Turn off MathJax
Article Contents

YING Junhui, PAN Wenwen, ZHANG Hua, ZHOU Shengcai, LIN Yan, ZHANG Junhong, CHEN Shitong. Comprehensive targeted metabolomic analysis of fruit stalks in two species of Hovenia plants[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240429
Citation: YING Junhui, PAN Wenwen, ZHANG Hua, ZHOU Shengcai, LIN Yan, ZHANG Junhong, CHEN Shitong. Comprehensive targeted metabolomic analysis of fruit stalks in two species of Hovenia plants[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240429

OnlineFirst articles are published online before they appear in a regular issue of the journal. Please find and download the full texts via CNKI.

Comprehensive targeted metabolomic analysis of fruit stalks in two species of Hovenia plants

doi: 10.11833/j.issn.2095-0756.20240429
  • Received Date: 2024-07-05
  • Accepted Date: 2024-11-07
  • Rev Recd Date: 2024-10-02
  •   Objective  This study aims to clarify the metabolite differences in the fruit stalks of Hovenia acerba and H. trichocarpavar var. robusta, and lay a foundation for the development and utilization of Hovenia plants.   Method  Through a comprehensive targeted metabolomics approach of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), the differences in metabolites and metabolic pathways in the fruit stalks of H. acerba and H. trichocarpa var. robusta were analyzed.   Result  A total of 1810 metabolites were detected in the fruit stalks of the two Hovenia species, of which 782 metabolites showed significant differences (P<0.05). Compared with the fruit stalks of H. acerba, there were 378 up-regulated differential metabolites and 404 down-regulated differential metabolites in the fruit stalks of H. trichocarpa var. robusta, and the relative contents of tannin and quinone metabolites were significantly down-regulated. The differential metabolites in the fruit stalks of the two Hovenia species were primarily enriched in the biosynthetic pathways of phenylalanine compounds, flavonoids, and isoquinoline alkaloids. Among them, the extremely significant differential metabolites included alkaloid substances such as ligustroside, N-methylligustroside and methylcoclaurine, as well as flavonoids like naringin, naringin chalcone, and 2’,3,4,4’,6’-pentahydroxy chalcone.   Conclusion  There are significant differences in the metabolic profiles of the fruit stalks of the two Hovenia species under the same ecological conditions, especially the relative content of alkaloids and flavonoids with medicinal value and high sweetness. [Ch, 7 fig. 1 tab. 41 ref.]
  • [1] FU Xiaobin, CHEN Qi, LIU Yuanqiu, DUAN Tianze, WANG Lixing, PAN Yanle, KANG Wangchao, DENG Wenping.  Effects of precipitation pattern change on non-structural carbohydrates in different organs of Cunninghamia lanceolata seedlings . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20240253
    [2] JIANG Li, GUO Kunyuan, CHEN Gang, CHENG Weishun, LUO Xi, WANG Suping, HUANG Xiang, DU Lei, ZHANG Guiyou, HONG Juan.  Effects of nitrogen application on nitrogen, phosphorus and potassium absorption and alkaloid accumulation in Fritillaria hupehensis . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20240217
    [3] TAO Shijie, SONG Yandong, WU Qinjiao, WANG Li, ZHOU Ruyi, WU Dian, ZHOU Yufeng, ZHOU Guomo.  Characteristics of volatile organic compounds release in Phyllostachys edulis forests and their relationship with environmental factors . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20230249
    [4] HU Shujing, ZHANG Rumin.  Roles of volatile organic compounds in plant adaptation to stress and physiological ecology . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20220180
    [5] LIU Yang, CHEN Pei, ZHOU Mingming, LI Na, FANG Shengzuo.  Effects of light quality on biomass and triterpenoid accumulation in leaves of Cyclocarya paliurus from different families . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20200117
    [6] CHENG Luyun, WEN Xing, MA Dandan, LI Dandan, XU Xinlu, GAO Yan, ZHANG Rumin.  Spatial and temporal change of carbohydrates during rapid growth processes of Phyllostachys edulis . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2017.02.009
    [7] DU Xiufang, LIU Mengmeng, JIA Li, MA Yuanda, ZHANG Rumin, GAO Yan.  Responses of non-structural carbohydrate metabolism to mechanical damage in Artemisia frigida . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2016.04.011
    [8] WANG Qi, WANG Dan, ZHANG Rumin, GAO Yan.  Changes in constituents and contents of volatile organic compounds in Wisteria floribunda at three flowering stages . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2014.04.023
    [9] LIU Fang, XU Gaiping, WU Xingbo, DING Qianqian, ZHENG Jie, ZHANG Rumin, GAO Yan.  Effect of drought stress and re-watering on emissions of volatile organic compounds from Rosmarinus officinalis . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2014.02.015
    [10] ZHANG Jie, GUO Jin-xing, ZHANG Ru-zhong, WANG Xing-xing, ZHANG Xiao-ling, LIU Lin, HOU Ping, ZHANG Ru-min.  Changes in volatile organic compounds (VOCs) during storage for Myrica rubra‘Dongkui’ . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2012.01.024
    [11] MA Nan, ZHOU Shuai, LIN Fu-ping, GAO Yan, ZHANG Ru-min.  Volatile organic compounds of five hedgerow plants in Hangzhou . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2012.01.023
    [12] ZHOU Shuai, MA Nan, LIN Fu-ping, ZHANG Ru-min, GAO Yan.  Diurnal variation of volatile organic compounds emitted from Cinnamomum camphora flowers . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2011.06.025
    [13] YANG Wan-xia, SHE Cheng-qi, FANG Sheng-zuo.  Geographic variation of flavonoid compounds in Cyclocarya paliurus leaves . Journal of Zhejiang A&F University,
    [14] LUO Ping-yuan, SHI Ji-kong, ZHANG Wan-ping.  Changes of endogenous hormones , carbohydrate and mineral nutrition during the differentiation of female flower buds of Ginkgo biloba . Journal of Zhejiang A&F University,
    [15] XIA Yi-ping, TANG Xiao-min, HUANG Yue-hua, LI Fang.  Bulb development and metabolism of carbohydrates of Tulipa gesneriana in Hangzhou . Journal of Zhejiang A&F University,
    [16] GE Min-ju, JIN Ze-xin, LI Jun-min, ZHONG Zhang-cheng, ZHANG Li-long.  A primary study on the flavonoids from Sargentodoxa cuneata . Journal of Zhejiang A&F University,
    [17] BI Li-jun.  Extracting flavonoid compounds from Toona sinensis leaves . Journal of Zhejiang A&F University,
    [18] Guan Kanglin, Yan Yilun, Zheng Bingsong.  Function of Azotico Compounds and Phytohormones In Flower Bud Differentiation of Chinese Fir. . Journal of Zhejiang A&F University,
    [19] Jiang Peikun, Jiang Qiuyi, Xu Qiufang, Qian Xinbiao, Zhang Qinxiang..  Studies on Organic Compounds in Rhizosphere Soil of Chinese fir and Chinese Sassafras . Journal of Zhejiang A&F University,
    [20] Zhong Shanmin, Tian Jingxiang, Wu Meichun, Li Zhangju.  Active Components of Four Species of Sageretia . Journal of Zhejiang A&F University,
  • [1]
    LU Mengfei, CHEN Tonghui, MO Shuangfeng, et al. Comprehensive evaluation and analysis on fruit economic characteristics and nutrient composition of Hovenia varieties [J]. Non-wood Forest Research, 2024, 42 (2): 112 − 121.
    [2]
    XIANG Jinle, DU Lin, ZHU Wenxue, et al. Research progress in nutrition and utilization of Hovenia peduncles [J]. Forest By-Product and Speciality in China, 2015(1): 98 − 101.
    [3]
    XIE Zhimin. Herbological study of “Zhiju” and “Zhijuzi” [J]. Journal of Chinese Medicinal Materials, 1994, 17(6): 44 − 45, 56.
    [4]
    LU Shiying, QIN Zhigao. Research progress on Hovenia dulcis Lindl. for medicine and food [J]. Journal of Food Safety and Quality, 2020, 11(6): 1865 − 1870.
    [5]
    XU Fangfang, LIU Bo, ZHANG Xiaoqi. Research progress on chemical constituents and pharmacological activities of Hovenia [J]. China Journal of Chinese Materia Medica, 2020, 45(20): 4827 − 4835.
    [6]
    WANG Mingchun, ZHU Peilei, JIANG Changxing, et al. Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis [J]. Food and Chemical Toxicology, 2012, 50(9): 2964 − 2970.
    [7]
    JI Yang, LU Hong. Research progress on Hovenia dulcis Thunb. [J]. Chinese Traditional and Herbal Drugs, 2002, 33(9): 102 − 104.
    [8]
    SHI Tao, WANG Xiaoling, CHEN Zhende, et al. Research progress of chemical constituents and pharmacological activities of Hovenia dulcis [J]. Journal of Chinese Medicinal Materials, 2006, 29(5): 510 − 513.
    [9]
    ZHU Mingzhi, LI Na, ZHAO Ming, et al. Metabolomic profiling delineate taste qualities of tea leaf pubescence [J]. Food Research International, 2017, 94: 36 − 44.
    [10]
    AKHATOU I, SAYAGO A, GONZÁLEZ-DOMÍNGUEZ R, et al. Application of targeted metabolomics to investigate optimum growing conditions to enhance bioactive content of strawberry [J]. Journal of Agricultural and Food Chemistry, 2017, 65(43): 9559 − 9567.
    [11]
    YANG Ruichun, LI Yunfeng, ZHANG Yuanyuan, et al. Widely targeted metabolomics analysis reveals key quality-related metabolites in kernels of sweet corn [J/OL]. International Journal of Genomics, 2021, 2021 (1): 2654546[2024-06-05]. doi: 10.1155/2021/2654546.
    [12]
    QIAN Qixia, ZHANG Huicong, ZHANG Pengwei, et al. Integrated transcriptomics and metabolomics provide new insights into the leaf coloration of a bamboo variant Phyllostachys violascens var. flavistriatus [J/OL]. Scientia Horticulturae, 2024, 334 : 113330[2024-06-05]. doi: 10.1016/j.scienta.2024.113330.
    [13]
    WEI Kailing, LIU Meiya, SHI Yifan, et al. Metabolomics reveal that the high application of phosphorus and potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid [J/OL]. Agronomy, 2022, 12 (5): 1086[2024-06-05]. doi: 10.3390/agronomy12051086.
    [14]
    ZHANG Hua, SONG Yakang, FAN Zhenlei, et al. Aluminum supplementation mediates the changes in tea plant growth and metabolism in response to calcium stress [J/OL]. International Journal of Molecular Sciences, 2024, 25 (1): 530[2024-06-05]. doi: 10.3390/ijms25010530.
    [15]
    ZHANG Hua, LI Chunlei, WEI Kailing, et al. The reduction of tea quality caused by irrational phosphate application is associated with anthocyanin metabolism [J/OL]. Beverage Plant Research, 2023, 3 : 10[2024-06-05]. doi: 10.48130/BPR-2023-0010.
    [16]
    PENG Han, DENG Zeyuan, CHEN Xuan, et al. Major chemical constituents and antioxidant activities of different extracts from the peduncles of Hovenia acerba Lindl. [J]. International Journal of Food Properties, 2018, 21(1): 2135 − 2155.
    [17]
    YANG Zhijian, CHEN Hui, LIN Chaimei, et al. Comprehensive evaluation of quality traits of Hovenia acerba germplasm resources in Fujian Province [J/OL]. Forests, 2023, 14 (2): 204[2024-06-05]. doi: 10.3390/f14020204.
    [18]
    NIIYA M, SHIMATO Y, OHNO T, et al. Effects of Hovenia dulcis fruit and peduncle extract on alcohol metabolism [J/OL]. Journal of Ethnopharmacology, 2024, 321 : 117541[2024-06-05]. doi: 10.1016/j.jep.2023.117541.
    [19]
    YANG Shunyi, YUAN Chunhong, JIANG Gaohua, et al. Recent advance of alkaloids in genus Aconitum [J]. Hubei Agricultural Sciences, 2020, 59(23): 5 − 10.
    [20]
    HUANG Qian, SUN Mingli, LI Tengfei, et al. Research progress on mechanisms underlying aconitines analgesia [J]. Journal of Neuropharmacology, 2017, 7(3): 21 − 32.
    [21]
    XING Mengyu, TIAN Chongmei, XIA Daozong. Review on chemical constituents and pharmacological effects of Lindera aggregata Kosterm [J]. Natural Product Research and Development, 2017, 29(12): 2147 − 2151.
    [22]
    DUDA-MADEJ A, STECKO J, SOBIERAJ J, et al. Naringenin and its derivatives: health-promoting phytobiotic against resistant bacteria and fungi in humans [J/OL]. Antibiotics, 2022, 11 (11): 1628[2023-06-05]. doi: 10.3390/antibiotics11111628.
    [23]
    PEREIRA R, SILVA A M S, RIBEIRO D, et al. Bis-chalcones: a review of synthetic methodologies and anti-inflammatory effects [J/OL]. European Journal of Medicinal Chemistry, 2023, 252 : 115280[2024-06-05]. doi: 10.1016/j.ejmech.2023.115280.
    [24]
    RAMMOHAN A, REDDY J S, SRAVYA G, et al. Chalcone synthesis, properties and medicinal applications: a review [J]. Environmental Chemistry Letters, 2020, 18(2): 433 − 458.
    [25]
    UÇAR K, GÖKTAŞ Z. Biological activities of naringenin: a narrative review based on in vitro and in vivo studies [J]. Nutrition Research, 2023, 119: 43 − 55.
    [26]
    PENG Ying, PAN Siyi, ZHANG Dexin. Preparation and the mechanism of sweet taste of naringin dihydrochalcone [J]. Food and Fermentation Industries, 2022, 48(1): 21 − 28.
    [27]
    LI Jilie. The brewing process of Hovenia dulcis fruit wine [J]. Food and Fermentation Industries, 2002(12): 71 − 73.
    [28]
    XIANG Jinle, LI Zhixi, GAN Feng, et al. Determination of four different phenolic acids of Hovenia acerba fruit and their antioxidant activities [J]. Food and Fermentation Industries, 2011, 37(8): 106 − 111.
    [29]
    ZHANG Yuchao, ZHANG Zhihuai, LIU Liangyu, et al. Extraction and antioxidant activity of flavone from Hovenia dulcis peduncle [J]. Food Science and Technology, 2024, 49(4): 251 − 260
    [30]
    LIU Xudong, ZHANG Yuchao, ZHU Sijie, et al. Optimization of extraction process of polysaccharides from Hovenia dulcis fruit pedicels and its antioxidant activity [J]. Science and Technology of Food Industry, 2023, 44(11): 230 − 237.
    [31]
    LIU Jinghua, LUO Jieya, GUO Peng, et al. Content determination of flavonoids in Hovenia dulcis and its molecular mechanism of antioxidant effect [J]. Chinese Journal of Veterinary Medicine, 2024, 60(2): 120 − 125.
    [32]
    CHOI H A, AHN S O, LIM H D, et al. Growth suppression of a gingivitis and skin pathogen Cutibacterium (Propionibacterium) acnes by medicinal plant extracts [J/OL]. Antibiotics, 2021, 10 (9): 1092[2024-06-05]. doi: 10.3390/antibiotics10091092.
    [33]
    YOU R, KWON O Y, WOO H J, et al. Hovenia monofloral honey can attenuate Enterococcus faecalis mediated biofilm formation and inflammation [J]. Food Science of Animal Resources, 2022, 42(1): 84 − 97.
    [34]
    DU Guocheng. Pharmacological effects analysis of tannins in traditional chinese medicine [J]. China Medicine and Pharmacy, 2011, 1 (16): 27, 33.
    [35]
    WANG Peng, WEI Jia, HUA Xin, et al. Plant anthraquinones: classification, distribution, biosynthesis, and regulation [J/OL]. Journal of Cellular Physiology, 2023[2024-06-05]. doi: 10.1002/jcp.31063.
    [36]
    ZHAO Lihua, ZHENG Lin. A review on bioactive anthraquinone and derivatives as the regulators for ROS [J/OL]. Molecules, 2023, 28 (24): 8139[2024-06-05]. doi: 10.3390/molecules28248139.
    [37]
    GRIFFITHS D W. Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods [M]. Boston: Springer, 1986: 509 − 516
    [38]
    van BUREN J P, ROBINSON W B. Formation of complexes between protein and tannic acid [J]. Journal of Agricultural and Food Chemistry, 1969, 17(4): 772 − 777.
    [39]
    SONG Shiming, GAO Yanxia, FENG Shuai, et al. Widespread occurrence of two typical N, N’-substituted p-phenylenediamines and their quinones in humans: association with oxidative stress and liver damage [J/OL]. Journal of Hazardous Materials, 2024, 468 : 133835[2024-06-05]. doi: 10.1016/j.jhazmat.2024.133835.
    [40]
    CAVALIERI E, ROGAN E. The 3, 4-quinones of estrone and estradiol are the initiators of cancer whereas resveratrol and N-acetylcysteine are the preventers [J/OL]. International Journal of Molecular Sciences, 2021, 22 (15): 8238[2024-06-05]. doi: 10.3390/ijms22158238.
    [41]
    ZAMORA R, HIDALGO F J. Formation of naphthoquinones and anthraquinones by carbonyl-hydroquinone/benzoquinone reactions: a potential route for the origin of 9, 10-anthraquinone in tea [J/OL]. Food Chemistry, 2021, 354 : 129530[2024-06-05]. doi: 10.1016/j.foodchem.2021.129530.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(1)

Article views(72) PDF downloads(0) Cited by()

Related
Proportional views

Comprehensive targeted metabolomic analysis of fruit stalks in two species of Hovenia plants

doi: 10.11833/j.issn.2095-0756.20240429

Abstract:   Objective  This study aims to clarify the metabolite differences in the fruit stalks of Hovenia acerba and H. trichocarpavar var. robusta, and lay a foundation for the development and utilization of Hovenia plants.   Method  Through a comprehensive targeted metabolomics approach of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), the differences in metabolites and metabolic pathways in the fruit stalks of H. acerba and H. trichocarpa var. robusta were analyzed.   Result  A total of 1810 metabolites were detected in the fruit stalks of the two Hovenia species, of which 782 metabolites showed significant differences (P<0.05). Compared with the fruit stalks of H. acerba, there were 378 up-regulated differential metabolites and 404 down-regulated differential metabolites in the fruit stalks of H. trichocarpa var. robusta, and the relative contents of tannin and quinone metabolites were significantly down-regulated. The differential metabolites in the fruit stalks of the two Hovenia species were primarily enriched in the biosynthetic pathways of phenylalanine compounds, flavonoids, and isoquinoline alkaloids. Among them, the extremely significant differential metabolites included alkaloid substances such as ligustroside, N-methylligustroside and methylcoclaurine, as well as flavonoids like naringin, naringin chalcone, and 2’,3,4,4’,6’-pentahydroxy chalcone.   Conclusion  There are significant differences in the metabolic profiles of the fruit stalks of the two Hovenia species under the same ecological conditions, especially the relative content of alkaloids and flavonoids with medicinal value and high sweetness. [Ch, 7 fig. 1 tab. 41 ref.]

YING Junhui, PAN Wenwen, ZHANG Hua, ZHOU Shengcai, LIN Yan, ZHANG Junhong, CHEN Shitong. Comprehensive targeted metabolomic analysis of fruit stalks in two species of Hovenia plants[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240429
Citation: YING Junhui, PAN Wenwen, ZHANG Hua, ZHOU Shengcai, LIN Yan, ZHANG Junhong, CHEN Shitong. Comprehensive targeted metabolomic analysis of fruit stalks in two species of Hovenia plants[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240429
  • 枳椇Hovenia acerba是鼠李科Rhamnaceae枳椇属Hovenia高大落叶乔木,俗称拐枣。枳椇果实利用价值高,其果梗质量占果实总质量的90%。枳椇果梗肥大、肉质多汁、营养丰富,具很高的食用价值[16]。光叶毛果枳椇H. trichocarpa var. robusta为枳椇属的变种[7]。叶下面无毛或沿脉被疏柔毛,萼片和果实被锈色密绒毛。肥大果梗含丰富糖,可生食、酿酒、制醋和熬糖等[2,8]。枳椇果梗是主要食用部位,其滋味主要由非挥发性代谢物主导,不同种枳椇果梗常呈不同风味[1]。卢孟飞等[1]通过比较主栽枳椇品种果梗的营养成分差异发现:不同枳椇品种果梗营养成分和内在品质存在显著差异。因此,为更好地利用枳椇不同种及品种,需对其开展代谢物分析和评价。

    广泛靶向代谢组学是一种高通量、高精度和广覆盖的代谢产物检测方法,在茶树Camellia sinensis[9]、草莓Fragaria × ananassa[10]、玉米Zea mays[11]和黄纹早竹Phyllostachys violascens var. flavistriatus[12]等植物的化学成分和品质特征研究中应用广泛[1315]。例如PENG等[16]采用LC-ESI-QTOF-MS/MS技术对枳椇果梗进行测定,发现枳椇果梗的抗氧化活性与酚类、单宁酸总质量分数呈正相关,表明酚类物质可能是枳椇果梗抗氧化活性的主要成分,且首次鉴定出枳椇果梗提取物中含有低聚糖、有机酸、脂肪酸和黄酮类等影响风味的化合物。YANG等[17]通过定量分析发现:枳椇果肉的主要营养成分包括糖类、蛋白质、脂质和黄酮等化合物,且糖类十分丰富。

    目前,对枳椇研究主要集中于枳椇果梗的代谢物提取和功能食品的开发利用等[1718],对不同枳椇种的全面分析报道较少。诸多研究表明:代谢组学可对植物各器官内含物质进行准确解析,并筛选不同种或品种的特征化合物。因此,本研究以枳椇和光叶毛果枳椇果梗为试验材料,通过广泛靶向代谢组学鉴定2种枳椇果梗的代谢物差异,为枳椇种特征化合物的提取与利用及优良品种的选育提供参考。

    • 材料选自浙江省丽水市白云山的枳椇和光叶毛果枳椇。枳椇浆果状核果,近球形,无毛(图1左);光叶毛果枳椇浆果状核果,近球形,密被锈色或棕色绒毛(图1右)。2023年11月13日,在2种枳椇树的东、西、南、北4个方位,分别采集完全成熟的果梗,均匀混合后液氮速冻,−80 ℃保存。在液氮环境下用植物粉碎机粉碎,真空冷冻干燥后用于广泛靶向代谢组学测定。

      Figure 1.  Fruit phenotypes of two Hovenia species

    • 称取50 mg样品粉末,溶解于1200 μL提取液(-20 ℃预冷的体积分数为70%甲醇水内标提取液);涡旋6次,每次间隔30 min,每次30 s;离心3 min (12 000 r·min−1,4 ℃),吸取上清液,用0.22 μm微孔滤膜过滤样品,保存于进样瓶,进行超高效液相色谱(UPLC,ExionLC™ AD)和串联质谱(MS/MS,QTRAP® 6500+)分析。

      色谱条件:Agilent SB-C18 1.8 µm,2.1 mm×100 mm,流速0.35 mL·min−1;柱温40 ℃;进样量2 μL。流动相条件:流动相A为超纯水(加入体积分数为0.1%的甲酸),流动相B为乙腈(加入体积分数为0.1%的甲酸)。

    • 使用Analyst 1.6.3软件分析质谱数据中的代谢物,得到代谢物列表,包括代谢物名称和丰度。利用KEGG数据库(https://www.metaboanalyst.ca)对鉴定到的代谢物进行功能和分类注释。通过使用SIMCA 14.1软件对代谢物进行主成分分析(PCA)和正交偏最小二乘判别分析(OPLS-DA)。其中OPLS-DA 的S-plot图用于识别和解释模型中重要变量的关系,位于右上角和左下角的变量表示其差异显著,红色点通常表示分组贡献值(VIP)≥1的变量,而绿色点表示VIP值<1的变量。根据VIP和组间变化的显著性筛选得到差异代谢物。再应用排列检验(permutation test)验证OPLS-DA模型可靠性,通过随机打乱样本的分组标签,重新建立和评估模型,以此来确定模型可靠性,R2为模型的解释率,代表了模型的可解释性,即模型中有多少信息能被解释。其中:R2X表示模型对预测变量(X矩阵)的解释程度;R2Y表示模型对响应变量(Y矩阵)的解释程度;Q2表示模型的预测能力,Q2>0.5被认为是好模型。通过使用Excel 2019软件对数据进行标准化处理和T-检验。接着通过T-检验计算得2组样品间的P值,筛选显著性差异代谢物。使用KEGG对差异代谢物进行通路分析,得到差异代谢通路的富集结果。在本研究中,VIP表示代谢物对分组的贡献值。log2FC表征差异倍数,为每个代谢物在样本组与对照组中3个重复均值的比值,正值表示样本组中代谢物相对含量高于对照组,负值则相反。P值用于判断实验结果的显著性。

      数据标准化计算公式为:

      其中:x 是原始数据,μ 是数据的均值,σ 是数据的标准差。

    • 对2种枳椇果梗样品进行UPLC-MS/MS分析,共鉴定出13类1 810种代谢物(图2),包括黄酮类307种(16.96%)、生物碱195种(10.77%)、脂类221种(12.21%)、有机酸65种(3.59%)、萜类191种(10.55%)、单宁13种(0.72%)、甾体1种(0.06%)、醌类18种(0.99%)、酚酸类207种(11.44%)、氨基酸及其衍生物146种(8.07%)、核苷酸及其衍生物54种(2.98%)、木脂素和香豆素130种(7.18%)以及其他代谢物262种(14.48%)。与枳椇果梗相比,867种代谢物在光叶毛果枳椇果梗中上调,943代谢物下调。

      Figure 2.  Metabolite classification of fruit pedicels in two Hovenia species       

    • 为揭示2种枳椇果梗的代谢物组成差异,采用多维模式识别方法对代谢组数据进行多元统计分析。主成分分析得分表明:2组样品的3个重复良好,代谢组学数据质量可靠(图3A)。PC1和PC2分别解释了总变量的52.9%和14.9%,累计贡献率达67.8 %。来自2组的样品表现出明显分层,并在第一主成分上分离显著,表明2组样品的代谢物在组间差异显著。载荷分析确定各代谢物与2个种之间存在相关性(图3B)。

      Figure 3.  PCA score diagram (A) and loading diagram (B) of fruit pedicels in two Hovenia species

      OPLS-DA分析表明:第一主成分和第二主成分的贡献率分别为57.7%和13.7%,累计贡献率为71.4%,可更好地解释总体变量(图4A)。R2X=0.775,R2Y=0.998,Q2=0.972,其中Q2>0.9表明模型可靠(图4B)。S-plot图表示主成分与代谢物的相关系数,可通过变量重要性投影(VIP)值筛选差异代谢物(图4C)。

      Figure 4.  OPLS-DA score plot (A), ranked test plot (B) and S-plot (C) of fruit pedicels in two Hovenia species

    • 为研究枳椇和光叶毛果枳椇果梗的代谢物差异,以VIP>1、|log2FC|>1和P<0.05为筛选标准筛选出782种差异代谢物。与枳椇果梗相比,378种代谢物在光叶毛果枳椇果梗中上调,404种代谢物下调(图5A)。为更好地了解差异代谢物种类,对筛选的差异代谢物进行标准化处理,并根据代谢物种类进行聚类分析(图5B)。结果表明:782种差异代谢物中,黄酮和酚酸类种类最多,分别为140和102种,其次为萜类95种、生物碱89种、木脂素和香豆素75种、脂类70种、氨基酸及其衍生物56种、核苷酸及其衍生物27种、有机酸22种、单宁4种、醌类4种和其他类98种。与枳椇果梗相比,单宁、醌类代谢物相对含量在光叶无果枳椇果梗中显著下调(P<0.05,图5C)。

      Figure 5.  Differential metabolite volcano plot (A), differential metabolite clustering heat map (B) and differential metabolite scatter plot (C) of fruit pedicels in two Hovenia species

    • 为进一步预测差异代谢物的主要生物学功能,将枳椇和光叶毛果枳椇果梗的差异代谢物注释到KEGG数据库,差异代谢物的代谢通路富集分析筛选到3条差异显著的代谢通路(图6),每条通路中富集的代谢物如表1所示。差异显著的代谢物主要富集在苯丙烷类化合物、黄酮类化合物和异喹啉生物碱的生物合成途径(图7)。在这3条代谢通路中,黄酮类化合物生物合成途径富集的差异代谢物在枳椇果梗中的相对含量显著高于光叶毛果枳椇果梗(P<0.05);在苯丙烷类化合物生物合成途径中,除了芥子醛外,其他富集的差异代谢物在光叶毛果枳椇果梗中的相对含量均显著高于枳椇果梗(P<0.05);在异喹啉生物碱生物合成途径中,除了番荔枝碱外,其他富集的差异代谢物在光叶毛果枳椇果梗中的相对含量均显著高于枳椇果梗(P<0.05)。

      Figure 6.  Enrichment pathway bubble diagram of fruit pedicels in two Hovenia species

      通路 通路名称 富集的代谢物名称
      Map00940 苯丙烷类化合物生物合成 咖啡酰奎宁酸、对香豆酸、芥子醛、芥子酸、咖啡酸、阿魏酸
      Map00941 黄酮类化合物生物合成 咖啡酰奎宁酸、柚皮素查耳酮、柚皮素、2’, 3, 4, 4’, 6’-五羟基查耳酮-4’-O-葡萄糖苷、樱桃苷、
       2’, 3, 4, 4’, 6’-五羟基查耳酮、3’, 4, 4’, 5, 7-五羟基黄烷、短叶松素、圣草酚、根皮苷、
       白矢车菊素
      Map00950 异喹啉生物碱生物合成 甲基衡州乌药碱、N-甲基乌药碱、异波尔定碱、华青藤碱、乌药碱、原儿茶醛、
       对香豆酸、番荔枝碱

      Table 1.  Metabolites significantly enriched pathways of fruit pedicels in two Hovenia species

      Figure 7.  The biosynthesis pathways and contents of phenylpropanoid, flavonoid and isoquinoline alkaloid in fruit pedicels from two Hovenia species

    • 本研究对枳椇果梗和光叶毛果枳椇果梗进行广泛靶向代谢组学分析,以探究2种枳椇属植物果梗的代谢物差异,共鉴定出1 810种代谢物,其中枳椇果梗中单宁、醌类和生物碱类化合物相对含量较高。KEGG代谢通路分析发现:2种枳椇果梗差异代谢物苯丙烷类化合物、黄酮类化合物和异喹啉生物碱的生物合成通路富集程度最高。前人研究表明:乌药碱、甲基衡州乌药碱和N-甲基乌药碱等生物碱化合物具有显著镇痛效果[1920],在临床上被用于缓解疼痛,且具有抗炎、抗高血脂和抗肿瘤等多种药理作用[21]。柚皮素、查尔酮等黄酮类化合物亦具有多种生物活性和药理作用,如较强抗氧化性和抗菌性[2225],且查尔酮等黄酮类化合物还具有高甜度和低热量[26],可作为食品甜味剂。本研究发现:乌药碱、甲基衡州乌药碱和N-甲基乌药碱等生物碱化合物在光叶毛果枳椇果梗中显著上调,而查耳酮、柚皮素和2’, 3, 4, 4’, 6’-五羟基查耳酮等黄酮化合物在枳椇果梗中显著上调。因此,2种枳椇属植物果梗在潜在应用领域可能存在差异,需进行分类加工利用。

      目前,枳椇的应用不再局限于果汁、果酒类产品[27],更多聚焦于对果梗中多糖、黄酮和酚酸类化合物的提取和功能性研究[2831]。例如,黄酮类化合物具有抗菌性[27],枳椇花粉提取物和茎、叶提取物可抑制粪肠球菌Enterococcus faecalis介导的炎症和丙酸杆菌 Cutibacterium acnes引起的痤疮[3233]。本研究发现:枳椇果梗比光叶毛果枳椇果梗黄酮类化合物相对含量更高,更适合用于提取黄酮类化合物。然而,目前对于枳椇果梗黄酮类化合物抗菌性的研究及其提取物在抗菌上的应用尚欠缺。单宁、醌类具多样生物活性,可用于抗菌和抗病毒作用[3436],但也存在潜在危害,例如,较高水平的单宁可与消化酶结合,影响消化功能[37],且可与蛋白质形成不溶性复合物,可能会干扰蛋白质和其他营养元素的吸收[38]。部分醌类物质可能对肾脏、肝脏有损害[39],还被认为具有致癌作用[4041]。因此,在进行枳椇产品的开发利用时,需进行充分的安全性评价。

      本研究表明,苯丙烷类化合物、黄酮类化合物和异喹啉生物碱的生物合成途径是2种枳椇果梗中差异最显著的3条代谢通路,且多种中间产物也存在显著差异。这些差异代谢物与果梗感官差异的关系还需更多试验解析。

    • 同一生态条件下,2种枳椇果梗的代谢谱存在显著差异,特别是具有药用价值和高甜度的生物碱和黄酮类代谢产物相对含量。这可能与2种枳椇果梗感官质量差异的形成有一定关系。本研究结果可为2种枳椇属植物的特征化合物提取与利用及优良品种的选育提供理论支撑。

Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return