-
植物通过次生代谢释放的挥发性有机化合物(volatile organic compounds,VOCs)主要包括萜烯类、苯丙酸类/苯环型和脂肪酸衍生物[1-2]。这些VOCs是植物生长[3]、发育[4]和繁衍[5]以及抵抗不利条件[6-8]的重要手段,在人居环境中影响空气质量[9]和人体健康[10-12]。随着核磁共振和色谱等分析技术的发展,对园林树木释放VOCs的研究逐渐增多。目前,国内研究集中在油松Pinus tabuliformis,侧柏Platycladus orientalis等针叶树上[11, 13],而对阔叶树较缺乏系统研究。槭树Acer spp.隶属槭树科Aceraceae槭树属Acer阔叶乔木或灌木,主产于北温带地区,是温带落叶阔叶林、针阔混交林以及亚热带山地森林的建群种和重要组成,也是针叶林的伴生种,中国槭树种类世界最多,许多槭树为优良荒山绿化和园林造景树种[14]。糖槭A.saccharum,五角枫A.mono,元宝枫A.truncatum,复叶槭A.negundo和挪威槭A.platanoides等释放的VOCs具有信号传导[15]、抑制昆虫[16-17]和真菌[18]的作用,关于其他槭树释放VOCs尚未见报道。因此,本研究以槭树为试验材料,采用活体植株动态顶空气体循环采集法与热脱附/气相色谱/质谱(TDS-GC-MS)联用技术测定不同槭树释放VOCs,旨在探索槭树释放VOCs组分与规律,为进一步研究植物VOCs对环境质量的影响以及植物配置提供依据。
-
槭树科7种植物释放的VOCs通过TDS-GC-MS分析(图 1),扣除本底空气中的杂质后,共鉴定出48种化合物(表 1)。其中苦茶槭鉴定出17种化合物,主要是酯类、醛类和醇类,包括乙酸叶醇酯(63.0%),癸醛(6.5%)和2-乙基-1-己醇(5.6%)等10种化合物,占VOCs总量的89.7%;鸡爪槭检测出15种化合物,主要是酯类、萜类和醇类,包括乙酸叶醇酯(49.6%),长叶烯(9.7%),2-乙基-1-己醇(11.7%)等11种化合物,占VOCs总量的85.5%;三角槭检测出19种化合物,主要是萜类、醛类和酯类,包括罗勒烯(20.3%),长叶烯(10.6%),乙酸叶醇酯(13.0%),癸醛(11.3%)和壬醛(9.2%)等14种化合物,占VOCs总量的84.9%;樟叶槭检测出24种化合物,主要为罗勒烯(24.4%),α-蒎烯(15.6%)和3-蒈烯(11.9%)等18种萜类化合物,占VOCs总量的96.6%;羊角槭检测出25种化合物,主要是萜类、醛类和醇类,包括长叶烯(12.0%),石竹烯(10.1%),癸醛(14.9%),壬醛(8.6%)和2-乙基-1-己醇(11.8%)等17种化合物,占VOCs总量的81.1%;毛脉槭检测出23种化合物,主要为萜类和酯类,包括罗勒烯(11.4%),长叶烯(8.9%)和乙酸叶醇酯(18.3%)等18种化合物,占VOCs总量的79.0%;青榨槭检测出20种化合物,主要是醇类、酯类和醛类,包括乙酸叶醇酯(23.7%),癸醛(15.0%),壬醛(10.1%),(Z)-3-己烯-1-醇(11.1%)和2-乙基-1-己醇(7.7%)等11种化合物,占VOCs总量的80.9%。
图 1 7种槭树释放VOCs的总离子流图
Figure 1. Total ion current of volatile organic compounds released from branches and leaves in 7 Acer species
表 1 7种槭树释放挥发性有机化合物(VOCs)主要组分(平均值±标准偏差)
Table 1. Main components of the volatile organic compounds released from branches and leaves in 7 Acer species (mean ± SD)
挥发性有机化合物 分子式 峰面积Ax106 苦茶槭 鸡爪槭 三角槭 樟叶槭 羊角槭 毛脉槭 青榨槭 萜类 3-蒈烯 3-garene C10H16 - - - 330.39 ± 0.05 3.42 ± 0.03 - - α-蒎烯 α-pinene C10H16 2.90 ± 0.12 1.80 ± 0.37 1.08 ± 2.15 433.87 ± 4.32 9.67 ± 1.01 3.17 ± 0.31 3.03 ± 1.76 β-蒎烯 β-pinene C10H16 - - - 299.27 ± 1.18 14.72 ± 0.01 9.88 ± 0.19 - 罗勒烯 ocimene C10H16 - 2.36 ± 0.97 32.55 ± 0.02 679.70 ± 1.64 2.88 ± 0.25 26.91 ± 0.89 - 反式罗勒烯 trans-ocimene C10H16 - - - 102.86 ± 1.21 - 2.57 ± 0.01 - 别罗勒烯 Allo-ocimene C10H16 - - - 39.87 ± 2.54 - - - D-柠檬烯 D-limonene C10H16 - - - 20.36 ± 0.23 - 7.36 ± 2.34 14.49 ± 2.67 松油烯terpinene C10H16 - - - 257.16 ± 9.18 - - - 焦烯 pyronene C10H16 - - - 91.93 ± 8.49 6.83 ± 0.15 - - 环葑烯 cyclofenchene C10H16 - - - 217.38 ± 6.37 - - - 萜品油烯terpinolene C10H16 - - - 147.15 ± 9.81 - - - 香芹醇carveol C10H16O 2.07 ± 0.01 - - 9.22 ± 0.12 - 13.80 ± 0.84 - 1,4-按树脑 1,4-cineole C10H18O - - - 11.15 ± 1.67 - - - 萜品醇terpineol C10H16O - - - 4.24 ± 5.02 - - - 卡达烯cadalene C15H18 - - - - - 4.66 ± 0.24 - 罗汉柏烯thujopsene C15H24 - 1.84 ± 0.99 - - - - - 长叶环烯longicyclene C15H24 2.16 ± 0.69 2.83 ± 1.00 4.63 ± 2.17 4.37 ± 0.34 6.99 ± 1.27 3.26 ± 0.04 3.20 ± 0.56 长叶烯 longifolene C15H24 6.77 ± 2.52 13.74 ± 2.35 17.04 ± 1.16 21.40 ± 2.02 44.23 ± 5.64 21.13 ± 2.70 15.09 ± 0.02 雪松烯cedrene C15H24 2.41 ± 1.33 3.01 ± 0.18 3.81 ± 0.46 4.92 ± 1.10 9.00 ± 1.26 5.25 ± 0.43 3.02 ± 2.39 石竹烯 caryophyllene C15H24 1.95 ± 0.90 2.87 ± 0.45 8.97 ± 3.00 15.99 ± 1.80 37.01 ± 2.01 10.09 ± 1.08 3.65 ± 1.22 可巴烯 copaene C15H24 - - 3.50 ± 0.42 - - 4.12 ± 0.58 - 荜澄茄烯 cadinene C15H24 - - 2.47 ± 0.06 - - 12.71 ± 0.11 - 衣兰油烯 muurolene C15H24 - - - - - 2.71 ± 0.13 - 法尼醇 farnesol C15H26O - - - - - 2.46 ± 0.60 - 醇类 (Z)-3-己烯-1-醇 3-hexen- 1- ol,(Z)- C16H12O - - - - - - 32.73 ± 1.48 2- 乙基-1-己醇 1-hexanol,2-ethyl - C8H18O 11.84 ± 0.21 16.55 ± 0.50 10.74 ± 5.32 43.21 ± 0.02 18.94 ± 0.61 22.65 ± 6.54 (E)-2-壬烯-1-醇 2-nonen- 1-ol,(E)- C9H180 - - - - 3.50 ± 0.43 - 3.15 ± 0.49 3,7-二甲基-1-辛醇1- octano, 3,7-dimethyl- C10H22O 5.10 ± 0.04 2.17 ± 0.15 2.64 ± 0.17 3.00 ± 3.56 7.65 ± 0.03 1-癸醇 1-decanol C10H22O 2.95 ± 0.07 - - - 4.84 ± 0.20 - 3.81 ± 0.01 反式-2-十二烯-1-醇trans- 2-dodecen-1-ol C12H24O 3.51 ± 2.16 1.65 ± 0.67 5.74 ± 0.99 9.82 ± 0.06 16.83 ± 1.23 4.84 ± 0.50 10.03 ± 0.95 酯类 甲酸乙酷formic acid,vinyl ester C3H4O2 4.23 ± 0.33 2.55 ± 0.02 - - - - - 乙酸叶醇酯 3-hexen-1-ol,acetate C8H14O2 133.57 ± 5.66 70.21 ± 8.89 20.91 ± 1.29 15.37 ± 7.61 43.37 ± 5.40 69.83 ± 4.12 乙酸己酯 acetic acid,hexyl ester C8H16O2 2.67 ± 0.25 2.12 ± 0.03 2.65 ± 0.11 水杨酸甲酯 methyl salicylate C8H8O3 - - 3.39 ± 0.06 - - - - 异丁酸叶醇酯hexenyl isobutanoate C10H18O2 - - 2.92 ± 1.83 - - - - 醋酸-2-乙基己酯acetic acid, 2-ethylhexyl ester C10H20O2 2.68 ± 0.09 - - - 15.70 ± 0.33 11.05 ± 1.21 10.06 ± 0.16 乙酸龙脑酯bornyl acetate C12H20O2 - - - - 4.10 ± 1.00 - - 醛类 2.4- 己二烯醛 2.4- hexadienal C6H8O - - - - - - 4.62 ± 0.11 壬醛 nonanal >C9H18O 10.04 ± 1.17 7.53 ± 1.94 14.74 ± 3.25 32.67 ± 2.58 31.49 ± 3.41 11.03 ± 2.75 29.63 ± 3.06 枯茗醛 cuminaldehyde >C10H20O - - - 3.98 ± 0.05 - - - 癸醛 decanal C10H20O 13.76 ± 1.35 6.00 ± 1.79 18.18 ± 2.31 27.37 ± 6.00 54.87 ± 5.14 12.03± 3.77 44.24 ± 8.00 十—醛 undecanal 酮类 C11H22O - - 2.15 ± 0.34 - 5.88 ± 2.75 - - 酮类 乙醜苯 acetophenone C8H8O - - - - 3.67 ± 1.22 - - 异佛尔酮 isophorone C9H14O - - 2.12 ± 0.03 12.93 ± 0.10 6.45 ± 0.21 香叶基丙酮 acetone, Geranyl-烃类 C13H22O - - 2.00 ± 0.72 8.55 ± 0.51 9.69 ± 0.01 - 3.04 ± 0.98 烃类 1-十二烯 1-dodecene C12H24 3.31 ± 0.15 - - - 3.36 ± 0.32 - 4.42 ± 0.41 2,6,10-三甲基-十四烯 tetradecane,2,6,10-trimethyl- C17H36 - - - - 4.38 ± 0.81 - - 含氮类 己内酰胺caprolactam C6H11NO - 4.38 ± 1.27 3.55 ± 1.30 13.75 ± 1.01 说明:-表示未检出。 槭树科7种植物释放VOCs的共有成分是α-蒎烯、长叶烯、长叶环烯、雪松烯、石竹烯、反式-2-十二烯-1-醇、壬醛和癸醛等8种化合物,分别占苦茶槭、鸡爪槭、三角槭、樟叶槭、羊角槭、毛脉槭和青榨槭各总量的20.5%,26.7%,46.2%,19.8%,57.2%,29.9%和38.0%。常绿树樟叶槭与落叶树苦茶槭、鸡爪槭、三角槭、羊角槭、毛脉槭和青榨槭共有成分分别为21.5%,32.6%,70.0%,67.4%,55.4%和43.9%。特有成分最多的是樟叶槭(24.4%),其次是青榨槭(12.7%)、毛脉槭(4.2%)、三角槭(3.9%)、羊角槭(3.3%)和鸡爪槭(1.3%)。
-
7种槭树科植物释放VOCs种类和相对含量存在显著差异(图 2)。苦茶槭共有5类化合物,萜类6种(8.6%),醇类4种(11.0%),酯类4种(67.6%),醛类2种(11.2),烃类1种(1.6%);鸡爪槭含有萜类、烃类、醛类等5类化合物,萜类7种(20.1%),醇类1种(11.9%),酯类3种(52.9%),醛类2种(9.6%),含氮化合物1种(3.1%);三角槭包括萜类、酮类、醛类等6类化合物:萜类8种(46.1%),醇类2种(10.3%),酯类3种(17.0%),醛类3种(21.9%),酮类2种(2.6%),含氮化合物1种(2.2%);樟叶槭含有萜类、醇类、醛类等5类化合物:萜类18种(96.6%),醇类1种(0.4%),醛类3种(2.3%),酮类1种(0.3%),含氮化合物1种(0.5%);羊角槭含有萜类、醇类、酯类等6类化合物,萜类9种(36.7%),醇类5种(19.3%),酯类3种(9.6%),醛类3种(25.1%),酮类3种(7.2%),烃类2种(2.1%);毛脉槭含有萜类、醇类、酯类等4类化合物,萜类15种(54.9%),醇类3种(11.3%),酯类3种(24.1%),醛类2种(9.7%);青榨槭含有萜类、醇类、脂类等6类化合物,萜类6种(14.4%),醇类6种(27.2%),酯类2种(27.1%),醛类3种(26.6%),酮类2种(3.2%),烃类1种(1.5%)。萜类化合物含量最高的是樟叶槭,其相对含量分别是苦茶槭、鸡爪槭、三角槭、羊角槭、毛脉槭和青榨槭的14.6倍、4.8倍、2.1倍、2.6倍、2.8倍和6.7倍。在苦茶槭VOCs中脂类化合物相对含量最高,其相对含量是鸡爪槭、三角槭、羊角槭、毛脉槭和青榨槭的1.3倍、4.0倍、7.1倍、2.8倍和2.5倍,在樟叶槭中未检测到。
Component analysis of volatile organic compounds from branches and leaves in seven Acer species
-
摘要: 为探讨槭树Acer spp.释放挥发性有机化合物(VOCs)的组分,采用动态顶空气体循环法对苦茶槭A. ginnala,鸡爪槭A. palmatum,三角槭A. buergerianum,樟叶槭A. cinnamomifolium,羊角槭A. yangjuechi,毛脉槭A. pubinerve和青榨槭A. davidii等7种植物释放VOCs进行收集,利用热脱附/气相色谱/质谱(TDS-GC-MS)联用技术对其组分进行分析。结果表明:不同树种释放VOCs种类与相对含量差异明显。苦茶槭和青榨槭分别释放17种和20种成分,以酯类、醛类和醇类物质为主,相对含量较多的有乙酸叶醇酯、癸醛、(Z)-3-己烯-1-醇和壬醛;鸡爪槭、三角槭和毛脉槭分别释放15种、19种和23种成分,以萜类、酯类和醛类物质为主,相对含量较多的为罗勒烯、乙酸叶醇酯、癸醛、长叶烯和壬醛;樟叶槭释放24种成分,以萜类化合物为主,相对含量较多的有罗勒烯、α-蒎烯、3-蒈烯、β-蒎烯和松油烯;羊角槭释放25种成分,以萜类、醛类和醇类物质为主,相对含量较多的有癸醛、长叶烯、2-乙基-1-己醇、石竹烯和壬醛。以上7种槭树均可作为保健型园林植物材料。图3表1参29
-
关键词:
- 植物学 /
- 槭树 /
- 挥发性有机化合物 /
- 热脱附/气相色谱/质谱联用技术
Abstract: To analyze the volatile organic compounds (VOCs) released in Acer spp., VOCs from the branches and leaves of Acer ginnala, Acer palmatum, Acer buergerianum, Acer cinnamomifolium, Acer yangjuechi, Acer pubinerve, and Acer davidii were collected and analyzed by the dynamic headspace air-circulation method and thermal desorption system/gas chromatograhpy/mass spectrum (TDS-GC-MS). Results showed that the species of VOCs and their relative proportions varied significantly with species of Acer spp., A. ginnala and A. davidii released 17 and 20 kinds of VOCs, respectively, most of which were esters, aldehydes, and alcohols, such as 3-hexen-1-ol acetate, decanal, (Z)-3-hexen-1-ol, and nonanal. A. palmatum, A. buergerianum, and A. pubinerve released 15, 19, and 23 kinds, respectively, most of which were terpenes, esters, and aldehydes, such as ocimene, 3-hexen-1-ol acetate, (Z)-decanal, longifolene, and nonanal. A. cinnamomifolium released 24 kinds of VOCs, most of which were terpenes, such as ocimene, α-pinene, 3-carene, β-pinene, and terpinene. A. yangjuechi released 25 kinds, most of which were terpenes, aldehydes, and alcohols, such as decanal, longifolene, 2-ethyl-1-hexanol, caryophyllene, and nonanal. Thus, the health function of VOCs from these Acer species could be utilized in healthcare gardens. [Ch, 3 fig. 1 tab. 29 ref.]-
Key words:
- botany /
- Acer /
- volatile organic compounds /
- TDS-GC-MS
-
表 1 7种槭树释放挥发性有机化合物(VOCs)主要组分(平均值±标准偏差)
Table 1. Main components of the volatile organic compounds released from branches and leaves in 7 Acer species (mean ± SD)
挥发性有机化合物 分子式 峰面积Ax106 苦茶槭 鸡爪槭 三角槭 樟叶槭 羊角槭 毛脉槭 青榨槭 萜类 3-蒈烯 3-garene C10H16 - - - 330.39 ± 0.05 3.42 ± 0.03 - - α-蒎烯 α-pinene C10H16 2.90 ± 0.12 1.80 ± 0.37 1.08 ± 2.15 433.87 ± 4.32 9.67 ± 1.01 3.17 ± 0.31 3.03 ± 1.76 β-蒎烯 β-pinene C10H16 - - - 299.27 ± 1.18 14.72 ± 0.01 9.88 ± 0.19 - 罗勒烯 ocimene C10H16 - 2.36 ± 0.97 32.55 ± 0.02 679.70 ± 1.64 2.88 ± 0.25 26.91 ± 0.89 - 反式罗勒烯 trans-ocimene C10H16 - - - 102.86 ± 1.21 - 2.57 ± 0.01 - 别罗勒烯 Allo-ocimene C10H16 - - - 39.87 ± 2.54 - - - D-柠檬烯 D-limonene C10H16 - - - 20.36 ± 0.23 - 7.36 ± 2.34 14.49 ± 2.67 松油烯terpinene C10H16 - - - 257.16 ± 9.18 - - - 焦烯 pyronene C10H16 - - - 91.93 ± 8.49 6.83 ± 0.15 - - 环葑烯 cyclofenchene C10H16 - - - 217.38 ± 6.37 - - - 萜品油烯terpinolene C10H16 - - - 147.15 ± 9.81 - - - 香芹醇carveol C10H16O 2.07 ± 0.01 - - 9.22 ± 0.12 - 13.80 ± 0.84 - 1,4-按树脑 1,4-cineole C10H18O - - - 11.15 ± 1.67 - - - 萜品醇terpineol C10H16O - - - 4.24 ± 5.02 - - - 卡达烯cadalene C15H18 - - - - - 4.66 ± 0.24 - 罗汉柏烯thujopsene C15H24 - 1.84 ± 0.99 - - - - - 长叶环烯longicyclene C15H24 2.16 ± 0.69 2.83 ± 1.00 4.63 ± 2.17 4.37 ± 0.34 6.99 ± 1.27 3.26 ± 0.04 3.20 ± 0.56 长叶烯 longifolene C15H24 6.77 ± 2.52 13.74 ± 2.35 17.04 ± 1.16 21.40 ± 2.02 44.23 ± 5.64 21.13 ± 2.70 15.09 ± 0.02 雪松烯cedrene C15H24 2.41 ± 1.33 3.01 ± 0.18 3.81 ± 0.46 4.92 ± 1.10 9.00 ± 1.26 5.25 ± 0.43 3.02 ± 2.39 石竹烯 caryophyllene C15H24 1.95 ± 0.90 2.87 ± 0.45 8.97 ± 3.00 15.99 ± 1.80 37.01 ± 2.01 10.09 ± 1.08 3.65 ± 1.22 可巴烯 copaene C15H24 - - 3.50 ± 0.42 - - 4.12 ± 0.58 - 荜澄茄烯 cadinene C15H24 - - 2.47 ± 0.06 - - 12.71 ± 0.11 - 衣兰油烯 muurolene C15H24 - - - - - 2.71 ± 0.13 - 法尼醇 farnesol C15H26O - - - - - 2.46 ± 0.60 - 醇类 (Z)-3-己烯-1-醇 3-hexen- 1- ol,(Z)- C16H12O - - - - - - 32.73 ± 1.48 2- 乙基-1-己醇 1-hexanol,2-ethyl - C8H18O 11.84 ± 0.21 16.55 ± 0.50 10.74 ± 5.32 43.21 ± 0.02 18.94 ± 0.61 22.65 ± 6.54 (E)-2-壬烯-1-醇 2-nonen- 1-ol,(E)- C9H180 - - - - 3.50 ± 0.43 - 3.15 ± 0.49 3,7-二甲基-1-辛醇1- octano, 3,7-dimethyl- C10H22O 5.10 ± 0.04 2.17 ± 0.15 2.64 ± 0.17 3.00 ± 3.56 7.65 ± 0.03 1-癸醇 1-decanol C10H22O 2.95 ± 0.07 - - - 4.84 ± 0.20 - 3.81 ± 0.01 反式-2-十二烯-1-醇trans- 2-dodecen-1-ol C12H24O 3.51 ± 2.16 1.65 ± 0.67 5.74 ± 0.99 9.82 ± 0.06 16.83 ± 1.23 4.84 ± 0.50 10.03 ± 0.95 酯类 甲酸乙酷formic acid,vinyl ester C3H4O2 4.23 ± 0.33 2.55 ± 0.02 - - - - - 乙酸叶醇酯 3-hexen-1-ol,acetate C8H14O2 133.57 ± 5.66 70.21 ± 8.89 20.91 ± 1.29 15.37 ± 7.61 43.37 ± 5.40 69.83 ± 4.12 乙酸己酯 acetic acid,hexyl ester C8H16O2 2.67 ± 0.25 2.12 ± 0.03 2.65 ± 0.11 水杨酸甲酯 methyl salicylate C8H8O3 - - 3.39 ± 0.06 - - - - 异丁酸叶醇酯hexenyl isobutanoate C10H18O2 - - 2.92 ± 1.83 - - - - 醋酸-2-乙基己酯acetic acid, 2-ethylhexyl ester C10H20O2 2.68 ± 0.09 - - - 15.70 ± 0.33 11.05 ± 1.21 10.06 ± 0.16 乙酸龙脑酯bornyl acetate C12H20O2 - - - - 4.10 ± 1.00 - - 醛类 2.4- 己二烯醛 2.4- hexadienal C6H8O - - - - - - 4.62 ± 0.11 壬醛 nonanal >C9H18O 10.04 ± 1.17 7.53 ± 1.94 14.74 ± 3.25 32.67 ± 2.58 31.49 ± 3.41 11.03 ± 2.75 29.63 ± 3.06 枯茗醛 cuminaldehyde >C10H20O - - - 3.98 ± 0.05 - - - 癸醛 decanal C10H20O 13.76 ± 1.35 6.00 ± 1.79 18.18 ± 2.31 27.37 ± 6.00 54.87 ± 5.14 12.03± 3.77 44.24 ± 8.00 十—醛 undecanal 酮类 C11H22O - - 2.15 ± 0.34 - 5.88 ± 2.75 - - 酮类 乙醜苯 acetophenone C8H8O - - - - 3.67 ± 1.22 - - 异佛尔酮 isophorone C9H14O - - 2.12 ± 0.03 12.93 ± 0.10 6.45 ± 0.21 香叶基丙酮 acetone, Geranyl-烃类 C13H22O - - 2.00 ± 0.72 8.55 ± 0.51 9.69 ± 0.01 - 3.04 ± 0.98 烃类 1-十二烯 1-dodecene C12H24 3.31 ± 0.15 - - - 3.36 ± 0.32 - 4.42 ± 0.41 2,6,10-三甲基-十四烯 tetradecane,2,6,10-trimethyl- C17H36 - - - - 4.38 ± 0.81 - - 含氮类 己内酰胺caprolactam C6H11NO - 4.38 ± 1.27 3.55 ± 1.30 13.75 ± 1.01 说明:-表示未检出。 -
[1] DUDAREVA N, PICHERSKY E. Biochemical and molecular genetic aspects of floral scents [J]. Plant Physiol, 2000, 122(3): 627-634. [2] DIXON R A. Natural products and plant disease resistance [J]. Nature, 2001, 411(6839): 843-847. [3] 左照江, 张汝民, 王勇, 等. 冷蒿挥发性有机化合物主要成分分析及其地上部分结构研究[J]. 植物生态学报, 2010, 34(4): 462-468. ZUO Zhaojiang, ZHANG Rumin, WANG Yong, et al. Analysis of main volatile organic compounds and study of aboveground structures in Artemisia frigid [J]. Chin J Plant Ecol, 2010, 34(4): 462-468. [4] PICHERSKY E, GERSHENZON J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense [J]. Curr Opin Plant Biol, 2002, 5(3): 237-243. [5] BALDWIN I T, HALITSCHKE R, PASCHOLD A, et al. Volatile signaling in plant-plant interactions:"talking trees" in the genomics era [J]. Science, 2006, 311(5762): 812-815. [6] SINGSAAS E L, LERDAU M, WINTER, K., et al. Isoprene increases thermotolerance of isoprene-emitting species [J]. Plant Physiol, 1997, 115(4): 1413-1420. [7] LORETO F, VELIKOVA V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes [J]. Plant Physiol, 2001, 127(4): 1781-1787. [8] LORETO F, PINELLI P, MANES F, et al. Impact of ozone on monoterpene emissions and evidence for an isoprenelike antioxidant action of monoterpenes emitted by Quercus ilex leaves [J]. Tree Physiol, 2004, 24(4): 361-367. [9] CALFAPIETRA C, FARES S, MANES F, et al. Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review [J]. Environ Pollut, 2013, 183: 71-80. [10] 郑华, 金幼菊, 周金星, 等. 活体珍珠梅挥发物释放的季节性及其对人体脑波影响的初探[J]. 林业科学研究, 2003, 16(3): 328-334. ZHENG Hua, JIN Youju, ZHOU Jinxing, et al. A preliminary study on human brain waves influenced by volatiles released from living Sorbaria kirilowii (Regel)Maxim. in different seasons [J]. For Res, 2003, 16(3): 328-334. [11] GAO Yan, JIN Youju, LI Haidong, et al. Volatile organic compounds and their roles in bacteriostasis in five conifer species [J]. J Integr Plant Biol, 2005, 47(4): 499-507. [12] LEE J, PARK B J, TSUNTESUGU Y, et al. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects [J]. Public Health, 2011, 125(2): 93-100. [13] 李娟, 王成, 彭镇华, 等. 侧柏春季挥发物浓度日变化规律及其影响因子研究[J]. 林业科学研究, 2011, 24 (1): 82-90. LI Juan, WANG Cheng, PENG Zhenhua, et al. The diuranal variation and influence factors of VOC of Platycladus orientalis in spring [J]. For Res, 2011, 24(1): 82-90. [14] 徐廷志. 槭树科的地理分布[J]. 云南植物研究, 1996, 18(1): 43-50. XU Tingzhi. Phytogeography of the family Aceraceae [J]. Acta Bot Yunnan, 1996, 18(1): 43-50. [15] BALDWIN I T, SCHULTZ J C. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants [J]. Science, 1983, 221(4607): 277-279. [16] 张风娟, 金幼菊, 陈华君, 等. 光肩星天牛对4种不同槭树科寄主植物的选择机制[J]. 生态学报, 2006, 26(3): 870-877. ZHANG Fengjuan, JIN Youju, CHEN Huajun, et al. The selectivity mechanism of Anoplophora glabripennison four different species of maples [J]. Acta Ecol Sin, 2006, 26(3): 870-877. [17] 张风娟, 金幼菊. 茉莉酸甲酯喷施和光肩星天牛Anoplophora glabripennis(Motschulsky)咬食后五角枫释放的挥发物[J]. 生态学报, 2007, 27(7): 2990-2996. ZHANG Fengjuan, JIN Youju, Comparison of volatiles from Anoplophora glabripennis(Motsch.) and methyl jasmonate (MeJA)-applied Acer mono Maxim to identify wound signal transduction pathways [J]. Acta Ecol Sin, 2007, 27(7): 2990-2996. [18] 张风娟, 李继泉, 徐兴友, 等. 皂荚和五角枫挥发性物质组成及其对空气微生物的抑制作用[J]. 园艺学报, 2007, 34(4): 973-978. ZHANG Fengjuan, LI Jiquan, XU Xingyou, et al. The volatiles of two greening tree species and the antimicrobial activity [J]. Acta Hortic Sin, 2007, 34(4): 973-978. [19] 宋秀华, 李传荣, 许景伟, 等. 元宝枫叶片挥发物成分及其季节差异[J]. 园艺学报, 2014, 41(5): 915-924. SONG Xiuhua, LI Chuanrong, XU Jingwei, et al. The analysis of volatile organic compounds and seasonal differences emitted from leaves of Acer truncatum [J]. Acta Hortic Sin, 2014, 41(5): 915-924. [20] LI Jianguang, JIN Youju, LUO Youqing, et al. Leaf volatiles from host tree Acer negundo: Diurnal rhythm and behavior responses of Anoplophora glabripennis to volatiles in field [J]. Acta Bot Sin, 2003, 45(2): 177-182. [21] BAKKALI F, AVERBECK S, AVERBECK D, et al. Biological effects of essential oils-a review [J]. Food Chem Toxicol, 2008, 46(2): 446-475. [22] GHELARDINI C, GALEOTTI N, MANNELLI L D C, et al. Local anaesthetic activity of β-caryophyllene [J]. Il Farmaco, 2001, 56(5): 387-389. [23] da SILVA S L, FIGUEIREDO P, YANO T. Chemotherapeutic potential of the volatile oils from Zanthoxylum rhoifolium Lam leaves [J]. Eur J Pharmacol, 2007, 576(1): 180-188. [24] ORHAN I, KÜPELI E, ASLAN M, et al. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L. [J]. J Ethnopharmacol, 2006, 105(1): 235-240. [25] OCETE M A, RISCO S, ZARZUELO A, et al. Pharmacological activity of the essential oil of Bupleurum gibraltaricum: anti-inflammatory activity and effects on isolated rat uteri [J]. J Ethnopharmacol, 1989, 25(3): 305-313. [26] LIAPI C, ANIFANDIS G, ANIFANTIS G, et al. Antinociceptive properties of 1, 8-Cineole and beta-pinene, from the essential oil of Eucalyptus camaldulensis leaves, in rodents [J]. Planta Med, 2007, 73(12): 1247-1254. [27] SINGH G, SINGH O P, de LAMPASONA M P, et al. Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil [J]. Flavour Frag J, 2003, 18(1): 62-65. [28] SAAB A M, TUNDIS R, LOIZZO M R, et al. Antioxidant and antiproliferative activity of Laurus nobilis L.(Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells [J]. Nat Prod Res, 2012, 26(18): 1741-1745. [29] GRASSMANN J, HIPPELI S, SPITZENBERGER R, et al. The monoterpene terpinolene from the oil of Pinus mugo L. in concert with α-tocopherol and β-carotene effectively prevents oxidation of LDL [J]. Phytomedicine, 2005, 12(6): 416-423. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.03.022