( {{D_i} + \frac{{{c_i}}}{{{n_i}}}} \right){M_i}。 $$ (4) 式(4)中:MCi表示第i空间结构单元中对象竹的全混交度;Di表示空间结构单位的Simpson指数,${D_i} = 1 - \sum\limits_{j = 1}^{{S_i}} {{p^2}_j} $,Di的取值范围为[0, 1];ci表示对象竹的最近邻竹中成对相邻竹不是同一竹龄的个数;ni表示最近邻竹的株数;$\frac{{{c_i}}}{{{n_i}}}$表示最近邻竹的年龄隔离度;Mi表示简单混交度,${M_i} = \frac{1}{{{n_i}}}\sum\limits_{j = 1}^{{n_i}} {{V_{i, j}}} $,如果第i对象竹和第j最近邻竹年龄相同,vi, j=0,否则等于1。取样地内全部竹子年龄隔离度平均值作为林分年龄隔离度,计算公式为:
$$ M = \frac{1}{N}\sum\limits_{i = 1}^N {{M_{{{\rm{C}}_i}}}} 。 $$ (5) 式(5)中:M表示林分年龄隔离度;N表示样地内毛竹总株数;MCi表示第i空间结构单元中对象竹的年龄隔离度。
-
由于毛竹内部中空,本研究采用可测量不规则形状物体体积的排水法测定毛竹竹秆材积。首先,将水注入定制水桶内至水龙头齐平处,排出桶内多余的水。然后,将竹秆劈成40 cm左右长的竹条,缓慢放入桶内,用铁桶收集由水龙头排出的水,用电子提秤称取总竹条排水量。最后计算毛竹竹秆材积。公式如下:
$$ {V_秆} = \frac{{{M_水}}}{\rho }。 $$ (6) 式(6)中:V秆为竹秆材积(dm3),M水为排水质量(kg);ρ为水的比重(ρ=1 g·cm-3)。
-
对10个县市(区)毛竹林空间结构因子进行单因素方差分析,并对差异显著(P<0.05)的空间结构因子进行多重比较。方差分析采用SPSS 20.0完成。空间结构因子的区域变化分析采用ArcGIS 10.2完成。
-
浙江省毛竹林空间结构指数的统计指标如表 1所示。以不同地区空间结构指数统计指标的平均值作为全省毛竹林空间结构指数。可以看出,3个空间结构指数中,竞争指数的均值为5.62,最大值为8.81,最小值为2.88;年龄隔离度的均值为0.58,最大值为0.84,最小值为0.30;聚集指数的均值为0.94,最大值为1.24,最小值为0.73。竞争指数的变异系数最大,达0.25,聚集指数的变异系数最小,为0.13。
表 1 浙江省毛竹林空间结构指数描述统计特征
Table 1. Descriptive statistical characteristics of spatial structure index of moso bamboo forest in Zhejiang Province
地区 空间结构指数 样地数 均值 中值 极小值 极大值 标准差 峰度 偏度 变异系数 竞争指数 8 6.47 6.71 4.75 8.68 1.20 0.74 0.48 0.19 余姚 年龄隔离度 8 0.62 0.62 0.52 0.73 0.07 -0.97 0.18 0.12 聚集指数 8 0.84 0.84 0.73 1.00 0.09 -0.47 0.46 0.11 竞争指数 6 6.40 6.56 5.52 7.35 0.65 -0.11 0.00 0.10 临安 年龄隔离度 6 0.51 0.51 0.34 0.65 0.11 0.57 -0.38 0.21 聚集指数 6 0.97 0.96 0.92 1.07 0.06 2.52 1.49 0.06 竞争指数 6 6.36 6.25 5.57 7.57 0.68 2.15 1.16 0.11 诸暨 年龄隔离度 6 0.60 0.64 0.36 0.71 0.12 4.58 -2.01 0.21 聚集指数 6 0.97 0.97 0.89 1.03 0.05 -0.59 -0.25 0.05 竞争指数 4 5.96 5.81 5.18 7.03 0.90 -3.53 0.43 0.15 安吉 年龄隔离度 4 0.47 0.47 0.44 0.50 0.03 -5.98 0.00 0.07 聚集指数 4 0.88 0.86 0.83 0.97 0.07 2.24 1.49 0.07 竞争指数 6 5.89 5.43 3.82 8.81 2.04 -1.63 0.54 0.35 宁海 年龄隔离度 6 0.56 0.53 0.47 0.68 0.09 -1.62 0.58 0.16 聚集指数 6 0.97 0.97 0.76 1.24 0.18 -0.38 0.38 0.18 竞争指数 4 4.97 4.73 4.54 5.88 0.61 3.64 1.88 0.12 黄岩 年龄隔离度 4 0.71 0.72 0.55 0.84 0.14 -3.25 -0.37 0.19 聚集指数 4 0.98 0.99 0.94 1.00 0.03 3.47 -1.82 0.03 竞争指数 6 4.97 5.12 3.37 6.72 1.16 0.07 0.13 0.23 武义 年龄隔离度 6 0.55 0.59 0.30 0.66 0.13 3.97 -1.90 0.24 聚集指数 6 0.92 0.89 0.76 1.20 0.15 3.38 1.57 0.16 竞争指数 6 4.89 4.72 2.95 7.44 1.64 -0.52 0.54 0.34 常山 年龄隔离度 6 0.60 0.61 0.45 0.71 0.10 -1.11 -0.43 0.16 聚集指数 6 0.96 0.93 0.80 1.17 0.13 -0.25 0.65 0.14 竞争指数 4 5.23 5.51 3.50 6.40 1.23 2.39 -1.26 0.24 泰顺 年龄隔离度 4 0.64 0.66 0.55 0.70 0.07 1.12 -1.21 0.11 聚集指数 4 0.94 0.92 0.90 1.02 0.05 3.37 1.80 0.05 竞争指数 4 3.99 3.59 2.88 5.91 1.32 2.94 1.60 0.33 庆元 年龄隔离度 4 0.53 0.54 0.38 0.64 0.11 0.50 -0.72 0.21 聚集指数 4 1.03 1.02 0.83 1.24 0.19 -4.30 0.11 0.19 竞争指数 54 5.62 5.57 2.88 8.81 1.38 -0.30 0.00 0.25 平均 年龄隔离度 54 0.58 0.58 0.30 0.84 0.11 0.20 -0.29 0.19 聚集指数 54 0.94 0.93 0.73 1.24 0.12 0.59 0.64 0.13 -
根据表 1可知:庆元的毛竹林聚集指数最大,为1.03,属于均匀分布。其他地区的聚集指数均小于1,属于聚集分布。全省毛竹林聚集指数平均值为0.94,属于聚集分布。从图 1可见:全省毛竹林聚集指数分布趋势不明显。聚集指数方差分析结果表明:不同地区毛竹林聚集指数没有显著性差异(P>0.05)(表 2)。
表 2 不同地区毛竹林空间结构指数方差分析
Table 2. Analysis of variance of spatial structure index of moso bamboo forest in different regions
方差来源 离差平均和 自由度 均方 F 显著性水平 地区间 0.155 9 0.017 1.31 0.259 聚集指数 地区内 0.578 44 0.013 总数 0.733 53 地区间 0.191 9 0:021 2:069 0.054 年龄隔离度 地区内 0.450 44 0:01 总数 0.641 53 地区间 32:376 9 3.597 2:296 0:033 竞争指数 地区内 68:943 44 1.567 总数 101:319 53 -
根据表 1和图 2可知:年龄隔离度最大的地区是位于浙江省东部区域的黄岩地区;年龄隔离度最小的地区是位于浙江省北部区域的安吉地区,全省毛竹林年龄隔离度分布趋势不明显。年龄隔离度方差分析的结果表明:不同地区毛竹林年龄隔离度没有显著性差异(P>0.05)(表 2)。
-
由表 1和图 3可知:竞争指数最小的是位于浙江省南部区域的庆元地区,竞争指数最大的是位于浙江省北部区域的余姚地区。从地理位置上看,浙江省南北部区域的竞争指数存在一定的差异,北部区域的竞争指数大于南部区域。
竞争指数方差分析结果如表 2所示。不同地区毛竹林竞争指数存在显著差异(P<0.05)。因此,进一步对10个县(市、区)毛竹林竞争指数进行多重比较。多重比较的结果如图 4所示:余姚与庆元、常山、武义毛竹林竞争指数存在显著差异(P<0.05),与黄岩、泰顺、宁海、安吉、诸暨、临安毛竹林竞争指数差异不显著。临安、诸暨与庆元、常山毛竹林竞争指数存在显著差异(P<0.05),与黄岩、武义、泰顺、宁海、安吉毛竹林竞争指数差异不显著。诸暨与庆元、常山毛竹林竞争指数存在显著差异(P<0.05),与黄岩、武义、泰顺、宁海、安吉毛竹林竞争指数差异不显著。安吉、宁海与庆元毛竹林竞争指数存在显著差异(P<0.05),与常山、黄岩、武义、泰顺、宁海毛竹林竞争指数差异不显著。泰顺与庆元、常山、黄岩、武义毛竹林竞争指数差异不显著。武义与庆元、常山、黄岩毛竹林竞争指数差异不显著。黄岩与庆元、常山毛竹林竞争指数差异不显著。常山与庆元毛竹林竞争指数差异不显著。
-
SHI等[15]研究发现:年均降水量和年均气温对毛竹林结构具有一定的影响。由图 5和图 6可知:不同地区竞争指数与年均降水量和年均气温显著相关(P<0.01),随着年均降水量和年均气温的增加,竞争指数减小。周文伟[16]研究表明:降水量的增加能促进毛竹的生长,水热条件较高的庆元比水热条件较低的安吉的毛竹产量高。实际上,较好的水热条件可以降低毛竹之间的竞争,从而促进毛竹的生长。可见,年均降水量和年均气温是影响空间结构的重要因素。
-
为提高毛竹林经营水平,研究者通常关注立竹度、年龄结构和树种组成等结构因子[7]。本研究表明:浙江省不同地区的毛竹林竞争指数存在较大差异。不同地区毛竹竹秆材积与竞争指数存在相反的变化趋势(图 4和图 7)。因此,调控毛竹林的竞争关系在毛竹林经营中具有不可忽视的作用。为提高竹秆材积产量,在北部地区更需要采取合理的空间结构调控措施,降低毛竹林竞争强度,以促进毛竹生长,提高毛竹产量。
-
本研究以浙江省少受人为干扰的近自然毛竹林为研究对象,研究浙江省不同地区毛竹林空间结构特征及其差异性。得出以下主要结论:①浙江省近自然毛竹林空间结构因子的统计特征表明,10个地区毛竹林竞争指数为2.88~8.81,平均为5.62,余姚毛竹林竞争指数最大,临安毛竹林竞争指数次之,庆元毛竹林竞争指数最小;毛竹林年龄隔离度为0.30~0.84,平均为0.58,黄岩毛竹林年龄隔离度最高,余姚次之,武义最低;毛竹林聚集指数为0.73~1.24,平均为0.94,宁海毛竹林聚集指数最大,庆元次之,余姚最小。浙江省近自然毛竹林空间分布格局以聚集分布为主。②浙江省近自然毛竹林空间结构因子的差异性分析结果表明:浙江省不同地区毛竹林竞争指数存在显著差异,聚集指数和年龄隔离度不存在显著差异。空间结构指数存在一定的区域变化趋势,从北到南竞争指数存在逐渐减小的趋势。
Spatial structure characteristics of close-to-nature Phyllostachys edulis forests in Zhejiang Province
-
摘要:
目的 研究浙江省不同地区毛竹Phyllostachys edulis林空间结构特征及其差异性。 方法 以浙江省不同地区近自然生长的毛竹林为研究对象,共设置54个样地,采用聚集指数、竞争指数和年龄隔离度3个空间结构指数。 结果 浙江省不同地区毛竹林竞争指数为2.88~8.81,其中余姚地区最大,庆元地区最小;年龄隔离度为0.30~0.84,其中黄岩地区最大,武义地区最小;聚集指数为0.73~1.24,其中宁海地区最大,余姚地区最小。浙江省不同地区毛竹林年龄隔离度和聚集指数没有显著差异,而不同地区间竞争指数存在显著差异(P < 0.05)。 结论 浙江省毛竹林空间分布格局以聚集分布为主。空间结构指数存在一定的区域变化趋势,从北到南竞争指数逐渐减小。 Abstract:Objective Spatial structure characteristics and differences of moso bamboo (Phyllostachys edulis) forests in different regions of Zhejiang Province were studied. Method The close-to-nature moso bamboo forests in different regions of Zhejiang Province were taken as the research objects, 54 sample plots were set up, and spatial structure indices (aggregation index, competition index and age mingling) were used to analyze spatial structure characteristics and differences of moso bamboo forests in different regions of Zhejiang Province. Result The mean competition index of moso bamboo forest in different regions of Zhejiang Province is 2.88-8.81, among which Yuyao is the largest and Qingyuan is the smallest. The mean age mingling is 0.30-0.84, the largest in Huangyan and the smallest in Wuyi. The mean aggregation index is 0.73-1.24, the largest in Ninghai area and the smallest in Yuyao area. There was no significant difference in age mingling and aggregation index among different regions in Zhejiang Province, whereas there was significant difference in competition index among different regions in Zhejiang Province(P < 0.05). Conclusion The spatial distribution pattern of moso bamboo forests in Zhejiang Province was mainly aggregated distribution. The spatial structure index has a certain regional variation trend, and the competition index decreases gradually from north to south. -
Key words:
- forest ecology /
- Zhejiang Province /
- Phyllostachys edulis /
- aggregation index /
- competition index /
- age mingling
-
棉纤维是由外珠被表皮层的单细胞分化发育而成,分为长绒(lint)和短绒(fuzz)2种,长绒是高级棉纱纺织品的主要原材料,短绒主要用做制作纤维素、絮棉、纸张及纺织品的原料。在已有的四倍体棉种中,陆地棉Gossypium hirsutum和海岛棉Gossypium barbadense已经被驯化为栽培种[1-3]。目前世界上97%的棉纤维都产自陆地棉,产量高且适应性广,但是纤维品质中等;海岛棉产量低,适应性差,栽培范围不广泛,但是其纤维更长且品质高。如何获得优质高产的棉种,一直是遗传育种学家关注的焦点。而随着遗传学、细胞学和分子生物学等学科的交叉融合,棉纤维生长发育分子机制已成为国内外研究的热点。探明棉花种子表皮细胞生长发育的分子基础,对于提高棉花产量及改良纤维品质至关重要。早期有关棉纤维发育研究大多集中于遗传定位。大量与纤维品质和产量相关的数量性状位点(QTL)通过图位克隆的方法被发现于各个染色体[4-5],而光子显性基因Li1,Li2,N1和Fbl以及光子隐性基因n2,sma-4(fz)和sma-4(ha)[6]等一直备受关注。近年来,深度测序技术的兴起,对棉纤维发育的分子机制的研究起了有效的推动作用。随着深度测序技术的不断革新,棉花全基因组测序不断完善[7],全基因组微卫星序列得以注释[8],单核苷酸多态性(SNP)芯片的开发成为可能[9],使得遗传定位工作更加便捷[9-10]。转录组学、蛋白组学及表观遗传学领域三方位的深度测序有效构建了核糖核酸(RNA)水平和蛋白质水平、编码区域和非编码序列之间的联系,并发现一系列的转录因子、编码转脂蛋白的基因、钙信号转导相关基因、多糖合成相关蛋白、大量的微核糖核酸(miRNA)以及脱氧核糖核酸(DNA)甲基化作用等共同参与棉纤维发育过程[11-16]。本文将从棉纤维发育各时期的形态结构变化及特征,经典遗传学研究,深度测序技术在转录组学、蛋白组学及表观遗传学领域的运用,以及棉纤维发育各个时期所涉及的相关调控基因等4个方面对棉纤维发育机制的研究进展进行综述。
1. 棉纤维发育各时期的形态结构变化特征
棉纤维细胞发育进程是一个多基因调控的有序的系统发生过程,整个细胞分化过程可被分为棉纤维起始、伸长、次生壁合成与增厚、脱水成熟等4个时期[17-20]。
1.1 棉纤维起始期
长绒纤维细胞一般在开花前或开花当天就开始突起,而短绒纤维的突起要稍迟几天,两者的分化过程基本相似[21]。RAMSEY等[22]通过观察开花前16 d到开花当天胚珠的亚显微结构,发现开花前16 d到前3 d表皮细胞无差异,说明纤维原始细胞的分化与突起晚于开花前3 d。而在开花前2~3 d纤维原始细胞受生长素(IAA)和赤霉素(GA3)的刺激开始产生纤维[11],开花当天,纤维原始细胞的分化与突起已基本完成。棉花纤维原始细胞分化与突起多少决定种子表面纤维数量,从而决定了棉纤维的产量。
1.2 棉纤维伸长期
研究发现一般只有25%~30%的棉花种子表皮细胞(约2万个)能正常突起伸长,形成成熟的纤维[23-24]。棉纤维的伸长几乎和突起同时进行,从开花当天开始,发生在细胞壁膨胀过程,纤维的最终长度取决于纤维伸长速率和持续时间2个方面[25],一般持续20~30 d,该过程通过一种扩散生长机制实现并指导纤维细胞的极化生长[26-27]。纤维伸长分为非极性膨胀和极性伸长2个阶段:非极性膨胀期决定了纤维的细度,纤维细胞向四周扩展直至形成纤维的最终直径[28];极性伸长期可使纤维长度达到最终长度的80%[29],这一时期生化反应最为活跃,主要决定纤维的长度,是影响纤维品质的关键时期[24]。
1.3 棉纤维次生壁合成与增厚期
棉纤维次生壁合成与增厚期和纤维伸长期存在一段时期的重叠[17],在开花后16 d开始,持续到开花后40 d,在这段时期,纤维素大量沉积,次生壁不断加厚[30]。伴随着纤维素沉积的加速,纤维伸长逐渐减弱,该过程是影响纤维强度和韧性的关键时期。
1.4 棉纤维脱水成熟期
在次生壁合成与增厚期后就进入了纤维脱水成熟期,发生在开花后40~50 d,棉铃开裂至充分吐絮,纤维失水,形成转曲[31]。成熟的棉纤维由外向内依次为初生壁、次生壁和中腔。
2. 棉花纤维生长发育的遗传学研究
遗传规律研究和基因遗传定位是经典遗传学中2项重要的基础工作。在棉纤维遗传规律研究中发现,相同性状的材料基因型不同,其遗传模式也不同,而棉纤维发育相关基因的遗传定位又可被分成质量性状和数量性状(QTL)的定位。
2.1 棉纤维遗传规律研究
CARVER[32]和KEARNEY等[33-34]研究发现棉花光子性状主要由2对独立的位点控制,显性光子基因(N1)和隐性光子基因(n2),宋丽等[35]证实这2种光子基因均符合单基因遗传模型。既无长绒也无短绒的L40突变体的光子性状为不完全显性[36]。既无长绒也无短绒的突变体Xu142 fl的短绒的发育受N1和n2 2对基因控制,长绒的发育受Li3基因位点控制[37]。陆地棉短绒突变体Li1和Li2均为单基因显性遗传[38-40]。孙亚莉等[41]选取大量的陆地棉和海岛棉的光子材料对棉花光子性状进行了遗传分析,其研究发现棉花短绒多少与生态环境有关系,且不同品种光子材料的遗传模式也不同,不论海岛棉还是陆地棉材料均存在显性、部分显性和隐性遗传。对3个陆地棉隐性性状的材料进一步研究表明:这3个材料的遗传规律均不同,‘库光子’的光子性状由2对隐性等位基因控制,并且有互补效应;‘陆无絮’的光子性状由2对隐性等位基因控制,基因间呈积加作用;SA65的光子性状由单隐性基因控制。
2.2 棉纤维基因的QTL定位
纤维品质性状包括长度、整齐度、伸长率、强度、细度、颜色和马克隆值等多个方面。随着分子标记的不断开发与应用,在棉花染色体A组和D组染色体上都有大量棉纤维品质和产量相关的QTL被发现(表 1)。从表 1可知:纤维品质和产量性状的QTL几乎遍布了每一条染色体,且不同实验室使用不同的群体所得到的结果也有很大差异。同时,研究也发现这些性状受环境的影响很大,某些QTL在不同环境条件下有变化,甚至检测不到,导致已定位的QTL间重复性差[10, 42],这也说明纤维品质及产量性状的遗传非常复杂。研究也发现了一些稳定的主效QTL,如第10号染色体的棉纤维强度主效QTL(FS1),解释了超过30.00%的表型变异[43];第19号染色体影响衣分的QTL(qLI17),解释24.30%的表型变异[34];第8号染色体上颜色相关QTL(Ge6_Rd_8_3_10.60_[+]),解释48.00%的表型变异[5];以及第14号染色体上与长度相关的QTL(qFL-Chr14-3),解释15.05%的表型变异[10],等等。此外,有些QTL虽然微效,但在不同环境下都能稳定存在,比如WANG等[42]在8,11,12和21号染色上发现的6个QTL:qFL-A8-1(长度相关),qFS-A8-1(强度相关),qFS-A12-1(强度相关),qFS-A12-2(强度相关),qFS-D11-1(强度相关)和qFM-A11-1(马克隆值相关)。这些稳定存在的QTL都值得科研工作者进一步关注和研究。
表 1 不同群体中与棉纤维品质和产量相关的QTL分布Table 1. QTL related to cotton fiber quality and yield in different populations性状 QTL所在染色体或连锁群 检出限(LOD) 变异率1% 群体 出处 长度 Chr04,Chrl8,Chr22 2.00~2.74 7.80~12.60 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[44] Chr20,LGA02(Chr08),LGA03 (Chr11),LGA05 2.63~5.40 2.90~13.70 陆地棉Siv’ on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr04 3.50 24.00 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr01,Chr03,Chr04,Chr06,Chr09,Chr13,Chr14,Chr18,Chr19,Chr20,Chr21,Chr23,Chr24,Chr26 3.30~9.50 6.00~40.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr05,Chr07,Chr08,Chr11,Chr12,Chr19,Chr21,Chr23,Chr26 4.57~6.05 2.47~8.49 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] Chr10,Chr14,Chr15 2.50~7.71 6.21~15.05 陆地棉HS46 ×陆地棉MAR CABU-CAG8US-1-88 RIL LI等[10] 整齐度 Chr04,Chr14,Chr15,Chr22,LGA03 (Chr11),LGA05 1.65~3.79 2.10~13.30 陆地棉Siv’on×海岛棉F-177的F2和F3群0体 PATERSON等[4] Chr05,Chr09,Chr12,Chr15,Chr16,Chr18,Chr19,Chr20,Chr23,Chr26 3.50~7.80 9.00~32.00 陆地棉Guazuncho-2×海岛棉VH8-4602 RIL LACAPE等[5] Chr09 2.68~4.17 5.58~10.94 陆地棉HS46 ×陆地棉MARCABU- CAG8US-1-88的RIL LI等[10] 伸长率 Chr05,Chr10,Chr15,Chr23,LGA02 (Chr8),LGA03(Chr11),LGD07 2.32~5.77 3.40~8.90 陆地棉Siv’on×海岛棉F-l77的F2和F3群体 PATERSON等[4] Chr09 5.16 42.00 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr02,Chr06,Chr09,Chr10,Chr12,Chr13,Chr15,Chr19,Chr20,Chr21,Chr23,Chr26 3.40~6.70 6.00~21.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr14,Chr20,Chr24 2.49~7.80 5.35~32.28 陆地棉HS46 ×陆地棉MARCABU-CAG8US-1-88 RIL LI等[10] 强度 Chr03,Chr14,Chr15,Chr25 2.08~2.69 10.40~23.10 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[10] Chr10 4.79~5.80 53.00~53.80 异质棉7235×陆地棉TM-1的F2群体 ZHANG等[43] Chr01,Chr04,Chr14,Chr17,Chr18,Chr20,Chr22,Chr23,Chr25,LGA01 (Chr13),LGA02(Chr08),LGA03(Chr11),LGA05,LGD02(Chr21),LGD03(Chr24),LGD04,LGD07 0.21~6.22 2.50~17.40 陆地棉Siv’on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr03,Chr04,Chr05,Chr07,Chr09,Chr12,Chr14,Chr15,Chr16,Chr18,Chr19,Chr21,Chr23,Chr26 3.30~8.50 7.00~31.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr05,Chr07,Chr08,Chr09,Chr11,Chr12,Chr13,Chr14,Chr15,Chr16,Chr17,Chr18,Chr21,Chr23 7.32~22.54 5.07~15.82 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] 细度 Chr01,Chr02,Chr03,Chr12,Chr16,LGD01 2.16~4.04 16.70~43.90 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[44] Chr02,Chr04,Chr05,Chr06,Chr09,Chr14,Chr15,Chr17,Chr20,Chr23,Chr25,LGA01 (Chr13),LGA05,LGA06,LGD01,LGD02(Chr2l),LGD03(Chr24),LGD04,LGD05,LGD07 2.21~9.78 2.20~30.30 陆地棉Siv’on×海岛棉F-l77的F2和F3群体 PATERSON等[4] Not determined 5.11 43.20 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr01,Chr02,Chr03,Chr04,Chr05,Chr06,Chr08,Chr09,Chr10,Chr12,Chr15,Chr16,Chr17,Chr18,Chr19,Chr20,Chr21,Chr22,Chr23,Chr24,Chr25,Chr26 3.30~8.90 6.00~41.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] 颜色 Chr06,Chr09,Chr14,Chr17,Chr18,Chr22,Chr25,LGA01,LGA02,LGA03,LGD02(Chr21) 2.66~11.67 2.50~14.90 陆地棉Siv’on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr01,Chr02,Chr06,Chr07,Chr08,Chr09,Chr11,Chr14,Chr15,Chr17,Chr18,Chr19,Chr21,Chr22,Chr25 3.30~10.60 6.00~48.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] 马克隆值 Chr05,Chr06,Chr09,Chr11,Chr12,Chr15,Chr16,Chr19,Chr21,Chr22 4.56~9.09 0.80~8.03 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] Chr14,Chr16 2.51~4.23 5.52~9.20 陆地棉HS46 ×陆地棉MARCABU- CAG8US-1-88 RIL LI等[10] 产量 A02(Chr08),A03(Chr11),Chr14,Chr23,Chr25,LG5 3.00~5.28 13.01~28.35 陆地棉Handan 208×海岛棉Pima 90的F2群体 HE等[46] 衣分 D08(Chr19) 3.45 24.34 陆地棉Handan 208×海岛棉Pima 90的F2群体 HE等[46] 然而,棉纤维相关性状QTL的分离和克隆仍然很少。有研究发现在第12条染色体上(A12/D12)与棉纤维品质相关的QTL附近的GhHOX3基因对棉纤维长度起重要调控作用[47],以及定位于同源染色体A8(chr08)和D8(chr24)上的GhSusA1基因过表达可以增强纤维长度和强度[48]。
2.3 棉纤维基因的质量性状定位
在光子显性基因定位中发现,N1和Fbl基因位于chr12上[6],其中N1基因被鉴定为转录因子MYB25-like[49]。光子隐性基因定位研究表明:n2定位在chr26上,sma-4(fz)位于L.G.A3的端部,sma-4(ha)位于L.G.A3中部[6]。超短纤维突变体Li1基因位于chr22上,并已通过精细定位被克隆到,是一个肌动蛋白家族基因[50-53];而Li2基因则位于chr18上[6, 53]。
3. 棉纤维发育组学研究
棉纤维发育过程涉及到大量的基因和通路调控。利用高通量测序技术,对棉纤维发育的转录组和蛋白组分析及表观遗传研究,可以短时间内获得大量信息,捕获到许多参与不同发育阶段的特异性基因及信号通路,为下游单独研究重要基因的功能奠定良好的基础。
3.1 转录组学研究
利用棉花胚珠体外培养技术结合转录组数据分析比较,KIM等[11]在纤维起始分化时期发现了许多在野生型和无毛突变体间表达有差异的基因,包括MYB25,MYB109,PDF1,MYB25-like,HD1等转录调节因子,表明在棉纤维起始分化过程中存在复杂的信号网络调节机制。通过比较短绒突变体(Li1)与野生型之间在开花后1,3和8 d的转录组数据,LIANG等[49]在胚珠中共检测到7 852个差异表达基因,主要参与次生代谢物和脂质代谢途径,其中涉及非长链脂肪酸生物合成的37个基因在Li1突变体纤维的快速伸长发育过程中被显著抑制,这说明脂质代谢途径与纤维伸长密切相关。HOVAV等[54]评估了从开花后初级次生壁到次级次生壁合成过程中棉纤维发育的转录组变化发现,棉纤维发育过程中的基因转录水平很高,在每个阶段占到所有基因的75%~94%,并且半数以上的基因在纤维发育的至少一个阶段中上调。BOLTON等[55]利用基因芯片技术和实时荧光定量PCR技术在Li1突变体中发现超过100个基因在次生壁的生物合成过程中差异表达,其中的3个候选基因:伸展蛋白(extensin),蔗糖合成酶(sucrose synthase)和微管蛋白(actin)的表达量明显偏离野生型的表达水平。通过陆地棉TM-1背景下的海岛棉染色体导入系与亲本纤维的转录组差异比较,FANG等[56]在CSIL-35431和CSIL-31010等2个导入系的次生壁合成过程中发现了大量与TM-1有表达差异的基因,功能富集分析表明这些基因主要富集于次生细胞壁的生物合成、葡糖醛酸合成、纤维素合成等生物途径。
3.2 蛋白质组学研究
利用蛋白组学研究,许多棉纤维发育过程中的重要蛋白被不断发掘,且此技术很好地互补了转录组只能在mRNA水平上研究纤维相关基因的劣势。HU等[12]应用相对和绝对定量(iTRAQ)LC-MS/MS分析技术研究了1 317个纤维特异性表达蛋白,其中205个蛋白在发育阶段中差异表达,190个蛋白在野生和栽培棉之间差异表达。结合转录组、iTRAQ蛋白质组和遗传图谱定位的综合分析方法,MA等[13]发现徐州142野生型与其无绒毛突变体(fl)的胚珠之间存在大量差异表达的基因和蛋白,这些差异基因和蛋白主要存在于氨基酸、核苷酸、脂肪酸和叶酸代谢以及黄酮生物合成中,说明这些代谢途径在纤维发育过程中具有重要作用。
3.3 表观遗传学研究
近年来,棉纤维发育的表观遗传学研究也取得了巨大进展。基于pre-miRNAs和已发现的miRNA靶基因数据,CHEN等[14]对83个miRNA前体及其目标调控基因进行了研究,并构建了miRNAs及其靶位点调控网络,并揭示了这些miRNA及靶基因在纤维不同发育阶段的表达模式。SONG等[15]对纤维和胚珠进行了甲基化组、转录组和小RNA组学分析,发现在胚珠和纤维发育过程中CHH甲基化变化显著。该研究发现,在胚珠中,启动子中的CHH甲基化与可诱导RNA依赖的DNA甲基化(RdDM)和胚珠偏好基因上调的siRNA呈正相关;在纤维细胞中,胚珠衍生细胞产生独立的RdDM的异染色质CHH超甲基化,抑制转座子及附近纤维相关基因的活性。使用甲基化抑制剂5-氮-2′-脱氧胞苷对胚珠进行体外培养,可以减少纤维细胞的数量和长度,这表明DNA甲基化在纤维发育中具有潜在作用。这些研究表明:启动子和转座子及附近基因中的RdDM依赖的甲基化可作为基因和转座子表达的双保险反馈机制。ZOU等[16]对参与纤维起始和伸长过程的长链非编码RNA(lncRNA)进行了系统分析,共鉴定到5 996条lncRNAs,其中长链非编码RNA(lincRNA)3 510条,天然反义转录RNA(lncNAT)2 486条,表明lncRNA对棉纤维的发育至关重要。
4. 棉纤维发育不同时期相关调控基因研究
4.1 棉纤维起始期相关基因
在棉花胚珠EST数据库中,约10%的基因与转录因子密切相关,包括56个转录因子家族成员[57],如MYB类转录因子家族的GL1及其同源基因MYB2[58],MYB109[59],TTG1[60]和GL2[61]等均被发现在棉纤维发育的早期阶段高效表达。棉花GaMYB2基因可以诱导种子表皮毛的产生,且转化拟南芥可以弥补GL1突变对表皮毛起始分化造成的影响[58]。通过干扰GhMYB109的表达,PU等[62]发现棉纤维细胞分化延迟且起始数量减少,说明GhMYB109在棉花纤维分化阶段起重要作用。LOGUERICO等[63]发现GhMYB4和GhMYB5基因在纤维分化期的胚珠中特异表达。WALFORD等[64]发现GhHD1可以介导棉花表皮细胞的分化。辛婧[65]的研究表明转录因子GbSPB8可能调控棉花纤维起始发育。
4.2 棉纤维伸长期相关基因
转脂蛋白和钙信号转导相关蛋白在棉纤维伸长过程中起到极其重要的作用。MA等[66]研究发现:转脂蛋白GhLTP3和GhLTP6的表达量在纤维快速伸长期达到最高水平,此外李锡花等[67]发现GhLTP3的表达量从开花后0~15 d中表达量不断升高,在第15天达到顶峰,之后逐渐下降。赵存鹏等[68]和GAPPER等[69]研究发现:钙调蛋白CaM在低温逆境的条件下能使活性氧(ROS)、超氧游离基、过氧化氢和羟自由基等物质提高,进而使纤维细胞壁松弛,从而影响细胞伸长。CHENG等[70]发现GhCaM7-like基因在纤维快速伸长期显著表达。HUANG等[71]发现钙依赖性蛋白激酶GhCPK1在开花第10天的胚珠中高表达。这些研究都说明钙信号转导在纤维伸长过程中发挥重要作用。除了转脂蛋白和钙信号转导相关蛋白,转录调节因子也参与其中,如ZHANG等[72]发现GbMYB25与GbML1相互作用并通过调节ROS信号调节纤维伸长。HSU等[73]发现GhMYB7可以调控LTP3等脂转移蛋白编码基因。
4.3 棉纤维次生壁合成与加厚期相关基因
DELMER等[74]发现Rac9和Rac13可以控制棉花纤维素沉积方向。ZHAO等[75]发现GhRGP1在纤维发育的初生壁伸长及次生壁加厚后期优势表达,参与植物细胞壁非纤维素类的多糖合成。杨郁文等[76]发现一种Ser/Thr激酶和Try激酶的双受体蛋白GhRLK1与激活和维持次级细胞壁形成的细胞信号传导过程有关。此外,GhRDL1(RD22-Like1)与GhEXPA1互作会影响纤维细胞壁发育,GhRDL1基因过表达会产生长且质量较好的棉纤维[77]。
4.4 棉纤维脱水成熟期相关基因
目前,关于棉纤维细胞脱水成熟期的相关研究较少,对于纤维在脱水成熟过程中细胞与分子水平的变化还不清楚,只是猜想可能涉及到棉纤维细胞的程序性死亡[78]。
5. 研究展望
随着技术的革新,大量棉纤维发育相关基因和涉及的调控网络被不断发现,但是基因间的相互作用及其潜在的调控机制还有待进一步探索。近年来,棉花转基因技术日益成熟,新兴的CRISPR/Cas9基因编辑系统也于2017年3月在棉花基因组靶基因敲除中得到首次应用。JANGA等[79]利用CRISPR/Cas9系统成功将转绿色荧光蛋白(GFP)基因棉花系的GFP基因敲除;LI等[80]以棉花內源GhMYB25为目标基因,使用2种单导向RNA对该基因进行定点突变,突变率分别为100%和98.8%。这些研究表明:CRISPR/Cas9可以在棉花基因组上进行高效和高特异性地突变。随着新技术在棉花中的应用与成熟,棉纤维发育相关基因及其调控机制也有望有更多的发现。
-
表 1 浙江省毛竹林空间结构指数描述统计特征
Table 1. Descriptive statistical characteristics of spatial structure index of moso bamboo forest in Zhejiang Province
地区 空间结构指数 样地数 均值 中值 极小值 极大值 标准差 峰度 偏度 变异系数 竞争指数 8 6.47 6.71 4.75 8.68 1.20 0.74 0.48 0.19 余姚 年龄隔离度 8 0.62 0.62 0.52 0.73 0.07 -0.97 0.18 0.12 聚集指数 8 0.84 0.84 0.73 1.00 0.09 -0.47 0.46 0.11 竞争指数 6 6.40 6.56 5.52 7.35 0.65 -0.11 0.00 0.10 临安 年龄隔离度 6 0.51 0.51 0.34 0.65 0.11 0.57 -0.38 0.21 聚集指数 6 0.97 0.96 0.92 1.07 0.06 2.52 1.49 0.06 竞争指数 6 6.36 6.25 5.57 7.57 0.68 2.15 1.16 0.11 诸暨 年龄隔离度 6 0.60 0.64 0.36 0.71 0.12 4.58 -2.01 0.21 聚集指数 6 0.97 0.97 0.89 1.03 0.05 -0.59 -0.25 0.05 竞争指数 4 5.96 5.81 5.18 7.03 0.90 -3.53 0.43 0.15 安吉 年龄隔离度 4 0.47 0.47 0.44 0.50 0.03 -5.98 0.00 0.07 聚集指数 4 0.88 0.86 0.83 0.97 0.07 2.24 1.49 0.07 竞争指数 6 5.89 5.43 3.82 8.81 2.04 -1.63 0.54 0.35 宁海 年龄隔离度 6 0.56 0.53 0.47 0.68 0.09 -1.62 0.58 0.16 聚集指数 6 0.97 0.97 0.76 1.24 0.18 -0.38 0.38 0.18 竞争指数 4 4.97 4.73 4.54 5.88 0.61 3.64 1.88 0.12 黄岩 年龄隔离度 4 0.71 0.72 0.55 0.84 0.14 -3.25 -0.37 0.19 聚集指数 4 0.98 0.99 0.94 1.00 0.03 3.47 -1.82 0.03 竞争指数 6 4.97 5.12 3.37 6.72 1.16 0.07 0.13 0.23 武义 年龄隔离度 6 0.55 0.59 0.30 0.66 0.13 3.97 -1.90 0.24 聚集指数 6 0.92 0.89 0.76 1.20 0.15 3.38 1.57 0.16 竞争指数 6 4.89 4.72 2.95 7.44 1.64 -0.52 0.54 0.34 常山 年龄隔离度 6 0.60 0.61 0.45 0.71 0.10 -1.11 -0.43 0.16 聚集指数 6 0.96 0.93 0.80 1.17 0.13 -0.25 0.65 0.14 竞争指数 4 5.23 5.51 3.50 6.40 1.23 2.39 -1.26 0.24 泰顺 年龄隔离度 4 0.64 0.66 0.55 0.70 0.07 1.12 -1.21 0.11 聚集指数 4 0.94 0.92 0.90 1.02 0.05 3.37 1.80 0.05 竞争指数 4 3.99 3.59 2.88 5.91 1.32 2.94 1.60 0.33 庆元 年龄隔离度 4 0.53 0.54 0.38 0.64 0.11 0.50 -0.72 0.21 聚集指数 4 1.03 1.02 0.83 1.24 0.19 -4.30 0.11 0.19 竞争指数 54 5.62 5.57 2.88 8.81 1.38 -0.30 0.00 0.25 平均 年龄隔离度 54 0.58 0.58 0.30 0.84 0.11 0.20 -0.29 0.19 聚集指数 54 0.94 0.93 0.73 1.24 0.12 0.59 0.64 0.13 表 2 不同地区毛竹林空间结构指数方差分析
Table 2. Analysis of variance of spatial structure index of moso bamboo forest in different regions
方差来源 离差平均和 自由度 均方 F 显著性水平 地区间 0.155 9 0.017 1.31 0.259 聚集指数 地区内 0.578 44 0.013 总数 0.733 53 地区间 0.191 9 0:021 2:069 0.054 年龄隔离度 地区内 0.450 44 0:01 总数 0.641 53 地区间 32:376 9 3.597 2:296 0:033 竞争指数 地区内 68:943 44 1.567 总数 101:319 53 -
[1] 周国模, 姜培坤.不同植被恢复对侵蚀型红壤活性碳库的影响[J].水土保持学报, 2004, 18(6):68-70. ZHOU Guomo, JIANG Peikun. Changes in active organic carbon of erosion red soil by vegetation recovery[J]. J Soil Water Conserv, 2004, 18(6):68-70. [2] 杨麒麟, 李柏.滑坡区毛竹根系生长分布及其护坡效果研究[J].长江科学院院报, 2017, 34(10):45-49. YANG Qilin, LI Bai. Growth distribution of bamboo root system in landslide area and its slope protection effect[J]. J Yangtze River Sci Res Inst, 2017, 34(10):45-49. [3] PRETZSCH H. Analysis and modeling of spatial stand structures: methodological considerations based on mixed beech-larch stands in Lower Saxony[J]. For Ecol Manage, 1997, 97(3):237-253. [4] 汤孟平, 陈永刚, 徐文兵, 等.森林空间结构分析[M].北京:科学出版社, 2013. [5] 黄丽霞, 袁位高, 黄建花, 等.不同经营方式下毛竹林的林分空间结构比较研究[J].浙江林业科技, 2008, 28(3):48-51. HUANG Lixia, YUAN Weigao, HUANG Jianhua, et al. Comparative study on spatial structure of Phyllostachys heterocycla var. pubescens stand with different management[J]. J Zhejiang For Sci Technol, 2008, 28(3):48-51. [6] 邓英英, 汤孟平, 徐文兵, 等.天目山近自然毛竹纯林的竹秆空间结构特征[J].浙江农林大学学报, 2011, 28(2):173-179. DENG Yingying, TANG Mengping, XU Wenbing, et al. Spatial structure of bamboo culm of an almost natural, pure Phyllostachys pubescens forest in Mount Tianmu[J]. J Zhejiang A&F Univ, 2011, 28(2):173-179. [7] 汤孟平, 徐文兵, 陈永刚, 等.毛竹林空间结构优化调控模型[J].林业科学, 2013, 49(1):120-125. TANG Mengping, XU Wenbing, CHEN Yonggang, et al. Spatial structure optimizing adjustment and control model of Phyllostachys edulis stand[J]. Sci Silv Sin, 2013, 49(1):120-125. [8] 唐思嘉, 汤孟平, 赵赛赛, 等.天目山毛竹竞争空间格局的动态分析[J].浙江农林大学学报, 2018, 35(2):199-208. TANG Sijia, TANG Mengping, ZHAO Saisai, et al. Competitive spatial patterns for moso bamboo on Mount Tianmu[J]. J Zhejiang A&F Univ, 2018, 35(2): 199-208. [9] 汤孟平, 唐守正, 雷相东, 等.两种混交度的比较分析[J].林业资源管理, 2004(4):25-27. TANG Mengping, TANG Shouzheng, LEI Xiangdong, et al. Comparison analysis on two minglings[J]. For Resour Manage, 2004(4):25-27. [10] 仇建习, 汤孟平, 沈利芬, 等.近自然毛竹林空间结构动态变化[J].生态学报, 2014, 34(6):1444-1450. QIU Jianxi, TANG Mengping, SHEN Lifen, et al. Dynamic analysis of spatial structure in a close-to-nature Phyllostachys edulis stands[J]. Acta Ecol Sin, 2014, 34(6):1444-1450. [11] 仇建习, 汤孟平, 沈利芬, 等.天目山近自然毛竹林空间结构与胸径的关系[J].生态学报, 2015, 35(12):4081-4088. QIU Jianxi, TANG Mengping, SHEN Lifen, et al. The relationship between spatial structure and DBH of close-to-nature Phyllostachys edulis stands in Tianmu Mountain[J]. Acta Ecol Sin, 2015, 35(12):4081-4088. [12] 汤孟平, 徐文兵, 陈永刚, 等.天目山近自然毛竹林空间结构与生物量的关系[J].林业科学, 2011, 47(8):1-6. TANG Mengping, XU Wenbing, CHEN Yongguang, et al. Relationship between spatial structure and biomass of a close-to-nature Phyllostachys edulis stand in Tianmu Mountain[J]. Sci Silv Sin, 2011, 47(8):1-6. [13] 汤孟平, 陈永刚, 施拥军, 等.基于Voronoi图的群落优势树种种内种间竞争[J].生态学报, 2007, 27(11):4707-4716. TANG Mengping, CHEN Yonggang, SHI Yongjun, et al. Intraspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram[J]. Acta Ecol Sin, 2007, 27(11):4707-4716. [14] 汤孟平, 娄明华, 陈永刚, 等.不同混交度指数的比较分析[J].林业科学, 2012, 48(8):46-53. TANG Mengping, LOU Minghua, CHEN Yonggang, et al. Comparative analyses on different mingling indices[J]. Sci Silv Sin, 2012, 48(8): 46-53. [15] SHI Yongjun, LIN Xu, ZHOU Yufeng, et al. Quantifying driving factors of vegetation carbon stocks of moso bamboo forests using machine learning algorithm combined with structural equation model[J]. For Ecol Manage, 2018, 429:406-413. [16] 周文伟.降水对毛竹林生长的影响分析[J].竹子研究汇刊, 1991, 10(2): 33-39. ZHOU Wenwei. Effect of precipitation on growth of Phyllostachys pubescens forest[J]. J Bamboo Res, 1991, 10(2): 33-39. 期刊类型引用(6)
1. 冯常辉,李林,张友昌,王琼珊,张教海,王孝刚,夏松波. 棉花纤维品质SNP标记研究进展. 湖北农业科学. 2024(S1): 5-9+13 . 百度学术
2. 龙遗磊,郑凯,齐静潇,蔡永生,邓晓娟,曲延英,陈全家. 海岛棉GbPIN1a基因的克隆与表达特性分析. 农业生物技术学报. 2022(11): 2086-2098 . 百度学术
3. 孟超敏,耿翡翡,卿桂霞,周佳敏,张富厚,刘逢举. 陆地棉磷高效基因GhMGD3的克隆与表达分析. 浙江农林大学学报. 2022(06): 1203-1211 . 本站查看
4. 闵凯丽,晁祥保,滕露,蔡永生,雷慧辰,严中建,郑凯,陈全家. 海岛棉GbHCT10基因的克隆与表达分析. 新疆农业科学. 2021(02): 206-215 . 百度学术
5. 郭宝生,刘素恩,赵存鹏,王兆晓,王凯辉,李丹,刘旭,杜海英,耿军义. 转FBP7::iaaM基因陆地棉种质冀资139纤维品质性状杂种优势分析. 植物学报. 2021(02): 166-174 . 百度学术
6. 赵柯柯,曲延英,段雅洁,石颖颖,范蓉,刘亚丽,陈全家. 海岛棉GbMYB5基因的克隆及表达分析. 分子植物育种. 2021(08): 2512-2520 . 百度学术
其他类型引用(11)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2020.02.005