-
植物叶片含有叶绿素、叶黄素、花青素、类胡萝卜素等多种色素,正常生育期的叶片中叶绿素占据绝对优势而使得叶片呈现绿色[1]。叶片颜色变异是高等植物中一种普遍且易于识别的性状变异。由于自然突变或人工诱变,植物体内色素合成代谢相关基因发生变化,直接或间接地影响包括叶绿素在内的多种色素的合成或降解,使得叶色突变体中这些色素的质量分数和比例发生变化,植物叶片随之呈现不同的颜色[2]。通常叶色突变体的叶绿体结构会发生改变,叶绿体发生形变、外膜破损等,使得叶绿体无法维持正常功能,叶绿素的合成减少,光合作用减弱,导致植物生长发育不良甚至死亡[3]。因此,在很长一段时间内叶色变异被认为是没有价值的有害变异[4],直至有研究利用普通小球藻绿色突变体W5证明原卟啉Ⅲ是叶绿素合成的前体后[5],叶色突变体又得到重视,作为优良的实验材料在叶色调控机制、色素合成代谢途径、叶绿体结构、光合作用机制等基础研究中发挥着重要作用。另外,调控叶色的基因可作为选择标记基因应用在分子育种和杂交育种中;具有观赏性的叶色突变体也是优秀的彩叶植物种质资源,可被应用于园林绿化中。本文对近些年叶色突变体在来源、叶色性状分类、光合特性、叶色变异分子机制、应用价值等方面的研究进行综述,以期对叶色突变体研究提供依据和新的思路。
Research progress on classification, variation mechanism and application value of plant leaf color mutants
-
摘要: 植物叶色变异是自然界中一种常见并且容易识别的现象,叶色变异通常会影响植物的光合作用效率,导致生长不良,因此曾被认为是不良变异而逐渐被淘汰。但近年来,随着社会的发展和园林绿化的需求,叶色突变体逐渐受到关注。叶色突变体受到分子水平的调控,导致叶绿体结构异常,光合作用受抑制,色素合成代谢通路异常,因此是研究色素代谢、叶绿体发育分化、光合作用等途径的理想材料,也可为品种改良提供重要信息。本文综述了近年来植物叶色突变体的研究进展,明确高等植物叶色突变体主要来源于自然突变和人工诱变,叶色突变体按颜色可分为黄化、黄绿、绿黄、绿白、白化、浅绿、白翠、条纹等几种类型;按叶色变化方式可分为单色突变、杂色突变和阶段性失绿,其遗传方式通常分为细胞核遗传、细胞质遗传和核质互作遗传;与正常绿色叶片植株相比,大多数叶色突变体叶片的净光合速率、气孔导度和蒸腾速率都下降,二氧化碳的利用率降低;叶绿素、类胡萝卜素、类黄酮(主要是花青素)合成与代谢相关基因的突变以及与叶绿体分化发育相关基因的突变可解释叶色突变体发生的分子机制。叶色突变体可应用于园林绿化,并作为优良的实验材料广泛应用在基础研究和育种工作。 参112Abstract: Leaf color variation in plants is a common and easily recognized phenomenon in nature, which affects the photosynthetic efficiency of plants and leads to poor growth, so it was once considered to be an undesirable variation and gradually eliminated. But in recent years, social advancements and increased demand for ornamental landscaping have brought renewed attention to leaf color mutants. Leaf color mutants are generally regulated at the molecular level, resulting in abnormal chloroplast structure, inhibited photosynthesis, and abnormal pigment synthesis and metabolic pathways. Therefore, they serve as ideal materials for studying pigment metabolism, chloroplast development and differentiation, photosynthesis, and related pathways, and can also provide important information for variety improvement. This paper reviews the research progress of leaf color mutants in recent years, and clarifies that leaf color mutants in higher plants mainly come from natural mutation and artificial mutation. Leaf color mutants can be divided into several types based on color, such as yellowing, yellow green, green yellow, green white, albino, light green, white emerald, stripe and so on. According to the way of leaf color change, leaf color mutants can be divided into monochromatic mutation, variegated mutation and stage chlorosis. Its inheritance mode is generally divided into nuclear inheritance, cytoplasmic inheritance and nucleocytoplasmic interaction inheritance. Compared with normal green leaf plants, the net photosynthetic rate, stomatal conductance, transpiration rate of most leaf color mutants decrease, so does the utilization rate of carbon dioxide. Mutations in genes related to synthesis and metabolism of chlorophyll, carotenoids, and flavonoids (particularly anthocyanins), as well as genes involved in chloroplast differentiation and development, can explain the molecular mechanism underlying leaf color mutants. Leaf color mutants can be applied in landscaping and widely used in basic research and breeding as excellent experimental materials. The findings of this review can provide theoretical reference for further research on leaf color variation. [Ch, 112 ref.]
-
Key words:
- leaf color variation /
- chlorophyll /
- chloroplast /
- carotenoid /
- flavonoid /
- review
-
[1] BOREK M, BACZEK-KWINTA R, RAPACZ M. Photosynthetic activity of variegated leaves of Coleus × hybridus hort. cultivars characterised by chlorophyll fluorescence techniques [J]. Photosynthetica, 2016, 54(3): 331−339. [2] LI Weixing, YANG Shunbo, LU Zhaogeng, et al. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L [J/OL]. Horticulture Research, 2018, 5 : 32[2024-05-09]. DOI: 10.1038/s41438-018-0039-9. [3] XU Binhua, ZHANG Chaoyang, GU Yan, et al. Physiological and transcriptomic analysis of a yellow leaf mutant in watermelon [J/OL]. Scientific Reports, 2023, 13 (1): 9647[2024-05-09]. DOI: 10.1038/s41598-023-36656-6. [4] BEALE S I, APPLEMAN D. Chlorophyll synthesis in Chlorella: regulation by degree of light limitation of growth [J]. Plant Physiology, 1971, 47(2): 230−235. [5] GRANICK S. Protoporphyrin Ⅸ as a precursor of chlorophyll [J]. Journal of Biological Chemistry, 1948, 172(2): 717−727. [6] CAO Zhe, DENG Zhanao. Morphological, cytological and molecular marker analyses of ‘Tapestry’ caladium variants reveal diverse genetic changes and enable association of leaf coloration pattern loci with molecular markers [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2020, 143(2): 363−375. [7] ZHAO Shaolu, LONG Wuhua, WANG Yihua, et al. A rice white-stripe leaf3 (wsl3) mutant lacking an HD domain-containing protein affects chlorophyll biosynthesis and chloroplast development [J]. Journal of Plant Biology, 2016, 59(3): 282−292. [8] PARK S Y, YU J W, PARK J S, et al. The senescence-induced staygreen protein regulates chlorophyll degradation [J]. The Plant Cell, 2007, 19(5): 1649−1664. [9] GUSTAFSSON Å. The plastid development in various types of chlorophyll mutations [J]. Hereditas, 2010, 28(3/4): 483−492. [10] AWAN M A, KONZAK C F, RUTGER J N, et al. Mutagenic effects of sodium azide in rice [J]. Crop Science, 1980, 20(5): 663−668. [11] WALLES B. The homozygous and heterozygous effects of an aurea mutation on plastid development in spruce (Picea abies L. ) [J]. Studia Forestalia Suecica, 1967, 60: 1−20. [12] QIN Dandan, DONG Jing, XU Fuchao et al. Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing [J/OL]. BMC Genomics, 2015, 16 : 838[2024-05-09]. DOI: 10.1186/s12864-015-2015-1. [13] SCHELBERT S, AUBRY S, BURLA B, et al. Pheophytin pheophorbide hydrolase (Pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis [J]. The Plant Cell, 2009, 21(3): 767−785. [14] RUNGNOI O, CHANPREM S, TOOJINDA T, et al. Characterization, inheritance, and molecular study of opaque leaf mutant in mungbean (Vigna radiata (L. ) Wilczek) [J]. Journal of Crop Science and Biotechnology, 2010, 13(4): 219−226. [15] ZHA Gaohui, YIN Juan, CHENG Feng, et al. Fine mapping of CscpFtsY, a gene conferring the yellow leaf phenotype in cucumber (Cucumis sativus L. ) [J/OL]. BMC Plant Biology, 2022, 22 (1): 570[2024-05-09]. DOI: 10.1186/s12870-022-03922-0. [16] PFALZ J, PFANNSCHMIDT T. Essential nucleoid proteins in early chloroplast development [J]. Trends in Plant Science, 2013, 18(4): 186−194. [17] LIN B Y, YU H J. Inheritance of a striped-leaf mutant is associated with the cytoplasmic genome in maize [J]. Theoretical and Applied Genetics, 1995, 91: 915−920. [18] LIU Cong, SHI Narong, WU Huiyu, et al. Cytogenetic analyses of PSL1 mutant, a novel low-temperature-sensitive purple-striped leaf color mutant in wheat [J]. Crop Science, 2018, 58(5): 1919−1931. [19] HERNÁNDEZ-VERDEJA T, VUORIJOKI L, STRAND Å. Emerging from the darkness: interplay between light and plastid signaling during chloroplast biogenesis [J]. Physiologia Plantarum, 2020, 169(3): 397−406. [20] SHIMIZU T, KACPRZAK S M, MOCHIZUKI N, et al. The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(49): 24900−24906. [21] ROCCA N L, RASCIO N, OSTER U, et al. Inhibition of lycopene cyclase results in accumulation of chlorophyll precursors [J]. Planta, 2007, 225(4): 1019−1029. [22] LIGUORI N, CROCE R, MARRINK S J, et al. Molecular dynamics simulations in photosynthesis [J]. Photosynthesis Research, 2020, 144(2): 273−295. [23] WANG Fenfen, CHEN Naizhi, SHEN Shihua. iTRAQ-based quantitative proteomics analysis reveals the mechanism of golden-yellow leaf mutant in hybrid paper mulberry [J/OL]. International Journal of Molecular Sciences, 2021, 23 (1): 127[2024-05-09]. DOI: 10.3390/ijms23010127. [24] GANG Huixin, LIU Guifeng, CHEN Su, et al. Physiological and transcriptome analysis of a yellow-green leaf mutant in birch (Betula platyphylla × B. pendula) [J/OL]. Forests, 2019, 10 (2): 120[2024-05-09]. DOI: 10.3390/f10020120. [25] CHANG Q S, ZHANG L X, HOU X G, et al. The anatomical, physiological, and molecular analysis of a chlorophyll-deficient mutant in tree peony (Paeonia suffruticosa) [J]. Photosynthetica, 2019, 57(3): 724−730. [26] MASUDA T, FUJITA Y. Regulation and evolution of chlorophyll metabolism [J]. Photochemical & Photobiological Sciences, 2008, 7(10): 1131−1149. [27] HUANG Mingshu, SLEWINSKI T L, BRAKER R F, et al. Camouflage patterning in maize leaves results from a defect in porphobilinogen deaminase [J]. Molecular Plant, 2009, 2(4): 773−789. [28] HUNG C Y, SUN Y H, CHEN Jianjun, et al. Identification of a Mg-protoporphyrin Ⅸ monomethyl ester cyclase homologue, EaZIP, differentially expressed in variegated Epipremnum aureum ‘Golden Pothos’ is achieved through a unique method of comparative study using tissue regenerated plants [J]. Journal of Experimental Botany, 2010, 61(5): 1483−1493. [29] KANG Shujing, FANG Yunxia, ZOU Guoxing, et al. White-green leaf gene encoding protochlorophyllide oxidoreductase B is involved in chlorophyll synthesis of rice [J]. Crop Science, 2015, 55(1): 284−293. [30] ZHAO Yonghui, HUANG Shengnan, ZHANG Meidi, et al. Mapping of a pale green mutant gene and its functional verification by allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J/OL]. Frontiers in Plant Science, 2021, 12 : 699308[2024-05-09]. DOI: 10.3389/fpls.2021.699308. [31] LONG Wuhua, LONG Sifang, JIANG Xue, et al. A rice Yellow-Green-Leaf 219 mutant lacking the divinyl reductase affects chlorophyll biosynthesis and chloroplast development [J]. Journal of Plant Growth Regulation, 2022, 41: 3233−3242. [32] ZHAO Yonghui, HUANG Shengnan, WANG Nan, et al. Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J/OL]. Scientific Reports, 2022, 12 : 7731[2024-05-09]. DOI: 10.1038/s41598-022-11825-1. [33] LU Wei, TENG Yantong, HE Fushou, et al. OsChlC1, a novel gene encoding magnesium-chelating enzyme, affects the content of chlorophyll in rice [J/OL]. Agronomy, 2023, 13 (1): 129[2024-05-09]. DOI: 10.3390/agronomy13010129. [34] HANSSON A, WILLOWS R D, ROBERTS T H, et al. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13944−13949. [35] MA Yangyang, SHI Jiancheng, WANG Danjuan, et al. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism [J]. Plant Physiology, 2023, 192(4): 2737−2755. [36] JUNG K H, HUR J, RYU C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system [J]. Plant & Cell Physiology, 2003, 44(5): 463−472. [37] FU Wei, YE Xueling, REN Jie, et al. Fine mapping of lcm1, a gene conferring chlorophyll-deficient golden leaf in Chinese cabbage (Brassica rapa ssp. pekinensis) [J/OL]. Molecular Breeding, 2019, 39 (4): 52[2024-05-09]. DOI: 10.1007/s11032-019-0945-z. [38] JENSEN P E, REID J D, HUNTER C N. Modification of cysteine residues in the Chl I and Chl H subunits of magnesium chelatase results in enzyme inactivation [J]. The Biochemical Journal, 2000, 352(2): 435−441. [39] LARKIN R M, ALONSO J M, ECKER J R, et al. GUN4, a regulator of chlorophyll synthesis and intracellular signaling [J]. Science, 2003, 299(5608): 902−906. [40] ADHIKARI N D, FROEHLICH J E, STRAND D D, et al. GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-Chelatase and promote chlorophyll biosynthesis in Arabidopsis [J]. The Plant Cell, 2011, 23(4): 1449−1467. [41] INAGAKI N, KINOSHITA K, KAGAWA T, et al. Phytochrome B mediates the regulation of chlorophyll biosynthesis through transcriptional regulation of ChlH and GUN4 in rice seedlings [J/OL]. PLoS One, 2015, 10 (8): e0135408[2024-05-09]. DOI: 10.1371/journal.pone.0135408. [42] RICHTER A S, HOCHHEUSER C, FUFEZAN C, et al. Phosphorylation of GENOMES UNCOUPLED 4 alters stimulation of Mg chelatase activity in Angiosperms [J]. Plant Physiology, 2016, 172(3): 1578−1595. [43] BEALE S I. Green genes gleaned [J]. Trends in Plant Science, 2005, 10(7): 309−312. [44] GRIMM B, PORRA R J, RÜDIGER W, et al. Chlorophylls and Bacteriochlorophylls [M]. Dordrecht: Springer Netherlands, 2006: 237−260. [45] SAKURABA Y, HAN S H, LEE S H, et al. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription [J]. Plant Cell Reports, 2016, 35 (1): 155−166. [46] CHEN Junyi, ZHU Xiaoyu, REN Jun, et al. Suppressor of overexpression of CO 1 negatively regulates dark-induced leaf degreening and senescence by directly repressing pheophytinase and other senescence-associated genes in Arabidopsis [J]. Plant Physiology, 2017, 173(3): 1881−1891. [47] ZHU Xiaoyu, CHEN Junyi, XIE Zuokun, et al. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes [J]. The Plant Journal, 2015, 84(3): 597−610. [48] ODA-YAMAMIZO C, MITSUDA N, SAKAMOTO S, et al. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves [J/OL]. Scientific Reports, 2016, 6: 23609 [2024-05-09]. DOI: 10.1038/srep23609. [49] ZHANG Yongqiang, LIU Zhongjuan, CHEN Yadi, et al. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis [J]. Plant Science, 2015, 237: 57−68. [50] SONG Yi, YANG Chuangwei, GAO Shan, et al. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5 [J]. Molecular Plant, 2014, 7(12): 1776−1787. [51] QIU Kai, LI Zhongpeng, YANG Zhen, et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis [J/OL]. PLoS Genetics, 2015, 11 (7): e1005399[2024-05-09]. DOI: 10.1371/journal.pgen.1005399. [52] SAKURABA Y, PARK S Y, KIM Y S, et al. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence [J]. Molecular Plant, 2014, 7(8): 1288−1302. [53] ZENG Zhaoqiong, LIN Tianzi, ZHAO Jieyu, et al. OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa) [J]. Journal of Integrative Agriculture, 2020, 19(3): 612−623. [54] JOHNSON J D. Do carotenoids serve as transmembrane radical channels [J]. Free Radical Biology and Medicine, 2009, 47(3): 321−323. [55] EZQUERRO M, BURBANO-ERAZO E, RODRIGUEZ-CONCEPCION M. Overlapping and specialized roles of tomato phytoene synthases in carotenoid and abscisic acid production [J]. Plant Physiology, 2023, 193(3): 2021−2036. [56] QIN Genji, GU Hongya, MA Ligeng, et al. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis [J]. Cell Research, 2007, 17(5): 471−482. [57] LU Shan, LI Li. Carotenoid metabolism: biosynthesis, regulation, and beyond [J]. Journal of Integrative Plant Biology, 2008, 50(7): 778−785. [58] SU Tongbing, YU Shuancang, ZHANG J W F, et al. Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. Plant Molecular Biology Reporter, 2015, 33(3): 648−659. [59] LI Peirong, ZHANG Shujiang, ZHANG Shifan, et al. Carotenoid identification and molecular analysis of carotenoid isomerase-encoding BrCRTISO, the candidate gene for inner leaf orange coloration in Chinese cabbage [J/OL]. Molecular Breeding, 2015, 35 (2): 72[2024-05-09]. DOI: 10.1007/s11032-015-0190-z. [60] CAZZONELLI C I, CUTTRISS A J, COSSETTO S B, et al. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8 [J]. The Plant Cell, 2009, 21(1): 39−53. [61] CAZZONELLI C I, ROBERTS A C, CARMODY M E, et al. Transcriptional control of set domain group 8 and carotenoid isomerase during Arabidopsis development [J]. Molecular Plant, 2010, 3(1): 174−191. [62] DONG Naiqian, LIN Hongxuan. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions [J]. Journal of Integrative Plant Biology, 2021, 63(1): 180−209. [63] SUN Chenglong, ZHANG Minmin, DONG Hongjing, et al. A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi [J/OL]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179 : 113014[2025-05-09]. DOI: 10.1016/j.jpba.2019.113014. [64] LIU Weixin, FENG Yi, YU Suhang, et al. The flavonoid biosynthesis network in plants [J/OL]. International Journal of Molecular Sciences, 2021, 22 (23): 12824[2024-05-09]. DOI: 10.3390/ijms222312824. [65] LI Wenji, LI Huigen, SHI Lisha, et al. Leaf color formation mechanisms in Alternanthera bettzickiana elucidated by metabolite and transcriptome analyses [J/OL]. Planta, 2022, 255 (3): 59[2024-05-09]. DOI: 10.1007/s00425-022-03840-3. [66] HERRAIZ A, STOKES L, TURNBULL C, et al. Developing a new variety of Kentia palms (Howea forsteriana): up-regulation of cytochrome b561 and Chalcone synthase is associated with red colouration of the stems [J]. Botany Letters, 2018, 165(2): 241−247. [67] STEYN W J, WAND S E, HOLCROFT D M, et al. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection [J]. The New Phytologist, 2002, 155(3): 349−361. [68] LI Yanjun, ZHOU Yang, CHEN Hong, et al. Transcriptomic analyses reveal key genes involved in pigment biosynthesis related to leaf color change of Liquidambar formosana Hance [J/OL]. Molecules, 2022, 27 (17): 5433[2024-05-09]. DOI: 10.3390/molecules27175433. [69] SUN Binmei, ZHU Zhangsheng, CAO Panrong, et al. Purple foliage coloration in tea (Camellia sinensis L. ) arises from activation of the R2R3-MYB transcription factor CsAN1 [J/OL]. Scientific Reports, 2016, 6 : 32534[2024-05-09]. DOI: 10.1038/srep32534. [70] AN Guanghui, CHEN Jiongjiong. Frequent gain- and loss-of-function mutations of the BjMYB113 gene accounted for leaf color variation in Brassica juncea [J/OL]. BMC Plant Biology, 2021, 21 (1): 301[2024-05-09]. DOI: 10.1186/s12870-021-03084-5. [71] GUAN Xiayu, WANG Wei, YE Qinghua, et al. De novo transcriptomic sequencing unraveled the molecular mechanisms of VvMybA1 underlying the alteration of Ficus lyrata leaf color [J/OL]. Acta Physiologiae Plantarum, 2019, 41 (1): 16[2024-05-09]. DOI: 10.1007/s11738-019-2809-x. [72] WANG Chongnan, JI Wenkai, LIU Yucheng, et al. The antagonistic MYB paralogs RH1 and RH2 govern anthocyanin leaf markings in Medicago truncatula [J]. The New Phytologist, 2021, 229(6): 3330−3344. [73] JENSEN R G, BASSHAM J A. Photosynthesis by isolated chloroplasts [J]. Proceedings of the National Academy of Sciences of the United States of America, 1966, 56(4): 1095−1101. [74] CHANG Qingshan, CHEN Sumei, CHEN Yu, et al. Anatomical and physiological differences and differentially expressed genes between the green and yellow leaf tissue in a variegated Chrysanthemum variety [J]. Molecular Biotechnology, 2013, 54(2): 393−411. [75] 姬语潞, 杨维, 李涵, 等. 铁皮石斛叶色突变体的叶绿体超微结构、光合色素和叶绿素荧光特性的研究[J]. 植物科学学报, 2020, 38(2): 260−268 JI Yulu, YANG Wei, LI Han, et al. Study on chloroplast ultrastructure, photosynthetic pigment and chlorophyll fluorescence characteristics of Dendrobium candidum leaf color mutant [J]. Plant Science Journal, 2020, 38(2): 260−268. [76] 许庆全, 杨凤玺, 叶庆生, 等. 墨兰‘达摩’叶艺品系光合色素质量分数、叶绿素荧光特性和叶绿体超微结构的比较[J]. 热带作物学报, 2017, 38(7): 1210−1215. XU Qingquan, YANG Fengxi, YE Qingsheng, et al. Comparison of photosynthetic pigment content, chlorophyll fluorescence characteristics and chloroplast ultrastructure of a leaf art strain of moran ‘dharma’ [J]. Chinese Journal of Tropical Crops, 2017, 38(7): 1210−1215. [77] LI Ji, WU Kunlin, LI Lin, et al. Cytological, biochemical, and transcriptomic analyses of a novel yellow leaf variation in a Paphiopedilum (Orchidaceae) SCBG COP15 [J/OL]. Genes, 2021, 13 (1): 71[2024-05-09]. DOI: 10.3390/genes13010071. [78] 杨冲, 张扬勇, 方智远, 等. 甘蓝叶色黄化突变体 YL-1 的光合生理特性及其叶绿体的超微结构[J]. 园艺学报, 2014, 41(6): 1133−1144. YANG Chong, ZHANG Yangyong, FANG Zhiyuan, et al. Photosynthetic physiological characteristics and chloroplast ultrastructure of yellow leaf mutant YL-1 in cabbage [J]. Acta Horticulturae Sinica, 2014, 41(6): 1133−1144. [79] LUO Zhongxia, ZHANG Xiongjian, CHEN Jingyi, et al. Examination and genetic analysis of a yellow-green leaf mutant a269 of sweetpotato [J]. Plant Breeding, 2020, 139(2): 381−388. [80] ZHANG Lulu, ZHANG Junkang, MAO Yunfei, et al. Physiological analysis and transcriptome sequencing of a delayed-green leaf mutant ‘Duojiao’ of ornamental crabapple (Malus sp. ) [J]. Physiology and Molecular Biology of Plants, 2022, 28(10): 1833−1848. [81] GAO Linlin, HONG Zhenghui, WANG Yinsong, et al. Chloroplast proteostasis: a story of birth, life, and death [J/OL]. Plant Communications, 2023, 4 (1): 100424[2024-05-09]. DOI: 10.1016/j.xplc.2022.100424. [82] ZAGARI N, SANDOVAL-IBAÑEZ O, SANDAL N, et al. SNOWY COTYLEDON 2 promotes chloroplast development and has a role in leaf variegation in both Lotus japonicus and Arabidopsis thaliana [J]. Molecular Plant, 2017, 10(5): 721−734. [83] HAMMANI K, TAKENAKA M, MIRANDA R, et al. A PPR protein in the PLS subfamily stabilizes the 5'-end of processed rpl16 mRNAs in maize chloroplasts [J]. Nucleic Acids Research, 2016, 44(9): 4278−4288. [84] ZOSCHKE R, WATKINS K P, MIRANDA R G, et al. The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNAs in maize [J]. The Plant Journal: for Cell and Molecular Biology, 2016, 85(5): 594−606. [85] ZHANG Jian, XIAO Jianwei, LI Yuqian, et al. PDM3, a pentatricopeptide repeat-containing protein, affects chloroplast development [J]. Journal of Experimental Botany, 2017, 68(20): 5615−5627. [86] WANG Xinwei, ZHAO Lirong, MAN Yi, et al. PDM4 a pentatricopeptide repeat protein, affects chloroplast gene expression and chloroplast development in Arabidopsis thaliana [J/OL]. Frontiers in Plant Science, 2020, 11 : 1198[2024-05-09]. DOI: 10.3389/fpls.2020.01198. [87] LÜ Yang, WANG Yueying, ZHANG Qiang, et al. WAL3 encoding a PLS-type PPR protein regulates chloroplast development in rice [J/OL]. Plant Science, 2022, 323 : 111382[2024-05-09]. DOI: 10.1016/j.plantsci.2022.111382. [88] LAN Jie, LIN Qibing, ZHOU Chunlei, et al. Young Leaf White Stripe encodes a P-type PPR protein required for chloroplast development [J]. Journal of Integrative Plant Biology, 2023, 65(7): 1687−1702. [89] WANG Ying, REN Yulong, ZHOU Kunneng, et al. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development [J/OL]. Frontiers in Plant Science, 2017, 8 : 1116[2024-05-09]. DOI: 10.3389/fpls.2017.01116. [90] LEE K, PARK S J, des FRANCS-SMALL C C, et al. The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts [J]. The Plant Journal: for Cell and Molecular Biology, 2019, 100(6): 1193−1207. [91] YAN Junjie, ZHANG Qunxia, YIN Ping. RNA editing machinery in plant organelles [J]. Science China Life Sciences, 2018, 61(2): 162−169. [92] CUI Xuean, WANG Yanwei, WU Jinxia, et al. The RNA editing factor DUA1 is crucial to chloroplast development at low temperature in rice [J]. The New Phytologist, 2019, 221(2): 834−849. [93] ZHANG Qiang, WANG Yaliang, XIE Wei, et al. OsMORF9 is necessary for chloroplast development and seedling survival in rice [J/OL]. Plant Science, 2021, 307 : 110907[2024-05-09]. DOI: 10.1016/j.plantsci.2021.110907. [94] 高贤明, 陈灵芝. 植物生活型分类系统的修订及中国暖温带森林植物生活型谱分析[J]. Acta Botanica Sinica, 1998, 40(6): 553−559. GAO Xianming, CHEN Lingzhi. The revision of plant life-form system and an analysis of the life-form spectrum of forest plants in the warm temperate zone of China [J]. Acta Botanica Sinica, 1998, 40(6): 553−559. [95] STERN D B, HANSON M R, BARKAN A. Genetics and genomics of chloroplast biogenesis: maize as a model system [J]. Trends in Plant Science, 2004, 9(6): 293−301. [96] GAO Tongmei, WEI Shuangling, CHEN Jing, et al. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L. ) mutant Siyl-1 with yellow-green leaf color [J]. Genes & Genomics, 2020, 42(1): 25−39. [97] TANG Yuhan, FANG Ziwen, LIU Mi, et al. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall. ) [J/OL]. 3 Biotech, 2020, 10 (2): 76[2024-05-09]. DOI: 10.1007/s13205-020-2063-3. [98] HAN Hongwei, ZHOU Yuan, LIU Huifang, et al. Transcriptomics and metabolomics analysis provides insight into leaf color and photosynthesis variation of the yellow-green leaf mutant of Hami melon (Cucumis melo L. ) [J/OL]. Plants, 2023, 12 (8): 1623[2024-05-09]. DOI: 10.3390/plants12081623. [99] BRESTIC M, ZIVCAK M, KUNDERLIKOVA K, et al. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines [J]. Photosynthesis Research, 2016, 130(1/3): 251−266. [100] RUAN Banpu, GAO Zhenyu, ZHAO Juan, et al. The rice YGL gene encoding an Mg2+-chelatase ChlD subunit is affected by temperature for chlorophyll biosynthesis [J]. Journal of Plant Biology, 2017, 60(4): 314−321. [101] ZHANG Haitao, LI Jinjie, YOO J H, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development [J]. Plant Molecular Biology, 2006, 62(3): 325−337. [102] DENG Xiaojuan, ZHANG Haiqing, WANG Yue, et al. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica) [J/OL]. PLoS One, 2014, 9 (6): e99564[2024-05-09]. DOI: 10.1371/journal.pone.0099564. [103] CHEN Ping, HU Haitao, ZHANG Yu, et al. Genetic analysis and fine-mapping of a new rice mutant, white and lesion mimic leaf [J]. Plant Growth Regulation, 2018, 85(3): 425−435. [104] 王建玉, 王志鹏, 段祥坤. 甜瓜芽黄标记性状的发现与遗传分析[J]. 中国瓜菜, 2019, 32(2): 15−17. WANG Jianyu, WANG Zhipeng, DUAN Xiangkun. Discovery and genetic analysis of yellow markers in melon bud [J]. China Cucurbits and Vegetables, 2019, 32(2): 15−17. [105] WU Dianxing, SHU Qingyao, XIA Yingwu. In vitro mutagenesis induced novel thermo/photoperiod-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker [J]. Euphytica, 2002, 123: 195−202. [106] LIM S H, SOHN S H, KIM D H, et al. Use of an anthocyanin production phenotype as a visible selection marker system in transgenic tobacco plant [J]. Plant Biotechnology Reports, 2012, 6(3): 203−211. [107] LI Chuan, WANG Jingwen, HU Zhaoyong, et al. A valine residue deletion in ZmSig2A, a sigma factor, accounts for a revertible leaf-color mutation in maize [J]. The Crop Journal, 2021, 9(6): 1330−1343. [108] SIDDAPPA S, SHARMA N, SALARIA N, et al. CRISPR/Cas9-mediated editing of phytoene desaturase (PDS) gene in an important staple crop, potato [J/OL]. 3 Biotech, 2023, 13 (5): 129[2024-05-09]. DOI: 10.1007/s13205-023-03543-w. [109] NISHITANI C, HIRAI N, KOMORI S, et al. Efficient genome editing in apple using a CRISPR/Cas9 system [J/OL]. Scientific Reports, 2016, 6 : 31481[2024-05-09]. DOI: 10.1038/srep31481. [110] JEONG Y S, CHOI H, KIM J K, et al. Overexpression of OsMYBR22/OsRVE1 transcription factor simultaneously enhances chloroplast-dependent metabolites in rice grains [J]. Metabolic Engineering, 2022, 70: 89−101. [111] LIU Guofeng, HAN Zhuoxiao, FENG Lin, et al. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar ‘Yu-Jin-Xiang’ with an emphasis on catechin production [J/OL]. Scientific Reports, 2017, 7 : 45062[2024-05-09]. DOI: 10.1038/srep45062. [112] 金笑雨, 王艺光, 赵宏波, 等. 彩叶桂叶色变化及生理特征分析[J]. 浙江农林大学学报, 2024, 41(5): 1056−1065. JIN Xiaoyu, WANG Yiguang, ZHAO Hongbo, et al. Color change and physiological characteristics in Osmanthus fragrans colour group [J]. Journal of Zhejiang A&F University, 2024, 41(5): 1056−1065. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240397
计量
- 文章访问数: 41
- HTML全文浏览量: 11
- PDF下载量: 2
- 被引次数: 0