[1] |
卢孟飞, 陈瞳晖, 莫双凤, 等. 拐枣主栽品种果实的经济性状和营养成分分析及综合评价[J]. 经济林研究, 2024, 42 (2): 1 − 10. |
LU Mengfei, CHEN Tonghui, MO Shuangfeng, et al. Comprehensive evaluation and analysis on fruit economic characteristics and nutrient composition of Hovenia varieties [J]. Non-wood Forest Research, 2024, 42 (2): 112 − 121. |
[2] |
向进乐, 杜琳, 朱文学, 等. 枳椇果梗营养功能与加工利用[J]. 中国林副特产, 2015(1): 98 − 101. |
XIANG Jinle, DU Lin, ZHU Wenxue, et al. Research progress in nutrition and utilization of Hovenia peduncles [J]. Forest By-Product and Speciality in China, 2015(1): 98 − 101. |
[3] |
谢志民. 枳椇和枳椇子的本草考证[J]. 中药材, 1994, 17(6): 44 − 45, 56. |
XIE Zhimin. Herbological study of “Zhiju” and “Zhijuzi” [J]. Journal of Chinese Medicinal Materials, 1994, 17(6): 44 − 45, 56. |
[4] |
陆石英, 覃志高. 药食两用枳椇的研究进展[J]. 食品安全质量检测学报, 2020, 11(6): 1865 − 1870. |
LU Shiying, QIN Zhigao. Research progress on Hovenia dulcis Lindl. for medicine and food [J]. Journal of Food Safety and Quality, 2020, 11(6): 1865 − 1870. |
[5] |
徐方方, 刘博, 张晓琦. 枳椇属化学成分和药理活性的研究进展[J]. 中国中药杂志, 2020, 45(20): 4827 − 4835. |
XU Fangfang, LIU Bo, ZHANG Xiaoqi. Research progress on chemical constituents and pharmacological activities of Hovenia [J]. China Journal of Chinese Materia Medica, 2020, 45(20): 4827 − 4835. |
[6] |
WANG Mingchun, ZHU Peilei, JIANG Changxing, et al. Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis [J]. Food and Chemical Toxicology, 2012, 50(9): 2964 − 2970. |
[7] |
嵇扬, 陆红. 枳椇子研究进展[J]. 中草药, 2002, 33(9): 102 − 104. |
JI Yang, LU Hong. Research progress on Hovenia dulcis Thunb. [J]. Chinese Traditional and Herbal Drugs, 2002, 33(9): 102 − 104. |
[8] |
时涛, 王晓玲, 陈振德, 等. 枳椇子化学成分及其药理活性研究进展[J]. 中药材, 2006, 29(5): 510 − 513. |
SHI Tao, WANG Xiaoling, CHEN Zhende, et al. Research progress of chemical constituents and pharmacological activities of Hovenia dulcis [J]. Journal of Chinese Medicinal Materials, 2006, 29(5): 510 − 513. |
[9] |
ZHU Mingzhi, LI Na, ZHAO Ming, et al. Metabolomic profiling delineate taste qualities of tea leaf pubescence [J]. Food Research International, 2017, 94: 36 − 44. |
[10] |
AKHATOU I, SAYAGO A, GONZÁLEZ-DOMÍNGUEZ R, et al. Application of targeted metabolomics to investigate optimum growing conditions to enhance bioactive content of strawberry [J]. Journal of Agricultural and Food Chemistry, 2017, 65(43): 9559 − 9567. |
[11] |
YANG Ruichun, LI Yunfeng, ZHANG Yuanyuan, et al. Widely targeted metabolomics analysis reveals key quality-related metabolites in kernels of sweet corn [J/OL]. International Journal of Genomics, 2021, 2021 (1): 2654546[2024-06-05]. doi: 10.1155/2021/2654546. |
[12] |
QIAN Qixia, ZHANG Huicong, ZHANG Pengwei, et al. Integrated transcriptomics and metabolomics provide new insights into the leaf coloration of a bamboo variant Phyllostachys violascens var. flavistriatus [J/OL]. Scientia Horticulturae, 2024, 334 : 113330[2024-06-05]. doi: 10.1016/j.scienta.2024.113330. |
[13] |
WEI Kailing, LIU Meiya, SHI Yifan, et al. Metabolomics reveal that the high application of phosphorus and potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid [J/OL]. Agronomy, 2022, 12 (5): 1086[2024-06-05]. doi: 10.3390/agronomy12051086. |
[14] |
ZHANG Hua, SONG Yakang, FAN Zhenlei, et al. Aluminum supplementation mediates the changes in tea plant growth and metabolism in response to calcium stress [J/OL]. International Journal of Molecular Sciences, 2024, 25 (1): 530[2024-06-05]. doi: 10.3390/ijms25010530. |
[15] |
ZHANG Hua, LI Chunlei, WEI Kailing, et al. The reduction of tea quality caused by irrational phosphate application is associated with anthocyanin metabolism [J/OL]. Beverage Plant Research, 2023, 3 : 10[2024-06-05]. doi: 10.48130/BPR-2023-0010. |
[16] |
PENG Han, DENG Zeyuan, CHEN Xuan, et al. Major chemical constituents and antioxidant activities of different extracts from the peduncles of Hovenia acerba Lindl. [J]. International Journal of Food Properties, 2018, 21(1): 2135 − 2155. |
[17] |
YANG Zhijian, CHEN Hui, LIN Chaimei, et al. Comprehensive evaluation of quality traits of Hovenia acerba germplasm resources in Fujian Province [J/OL]. Forests, 2023, 14 (2): 204[2024-06-05]. doi: 10.3390/f14020204. |
[18] |
NIIYA M, SHIMATO Y, OHNO T, et al. Effects of Hovenia dulcis fruit and peduncle extract on alcohol metabolism [J/OL]. Journal of Ethnopharmacology, 2024, 321 : 117541[2024-06-05]. doi: 10.1016/j.jep.2023.117541. |
[19] |
杨舜伊, 袁纯红, 蒋高华, 等. 乌头属植物生物碱研究新进展[J]. 湖北农业科学, 2020, 59(23): 5 − 10. |
YANG Shunyi, YUAN Chunhong, JIANG Gaohua, et al. Recent advance of alkaloids in genus Aconitum [J]. Hubei Agricultural Sciences, 2020, 59(23): 5 − 10. |
[20] |
黄茜, 孙明丽, 李腾飞, 等. 乌头生物碱镇痛作用及机制研究进展[J]. 神经药理学报, 2017, 7(3): 21 − 32. |
HUANG Qian, SUN Mingli, LI Tengfei, et al. Research progress on mechanisms underlying aconitines analgesia [J]. Journal of Neuropharmacology, 2017, 7(3): 21 − 32. |
[21] |
邢梦雨, 田崇梅, 夏道宗. 乌药化学成分及药理作用研究进展[J]. 天然产物研究与开发, 2017, 29(12): 2147 − 2151. |
XING Mengyu, TIAN Chongmei, XIA Daozong. Review on chemical constituents and pharmacological effects of Lindera aggregata Kosterm [J]. Natural Product Research and Development, 2017, 29(12): 2147 − 2151. |
[22] |
DUDA-MADEJ A, STECKO J, SOBIERAJ J, et al. Naringenin and its derivatives: health-promoting phytobiotic against resistant bacteria and fungi in humans [J/OL]. Antibiotics, 2022, 11 (11): 1628[2023-06-05]. doi: 10.3390/antibiotics11111628. |
[23] |
PEREIRA R, SILVA A M S, RIBEIRO D, et al. Bis-chalcones: a review of synthetic methodologies and anti-inflammatory effects [J/OL]. European Journal of Medicinal Chemistry, 2023, 252 : 115280[2024-06-05]. doi: 10.1016/j.ejmech.2023.115280. |
[24] |
RAMMOHAN A, REDDY J S, SRAVYA G, et al. Chalcone synthesis, properties and medicinal applications: a review [J]. Environmental Chemistry Letters, 2020, 18(2): 433 − 458. |
[25] |
UÇAR K, GÖKTAŞ Z. Biological activities of naringenin: a narrative review based on in vitro and in vivo studies [J]. Nutrition Research, 2023, 119: 43 − 55. |
[26] |
彭颖, 潘思轶, 张德新. 柚皮苷二氢查尔酮的制备及其呈甜机理研究[J]. 食品与发酵工业, 2022, 48(1): 21 − 28. |
PENG Ying, PAN Siyi, ZHANG Dexin. Preparation and the mechanism of sweet taste of naringin dihydrochalcone [J]. Food and Fermentation Industries, 2022, 48(1): 21 − 28. |
[27] |
黎继烈. 枳椇果酒的酿制工艺[J]. 食品与发酵工业, 2002(12): 71 − 73. |
LI Jilie. The brewing process of Hovenia dulcis fruit wine [J]. Food and Fermentation Industries, 2002(12): 71 − 73. |
[28] |
向进乐, 李志西, 甘峰, 等. 枳椇果梗不同类型酚酸含量及抗氧化活性[J]. 食品与发酵工业, 2011, 37(8): 106 − 111. |
XIANG Jinle, LI Zhixi, GAN Feng, et al. Determination of four different phenolic acids of Hovenia acerba fruit and their antioxidant activities [J]. Food and Fermentation Industries, 2011, 37(8): 106 − 111. |
[29] |
张玉超, 张智淮, 刘良禹, 等. 枳椇果梗黄酮的提取及其抗氧化性[J]. 食品科技, 2024, 49(4): 251 − 260. |
ZHANG Yuchao, ZHANG Zhihuai, LIU Liangyu, et al. Extraction and antioxidant activity of flavone from Hovenia dulcis peduncle [J]. Food Science and Technology, 2024, 49(4): 251 − 260 |
[30] |
刘旭东, 张玉超, 朱思洁, 等. 枳椇果梗多糖的提取工艺优化及其抗氧化性[J]. 食品工业科技, 2023, 44(11): 230 − 237. |
LIU Xudong, ZHANG Yuchao, ZHU Sijie, et al. Optimization of extraction process of polysaccharides from Hovenia dulcis fruit pedicels and its antioxidant activity [J]. Science and Technology of Food Industry, 2023, 44(11): 230 − 237. |
[31] |
刘菁华, 骆洁雅, 郭鹏, 等. 枳椇子黄酮的含量测定及其抗氧化作用的分子机制[J]. 中国兽医杂志, 2024, 60(2): 120 − 125. |
LIU Jinghua, LUO Jieya, GUO Peng, et al. Content determination of flavonoids in Hovenia dulcis and its molecular mechanism of antioxidant effect [J]. Chinese Journal of Veterinary Medicine, 2024, 60(2): 120 − 125. |
[32] |
CHOI H A, AHN S O, LIM H D, et al. Growth suppression of a gingivitis and skin pathogen Cutibacterium (Propionibacterium) acnes by medicinal plant extracts [J/OL]. Antibiotics, 2021, 10 (9): 1092[2024-06-05]. doi: 10.3390/antibiotics10091092. |
[33] |
YOU R, KWON O Y, WOO H J, et al. Hovenia monofloral honey can attenuate Enterococcus faecalis mediated biofilm formation and inflammation [J]. Food Science of Animal Resources, 2022, 42(1): 84 − 97. |
[34] |
杜国成. 中药鞣质成分的药理作用探析[J]. 中国医药科学, 2011, 1 (16): 27, 33. |
DU Guocheng. Pharmacological effects analysis of tannins in traditional chinese medicine [J]. China Medicine and Pharmacy, 2011, 1 (16): 27, 33. |
[35] |
WANG Peng, WEI Jia, HUA Xin, et al. Plant anthraquinones: classification, distribution, biosynthesis, and regulation [J/OL]. Journal of Cellular Physiology, 2023[2024-06-05]. doi: 10.1002/jcp.31063. |
[36] |
ZHAO Lihua, ZHENG Lin. A review on bioactive anthraquinone and derivatives as the regulators for ROS [J/OL]. Molecules, 2023, 28 (24): 8139[2024-06-05]. doi: 10.3390/molecules28248139. |
[37] |
GRIFFITHS D W. Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods [M]. Boston: Springer, 1986: 509 − 516 |
[38] |
van BUREN J P, ROBINSON W B. Formation of complexes between protein and tannic acid [J]. Journal of Agricultural and Food Chemistry, 1969, 17(4): 772 − 777. |
[39] |
SONG Shiming, GAO Yanxia, FENG Shuai, et al. Widespread occurrence of two typical N, N’-substituted p-phenylenediamines and their quinones in humans: association with oxidative stress and liver damage [J/OL]. Journal of Hazardous Materials, 2024, 468 : 133835[2024-06-05]. doi: 10.1016/j.jhazmat.2024.133835. |
[40] |
CAVALIERI E, ROGAN E. The 3, 4-quinones of estrone and estradiol are the initiators of cancer whereas resveratrol and N-acetylcysteine are the preventers [J/OL]. International Journal of Molecular Sciences, 2021, 22 (15): 8238[2024-06-05]. doi: 10.3390/ijms22158238. |
[41] |
ZAMORA R, HIDALGO F J. Formation of naphthoquinones and anthraquinones by carbonyl-hydroquinone/benzoquinone reactions: a potential route for the origin of 9, 10-anthraquinone in tea [J/OL]. Food Chemistry, 2021, 354 : 129530[2024-06-05]. doi: 10.1016/j.foodchem.2021.129530. |