-
香榧Torreya grandis ‘Merrilii’是红豆杉科Taxaceae榧树属Torreya裸子植物榧树Torreya grandis经无性繁殖形成的优良栽培品种,也是中国南方特有的集果用、药用、材用、油用和观赏于一体的珍贵经济树种,具有极高的经济和生态价值[1]。香榧种实风味香酥,余味浓郁,营养丰富,具有很强的健康功效,深受消费者的喜爱,且丰产期产值在30万元·hm−2以上[2]。与其他坚果不同,香榧种实需经过一段后熟过程以积累糖分、不饱和脂肪酸和氨基酸等营养成分[3],此过程对于香榧坚果采后品质的形成与提升极为关键[4]。
氨基酸是构建蛋白质的基本组成单元,不仅是人体生命活动的重要物质基础,也是决定食物风味与营养价值的关键成分[5−6]。在坚果中,游离氨基酸的含量及组成直接影响其营养品质和感官特性,尤其是呈味氨基酸的分布对坚果的风味特征具有重要贡献,如鲜味氨基酸赋予食物鲜味[7],甜味氨基酸增强甜感[8],而芳香味氨基酸则带来复杂味觉层次[9]。ZHANG等[10]研究表明:香榧种仁中含有17种游离氨基酸,其中,鲜味氨基酸占比最高,赋予其浓郁的鲜香风味,甜味和苦味氨基酸次之,形成独特的味觉平衡。长柄扁桃仁Amygdalus pedunculatus中,游离氨基酸质量分数较高,达21.74~32.35 mg·g−1,其必需氨基酸占总氨基酸比例为24.86%~28.22%,以鲜味氨基酸为主,甜味氨基酸次之[11]。鲜核桃Juglans regia中谷氨酸和天冬氨酸占比显著高于干核桃,其必需氨基酸占比高于扁桃仁,达30%~41%,营养价值更高[12]。花生Arachis hypogaea[13]和榛子Corylus heterophylla[14]等其他坚果,虽然氨基酸占比有差异,但游离氨基酸占比均少于扁桃仁。香榧受异花授粉、自然杂交、生态环境等方面因素影响,产生了许多变异,形成了不同品种(品系)。目前已研究发现:不同香榧品种的种实在形态和营养物质方面存在显著差异,如核形指数[15]、油脂[16]和蛋白质等[17]。氨基酸作为蛋白质的分解产物,它的组成和质量分数是衡量香榧品质优劣的重要指标[18]。
本研究选取当前主要栽培品种‘细榧’T. grandis‘Xi Fei’和主要推广品种‘象牙榧’T. grandis‘Xiangya Fei’,分析2个品种种实氨基酸积累的规律和差异,为香榧的品质评估和品种推广提供科学参考,以进一步提升香榧坚果的核心竞争力以及推动香榧产业的发展。
-
种实采集于浙江省湖州市安吉县上墅乡刘家塘村(30°38′N,119°41′E),选取突破种鳞后525 d的‘细榧’ 和‘象牙榧’种实。样品采摘后于4 h内运回实验室,人工去除假种皮后清洗干净,放置一晚去除田间热。选取大小、颜色、形状一致的香榧种实,将其分为3个生物学重复,每个重复20 kg,置于温度25 ℃和湿度90%的室内进行后熟处理。每天进行1次翻堆,保证种实处于均匀的后熟环境。分别于后熟的第0、5、10、15和20天进行采样,人工去除香榧种壳,并将2个品种香榧种仁切碎分装于50 mL离心管,立即置于液氮中冷却速冻,放置于−80 ℃冰箱中保存,用于后续研究。
-
茚三酮、乙酸、乙酸钠、盐酸、氢氧化钠、乙醇等分析纯试剂购自国药集团化学试剂有限公司,柠檬酸、柠檬酸钠等优级纯试剂购自日本和光公司,氨基酸混标购自Sigma公司。L-8900全自动氨基酸分析仪购自日本日立公司,天平为波兰RADWAG-AS 220.R2专业分析天平。
-
准确吸取Type B、Type AN-Ⅱ氨基酸混标(日本和光)各0.20、0.40、0.60、0.80、1.00 mL于25 mL容量瓶中,用0.02 mol·L−1盐酸溶液定容,4 ℃冷藏保存。取配制好的17种氨基酸混标,进样20 µL,以氨基酸浓度为横坐标,峰面积为纵坐标,绘制标准曲线。
-
取5 g液氮研磨好的香榧种实粉末鲜样,溶于10 mL去离子水,混匀成匀浆。再将该匀浆移至100 mL的容量瓶中,并添加60 mL的去离子水,摇匀后沸水浴1 h,期间每15 min涡旋1次。待冷却到室温后,定容到100 mL。从中取5 mL的定容液置于15 mL的离心管中,再加入等体积质量浓度为10%的磺酸水杨酸溶液混匀后,在4 ℃、10 000 r·min−1的条件下离心15 min。离心后用注射器吸取上清液,取上清液过0.22 μm水膜,待测。采用L-
8900 全自动氨基酸分析仪测定香榧种实游离氨基酸。 -
色谱柱为Na+型阳离子交换柱;离子交换树脂2622,检测器为紫外可见光检测器;显色剂为茚三酮;缓冲液系统为柠檬酸钠缓冲液B1 (pH 3.2),B2 (pH 3.0),B3 (pH 4.0),B4 (pH 4.9);缓冲液流速为0.40 mL·min−1,茚三酮流速为0.35 mL·min−1;柱温为57 ℃,室温为135 ℃。进样体积为20 μL。用外标法测定样品溶液中的游离氨基酸,其中脯氨酸检测波长为440 nm,其他氨基酸检测波长为570 nm。
-
数据通过Excel进行计算并绘图,方差分析采用SPSS 26.0。对数据进行标准化处理,进一步计算特征值和特征向量,基于累积方差贡献率进行主成分分析(PCA);数据分析过程在Origin 2022平台完成,采用内置的PCA分析模块进行处理,并绘制相应的得分图(Score Plot),以直观展示各类氨基酸在主成分空间中的分布特征及其相互关系。
-
以17种游离氨基酸为对照,分别检测后熟过程中‘细榧’和‘象牙榧’种实的氨基酸组分。如图1所示:在‘细榧’和‘象牙榧’种实中氨基酸种类无差异,均检测到了包含天冬氨酸、苏氨酸等14种蛋白质氨基酸以及γ-氨基丁酸,但组氨酸和精氨酸未检出(表1和表2)。
图 1 17种氨基酸混标(A)、‘细榧’(B)与‘象牙榧’(C)种实后熟第0天氨基酸色谱图
Figure 1. 17 amino acid mixed standards (A), amino acid chromatograms of ‘Xi Fei’ (B) and ‘Xiangya Fei’ (C) on day 0 during post-ripening process
表 1 在后熟过程中‘细榧’和‘象牙榧’种实非必需氨基酸质量分数的变化
Table 1. Non-essential amino acid content of ‘Xi Fei’ and ‘Xiangya Fei’ seeds during post-ripening process
品种 时间/d 非必需氨基酸质量分数/(µg·g−1) 天冬氨酸 丝氨酸 谷氨酸 脯氨酸 甘氨酸 丙氨酸 酪氨酸 γ-氨基丁酸 总计 ‘细榧’ 0 40.90±1.15 c 46.37±2.56 b 72.80±5.89 de 44.01±7.91 a 9.43±0.65 b 29.90±1.43 cd 52.87±2.78 f 156.33±8.06 d 433.67±23.61 f 5 42.77±8.77 c 38.90±0.80 cd 89.63±2.79 bc 23.82±3.82 bc 30.20±6.22 a 28.87±2.21 d 114.67±4.99 d 320.00±24.91 a 665.03±36.97 cd 10 42.77±8.77 c 41.60±0.36 bcd 84.83±8.86 cde 14.03±4.24 c 32.73±5.89 a 35.13±0.69 bc 139.67±8.99 abc 331.67±21.70 a 731.30±28.72 abc 15 78.97±3.76 b 40.37±2.74 cd 72.47±5.42 de 15.23±0.97 c 32.07±5.53 a 34.93±3.46 bc 149.33±18.57 a 358.67±33.81 a 766.80±76.40 ab 20 79.27±6.31 b 36.57±1.03 d 81.20±2.97 cde 37.17±9.61 ab 33.47±4.18 a 30.80±0.59 cd 146.00±8.64 ab 353.67±14.50 a 798.13±19.70 a ‘象牙榧’ 0 106.23±8.32 a 51.53±1.67 a 71.97±5.15 e 40.77±8.34 a 12.63±1.24 b 40.53±1.10 a 72.30±5.46 ef 166.67±5.79 d 562.63±13.31 e 5 83.83±4.25 b 38.87±1.95 cd 87.70±13.71 bcd 42.77±7.89 a 26.40±0.45 a 34.60±2.32 bc 79.27±5.78 e 225.33±3.86 c 618.77±39.21 de 10 102.37±4.88 a 42.53±1.46 bc 92.63±5.24 bc 36.37±7.33 ab 29.43±1.00 a 33.27±1.09 cd 104.57±7.73 d 263.67±9.74 bc 704.83±27.31 bc 15 121.67±2.05 a 38.17±5.45 cd 100.20±2.29 b 42.47±7.98 a 26.33±4.22 a 39.03±4.71 ab 117.67±7.32 cd 270.33±16.74 b 755.86±21.37 abc 20 121.00±11.43 a 36.80±2.55 cd 119.33±6.13 a 22.40±12.01 bc 34.30±6.64 a 30.10±0.08 cd 124.67±19.62 bcd 255.67±30.71 bc 744.27±75.48 abc 说明:数值为平均值±标准差。不同小写字母表示‘细榧’和‘象牙榧’在同一物质不同后熟时间间差异显著(P<0.05)。 表 2 在后熟过程中‘细榧’和‘象牙榧’种实必需氨基酸质量分数的变化
Table 2. Essential amino acid content of ‘Xi Fei’ and ‘Xiangya Fei’ seeds during post-ripening process
品种 时间/d 必需氨基酸质量分数/(µg·g−1) 苏氨酸 缬氨酸 蛋氨酸 异亮氨酸 亮氨酸 苯丙氨酸 赖氨酸 总计 ‘细榧’ 0 23.37±1.34 b 28.63±2.43 c 10.07±1.11 cd 24.13±0.17 d 37.97±0.87 cd 57.80±2.38 d 38.53±3.82 b 220.50±14.06 c 5 35.63±2.47 a 44.23±4.76 ab 10.23±0.45 cd 31.70±2.49 abc 44.57±5.82 abcd 89.60±6.73 a 62.33±2.36 a 318.30±27.81 ab 10 38.83±2.25 a 48.60±2.29 a 11.97±0.88 bc 34.73±2.41 ab 48.87±5.57 ab 89.53±1.30 a 72.23±2.15 a 344.77±19.50 a 15 37.43±3.60 a 47.43±4.92 a 9.63±0.74 cd 34.60±3.60 ab 41.73±6.21 abcd 82.07±7.93 ab 67.43±7.71 a 320.33±40.59 ab 20 34.47±2.13 a 44.73±4.72 a 8.20±0.00 de 29.03±1.80 c 36.67±2.32 d 73.00±2.44 bc 63.07±5.31 a 289.17±18.78 b ‘象牙榧’ 0 33.93±0.85 a 37.13±1.90 b 16.00±0.67 a 29.97±0.54 bc 48.67±2.38 abc 87.93±5.41 a 65.50±2.09 a 319.13±8.33 ab 5 34.40±1.24 a 41.60±1.55 ab 11.37±2.38 bc 32.30±2.34 abc 45.63±2.00 abcd 77.33±10.14 abc 59.87±10.17 a 302.50±35.60 ab 10 37.17±1.23 a 47.63±1.28 a 12.70±1.39 b 36.30±2.48 a 51.63±3.41 a 80.73±3.80 ab 67.57±7.62 a 333.73±24.24 ab 15 38.30±1.44 a 48.00±1.14 a 10.30±0.49 cd 35.80±0.41 a 43.07±8.13 abcd 71.00±2.62 bc 66.60±2.87 a 313.07±16.31 ab 20 34.20±3.47 a 43.43±3.52 ab 7.03±0.40 e 32.67±3.18 abc 38.50±3.24 bcd 65.10±7.86 cd 65.17±7.85 a 286.10±33.01 b 说明:数值为平均值±标准差。不同小写字母表示‘细榧’和‘象牙榧’在同一物质不同后熟时间间差异显著(P<0.05)。 根据标准曲线计算得到每种氨基酸的质量分数,结果显示:2个品种种实在后熟过程中的总游离氨基酸质量分数均显著(P<0.05)增加,‘细榧’种实的总游离氨基酸质量分数为673.11~1 102.36 µg·g−1,‘象牙榧’种实为881.77~1 068.93 µg·g−1(图2)。后熟过程开始后,‘细榧’和‘象牙榧’种实总非必需氨基酸质量分数显均呈现上升趋势,‘细榧’在第20天积累达到最多,而‘象牙榧’种实则在第15天达时达到最大值后下降(表1)。‘细榧’种实总必需氨基酸质量分数显著高于‘象牙榧’(P<0.05,表2),然而,‘细榧’种实总必需氨基酸占比(26.59%~32.76%)却小于‘象牙榧’的占比(27.77%~36.19%)。在这2个品种中,γ-氨基丁酸质量分数最高,其次是谷氨酸和酪氨酸。γ-氨基丁酸在后熟过程中显著积累,且在第20天‘细榧’种实中γ-氨基丁酸质量分数为‘象牙榧’的1.38倍。
-
甜味氨基酸包括脯氨酸、赖氨酸、丙氨酸、甘氨酸、丝氨酸和苏氨酸;芳香味氨基酸包括酪氨酸和苯丙氨酸;鲜味氨基酸包括谷氨酸和天冬氨酸;苦味氨基酸包括蛋氨酸、亮氨酸、异亮氨酸和缬氨酸。在‘细榧’和‘象牙榧’种实中,总呈味氨基酸的质量分数从大到小排序为甜味氨基酸>芳香族氨基酸>鲜味氨基酸>苦味氨基酸。鲜味氨基酸在‘象牙榧’种实中的占比高于‘细榧’,而芳香族氨基酸占比则相反,即在‘细榧’种实中的占比高于‘象牙榧’(图3A)。PCA结果(图3B)显示:鲜味、甜味、苦味和芳香族氨基酸在这2个品种中显示出明显的分离,且‘细榧’种实具有较高的芳香族氨基酸,而‘象牙榧’种实具有较高的鲜味氨基酸和甜味氨基酸。
-
在后熟过程中,‘细榧’种实的总甜味氨基酸质量分数无显著变化,在第20天时最高,为235.53 µg·g−1;‘象牙榧’种实的总甜味氨基酸逐渐积累,在第15天时达到最大值,为250.89 µg·g−1(图4A)。在‘象牙榧’种实中,赖氨酸的质量分数最高,在‘细榧’中,赖氨酸逐渐积累且在第15天达到最高。PCA结果(图4B)显示:2个品种种实的甜味氨基酸在第0天差异明显,其中丝氨酸在‘象牙榧’中的贡献较大。随着后熟时间的推移,2个品种的甜味氨基酸质量分数差异不明显。
-
如图5A所示:后熟第0天时,‘细榧’种实的芳香族氨基酸质量分数低于‘象牙榧’。在后熟过程中,2个品种种实的芳香族氨基酸质量分数均呈上升趋势,但‘象牙榧’到第10天后趋于稳定,不再增加,而‘细榧’仍不断增加,在第15天达到最大值,且高于‘象牙榧’。‘细榧’种实的芳香族氨基酸质量分数介于110.67~231.40 µg·g−1,‘象牙榧’则介于156.60~189.77 µg·g−1。苯丙氨酸和酪氨酸是构成香榧芳香族氨基酸的重要成分,其中酪氨酸在后熟过程中质量分数增加更为显著,这2种氨基酸都对‘细榧’种实后熟过程中芳香味的形成有较大贡献(图5B)。
-
在后熟过程中,2个品种种实总鲜味氨基酸质量分数的变化趋势与芳香族氨基酸相似,均呈上升的趋势。然而,‘象牙榧’种实的鲜味氨基酸质量分数在整个后熟期间始终高于‘细榧’,特别是在后熟的第20天时,‘象牙榧’种实的鲜味氨基酸质量分数比‘细榧’高79.86 µg·g−1(图6A)。谷氨酸和天冬氨酸是构成香榧鲜味氨基酸的关键成分,均在后熟过程中逐渐积累。相比而言,‘细榧’种实的谷氨酸变化较小,这说明天冬氨酸可能是影响‘细榧’鲜味变化的主要因素。而在‘象牙榧’种实中,天冬氨酸和谷氨酸的质量分数则相对接近。PCA结果(图6B)进一步显示:谷氨酸和天冬氨酸均对‘象牙榧’种实在后熟过程中的鲜味有着较大的贡献。
-
如图7A所示:‘细榧’和‘象牙榧’的苦味氨基酸质量分数接近,在后熟过程中的变化趋势也相似,均在后熟第10天达到最高值,后逐渐降低。亮氨酸、异亮氨酸和缬氨酸占‘细榧’和‘象牙榧’苦味氨基酸的90%。2个品种在PCA分析(图7B)中呈现一定的分离,说明2个品种在后熟过程中苦味氨基酸组成的变化模式存在差异,其中亮氨酸和蛋氨酸对‘象牙榧’种实苦味贡献较大。
-
近年来,香榧坚果因其高营养价值和独特风味,深受消费者青睐[19]。本研究发现:香榧种实中总游离氨基酸质量分数为673.11~
1102.36 µg·g−1,均值为991.06 µg·g−1,低于核桃,但高于山核桃Carya cathayensis和巴西松子Araucaria angustifolia [12]。香榧中的氨基酸组成与联合国粮食及农业组织/世界卫生组织(FAO/WHO)推荐的理想模式非常接近,易被人体吸收利用[2]。本研究检测到15种游离氨基酸,与ZHANG等[10]的研究相比,相差2种,可能是由于香榧品种及产地的不同,造成氨基酸组成成分和质量分数的差异。在后熟过程中,2个品种种实的游离氨基酸质量分数均显著提高,‘细榧’种实的整体游离氨基酸质量分数高于‘象牙榧’。其中,质量分数较高的氨基酸从高到低依次为γ-氨基丁酸、酪氨酸、天冬氨酸和谷氨酸。这些氨基酸不仅对香榧的营养价值有重要贡献,还通过参与美拉德反应等化学反应,生成多种风味化合物[20],能显著提升香榧的风味品质。已有研究表明:天冬氨酸能改善心肌收缩功能、促进能量代谢、保护线粒体功能以及降低缺血性心脏病风险[21−22]。谷氨酸作为中枢神经系统中主要的兴奋性神经递质[23],参与神经信号传递,调节学习和记忆功能[24]。酪氨酸作为芳香族氨基酸,与降低血压相关,尤其是在高血压患者中,其水平与心血管健康指标之间存在关联[25]。质量分数最高的γ-氨基丁酸能通过调节自主神经系统[26],降低血压[27]。这说明后熟过程不仅能提升香榧的氨基酸质量分数,还能优化其营养成分。
氨基酸的多样性和组成差异是香榧独特口感的重要基础[28]。呈味氨基酸在食物的风味调节中发挥重要作用,它们赋予食品甜味、鲜味和苦味等多种风味特征,显著影响食品的整体风味和决定食品的可接受性[29]。在种实后熟过程中香榧的游离氨基酸,特别是鲜味和芳香族氨基酸的积累,显著提升了香榧的风味品质。本研究发现:香榧中各类呈味氨基酸的质量分数从高到低排序为:甜味>芳香族>鲜味>苦味。‘细榧’种实中γ-氨基丁酸与酪氨酸质量分数较高,芳香风味更突出。有研究表明:在柑橘Citrus中,酪氨酸和苯丙氨酸也是重要的芳香味氨基酸,是柑橘风味多样性的重要来源[30]。酪氨酸和苯丙氨酸会通过参与挥发性化合物的合成,影响果实的香气特征[31]。‘象牙榧’种实因天冬氨酸与谷氨酸质量分数高,鲜味更足。谷氨酸具有明显的鲜味,是发酵食物和调味品中最丰富的氨基酸,也是其中最重要的风味成分物质[32],间接影响蔬菜的风味形成[33]。番茄Solanum lycopersicum中的谷氨酸和天冬氨酸为它提供了特有的鲜味,其含量随着果实成熟逐渐增加,有助于番茄果实风味的形成[34]。综上,后熟过程使香榧种实具有了不同于其他坚果的独特呈味。
-
本研究结果显示:香榧不同品种种实的氨基酸组成和质量分数存在较大差异,在香榧种实的后熟过程中,游离氨基酸质量分数逐渐增加,‘细榧’和‘象牙榧’种实氨基酸差异主要体现在芳香族氨基酸和鲜味氨基酸上。未来可进一步优化检测方法,深入研究不同香榧品种种实游离氨基酸差异的形成机制,并结合转录组分析不同香榧品种后熟过程中氨基酸合成代谢机制。
Differences in free amino acids during post-ripening process of Torreya grandis ‘Xi Fei’ and ‘Xiangya Fei’ seeds
-
摘要:
目的 旨在探究不同香榧Torreya grandis ‘Merrilii’品种在后熟过程中游离氨基酸质量分数的变化及其品种间差异,为香榧品种的品质评估和种质创新提供科学参考。 方法 采用全自动氨基酸分析仪,对后熟过程中 ‘细榧’T. grandis ‘Xi Fei’和‘象牙榧’T. grandis ‘Xiangya Fei’种实的游离氨基酸质量分数进行测定,并结合主成分分析法,揭示了2种香榧在后熟过程中总游离氨基酸、必需氨基酸和呈味氨基酸的具体差异。 结果 在后熟过程中,‘细榧’和‘象牙榧’种实均检测到了15种常见游离氨基酸。其中,‘细榧’种实总游离氨基酸质量分数为673.11~ 1102.36 µg·g−1,‘象牙榧’种实总游离氨基酸质量分数为881.7 ~1 068.93 µg·g−1,且‘细榧’种实中必需氨基酸和非必需氨基酸的质量分数均显著高于‘象牙榧’。主成分分析进一步揭示了香榧2个品种在主要呈味氨基酸的差异,‘细榧’芳香族氨基酸质量分数更高,更具香气;而‘象牙榧’鲜味氨基酸质量分数较高,其口感鲜美。结论 不同香榧品种的氨基酸质量分数和组成存在较大差异。后熟过程不仅提升了香榧的游离氨基酸质量分数,还提升了‘细榧’和‘象牙榧’种实的风味,使2个品种更具自身特色。图7表2参34 Abstract:Objective This study aims to investigate the changes in free amino acid content during post-ripening process of different Torreya grandis ‘Merrilii’ cultivars and the differences among cultivars, providing a scientific reference for quality assessment and germplasm innovation of T. grandis ‘Merrilii’ cultivars. Method The automatic amino acid analyzer was used to measure the free amino acid content in the seeds of ‘Xi Fei’ and ‘Xiangya Fei’ during post-ripening process. Combined with principal component analysis (PCA), the specific differences in total free amino acids, essential amino acids and flavor amino acids between the two cultivars during post-ripening process were systematically revealed. Result Fifteen common free amino acids were detected in both ‘Xi Fei’ and ‘Xiangya Fei’ seeds throughout the ripening process. Specifically, the total free amino acid content ranged from 673.11 to 1 102.36 µg·g−1 in ‘Xi Fei’ and from 881.77 to 1 068.93 µg·g−1 in ‘Xiangya Fei’. Notably, the contents of both essential and non-essential amino acids were significantly higher in ‘Xi Fei’ seeds compared to ‘Xiangya Fei’. PCA further highlighted the differences in major flavor amino acids between the two cultivars, with ‘Xi Fei’ exhibiting prominent aromatic amino acids, contributing to its aromatic character, while ‘Xiangya Fei’ showed significant umami amino acids, enhancing its delicious taste. Conclusion Considerable variations exist in the amino acid content and composition among different T. grandis ‘Merrilii’ cultivars. The ripening process not only increases the amino acid content and nutritional value of the seeds but also enhances the flavor characteristics of both cultivars, making them more distinctive in their own right. [Ch, 7 fig. 2 tab. 34 ref.] -
棉纤维是由外珠被表皮层的单细胞分化发育而成,分为长绒(lint)和短绒(fuzz)2种,长绒是高级棉纱纺织品的主要原材料,短绒主要用做制作纤维素、絮棉、纸张及纺织品的原料。在已有的四倍体棉种中,陆地棉Gossypium hirsutum和海岛棉Gossypium barbadense已经被驯化为栽培种[1-3]。目前世界上97%的棉纤维都产自陆地棉,产量高且适应性广,但是纤维品质中等;海岛棉产量低,适应性差,栽培范围不广泛,但是其纤维更长且品质高。如何获得优质高产的棉种,一直是遗传育种学家关注的焦点。而随着遗传学、细胞学和分子生物学等学科的交叉融合,棉纤维生长发育分子机制已成为国内外研究的热点。探明棉花种子表皮细胞生长发育的分子基础,对于提高棉花产量及改良纤维品质至关重要。早期有关棉纤维发育研究大多集中于遗传定位。大量与纤维品质和产量相关的数量性状位点(QTL)通过图位克隆的方法被发现于各个染色体[4-5],而光子显性基因Li1,Li2,N1和Fbl以及光子隐性基因n2,sma-4(fz)和sma-4(ha)[6]等一直备受关注。近年来,深度测序技术的兴起,对棉纤维发育的分子机制的研究起了有效的推动作用。随着深度测序技术的不断革新,棉花全基因组测序不断完善[7],全基因组微卫星序列得以注释[8],单核苷酸多态性(SNP)芯片的开发成为可能[9],使得遗传定位工作更加便捷[9-10]。转录组学、蛋白组学及表观遗传学领域三方位的深度测序有效构建了核糖核酸(RNA)水平和蛋白质水平、编码区域和非编码序列之间的联系,并发现一系列的转录因子、编码转脂蛋白的基因、钙信号转导相关基因、多糖合成相关蛋白、大量的微核糖核酸(miRNA)以及脱氧核糖核酸(DNA)甲基化作用等共同参与棉纤维发育过程[11-16]。本文将从棉纤维发育各时期的形态结构变化及特征,经典遗传学研究,深度测序技术在转录组学、蛋白组学及表观遗传学领域的运用,以及棉纤维发育各个时期所涉及的相关调控基因等4个方面对棉纤维发育机制的研究进展进行综述。
1. 棉纤维发育各时期的形态结构变化特征
棉纤维细胞发育进程是一个多基因调控的有序的系统发生过程,整个细胞分化过程可被分为棉纤维起始、伸长、次生壁合成与增厚、脱水成熟等4个时期[17-20]。
1.1 棉纤维起始期
长绒纤维细胞一般在开花前或开花当天就开始突起,而短绒纤维的突起要稍迟几天,两者的分化过程基本相似[21]。RAMSEY等[22]通过观察开花前16 d到开花当天胚珠的亚显微结构,发现开花前16 d到前3 d表皮细胞无差异,说明纤维原始细胞的分化与突起晚于开花前3 d。而在开花前2~3 d纤维原始细胞受生长素(IAA)和赤霉素(GA3)的刺激开始产生纤维[11],开花当天,纤维原始细胞的分化与突起已基本完成。棉花纤维原始细胞分化与突起多少决定种子表面纤维数量,从而决定了棉纤维的产量。
1.2 棉纤维伸长期
研究发现一般只有25%~30%的棉花种子表皮细胞(约2万个)能正常突起伸长,形成成熟的纤维[23-24]。棉纤维的伸长几乎和突起同时进行,从开花当天开始,发生在细胞壁膨胀过程,纤维的最终长度取决于纤维伸长速率和持续时间2个方面[25],一般持续20~30 d,该过程通过一种扩散生长机制实现并指导纤维细胞的极化生长[26-27]。纤维伸长分为非极性膨胀和极性伸长2个阶段:非极性膨胀期决定了纤维的细度,纤维细胞向四周扩展直至形成纤维的最终直径[28];极性伸长期可使纤维长度达到最终长度的80%[29],这一时期生化反应最为活跃,主要决定纤维的长度,是影响纤维品质的关键时期[24]。
1.3 棉纤维次生壁合成与增厚期
棉纤维次生壁合成与增厚期和纤维伸长期存在一段时期的重叠[17],在开花后16 d开始,持续到开花后40 d,在这段时期,纤维素大量沉积,次生壁不断加厚[30]。伴随着纤维素沉积的加速,纤维伸长逐渐减弱,该过程是影响纤维强度和韧性的关键时期。
1.4 棉纤维脱水成熟期
在次生壁合成与增厚期后就进入了纤维脱水成熟期,发生在开花后40~50 d,棉铃开裂至充分吐絮,纤维失水,形成转曲[31]。成熟的棉纤维由外向内依次为初生壁、次生壁和中腔。
2. 棉花纤维生长发育的遗传学研究
遗传规律研究和基因遗传定位是经典遗传学中2项重要的基础工作。在棉纤维遗传规律研究中发现,相同性状的材料基因型不同,其遗传模式也不同,而棉纤维发育相关基因的遗传定位又可被分成质量性状和数量性状(QTL)的定位。
2.1 棉纤维遗传规律研究
CARVER[32]和KEARNEY等[33-34]研究发现棉花光子性状主要由2对独立的位点控制,显性光子基因(N1)和隐性光子基因(n2),宋丽等[35]证实这2种光子基因均符合单基因遗传模型。既无长绒也无短绒的L40突变体的光子性状为不完全显性[36]。既无长绒也无短绒的突变体Xu142 fl的短绒的发育受N1和n2 2对基因控制,长绒的发育受Li3基因位点控制[37]。陆地棉短绒突变体Li1和Li2均为单基因显性遗传[38-40]。孙亚莉等[41]选取大量的陆地棉和海岛棉的光子材料对棉花光子性状进行了遗传分析,其研究发现棉花短绒多少与生态环境有关系,且不同品种光子材料的遗传模式也不同,不论海岛棉还是陆地棉材料均存在显性、部分显性和隐性遗传。对3个陆地棉隐性性状的材料进一步研究表明:这3个材料的遗传规律均不同,‘库光子’的光子性状由2对隐性等位基因控制,并且有互补效应;‘陆无絮’的光子性状由2对隐性等位基因控制,基因间呈积加作用;SA65的光子性状由单隐性基因控制。
2.2 棉纤维基因的QTL定位
纤维品质性状包括长度、整齐度、伸长率、强度、细度、颜色和马克隆值等多个方面。随着分子标记的不断开发与应用,在棉花染色体A组和D组染色体上都有大量棉纤维品质和产量相关的QTL被发现(表 1)。从表 1可知:纤维品质和产量性状的QTL几乎遍布了每一条染色体,且不同实验室使用不同的群体所得到的结果也有很大差异。同时,研究也发现这些性状受环境的影响很大,某些QTL在不同环境条件下有变化,甚至检测不到,导致已定位的QTL间重复性差[10, 42],这也说明纤维品质及产量性状的遗传非常复杂。研究也发现了一些稳定的主效QTL,如第10号染色体的棉纤维强度主效QTL(FS1),解释了超过30.00%的表型变异[43];第19号染色体影响衣分的QTL(qLI17),解释24.30%的表型变异[34];第8号染色体上颜色相关QTL(Ge6_Rd_8_3_10.60_[+]),解释48.00%的表型变异[5];以及第14号染色体上与长度相关的QTL(qFL-Chr14-3),解释15.05%的表型变异[10],等等。此外,有些QTL虽然微效,但在不同环境下都能稳定存在,比如WANG等[42]在8,11,12和21号染色上发现的6个QTL:qFL-A8-1(长度相关),qFS-A8-1(强度相关),qFS-A12-1(强度相关),qFS-A12-2(强度相关),qFS-D11-1(强度相关)和qFM-A11-1(马克隆值相关)。这些稳定存在的QTL都值得科研工作者进一步关注和研究。
表 1 不同群体中与棉纤维品质和产量相关的QTL分布Table 1. QTL related to cotton fiber quality and yield in different populations性状 QTL所在染色体或连锁群 检出限(LOD) 变异率1% 群体 出处 长度 Chr04,Chrl8,Chr22 2.00~2.74 7.80~12.60 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[44] Chr20,LGA02(Chr08),LGA03 (Chr11),LGA05 2.63~5.40 2.90~13.70 陆地棉Siv’ on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr04 3.50 24.00 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr01,Chr03,Chr04,Chr06,Chr09,Chr13,Chr14,Chr18,Chr19,Chr20,Chr21,Chr23,Chr24,Chr26 3.30~9.50 6.00~40.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr05,Chr07,Chr08,Chr11,Chr12,Chr19,Chr21,Chr23,Chr26 4.57~6.05 2.47~8.49 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] Chr10,Chr14,Chr15 2.50~7.71 6.21~15.05 陆地棉HS46 ×陆地棉MAR CABU-CAG8US-1-88 RIL LI等[10] 整齐度 Chr04,Chr14,Chr15,Chr22,LGA03 (Chr11),LGA05 1.65~3.79 2.10~13.30 陆地棉Siv’on×海岛棉F-177的F2和F3群0体 PATERSON等[4] Chr05,Chr09,Chr12,Chr15,Chr16,Chr18,Chr19,Chr20,Chr23,Chr26 3.50~7.80 9.00~32.00 陆地棉Guazuncho-2×海岛棉VH8-4602 RIL LACAPE等[5] Chr09 2.68~4.17 5.58~10.94 陆地棉HS46 ×陆地棉MARCABU- CAG8US-1-88的RIL LI等[10] 伸长率 Chr05,Chr10,Chr15,Chr23,LGA02 (Chr8),LGA03(Chr11),LGD07 2.32~5.77 3.40~8.90 陆地棉Siv’on×海岛棉F-l77的F2和F3群体 PATERSON等[4] Chr09 5.16 42.00 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr02,Chr06,Chr09,Chr10,Chr12,Chr13,Chr15,Chr19,Chr20,Chr21,Chr23,Chr26 3.40~6.70 6.00~21.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr14,Chr20,Chr24 2.49~7.80 5.35~32.28 陆地棉HS46 ×陆地棉MARCABU-CAG8US-1-88 RIL LI等[10] 强度 Chr03,Chr14,Chr15,Chr25 2.08~2.69 10.40~23.10 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[10] Chr10 4.79~5.80 53.00~53.80 异质棉7235×陆地棉TM-1的F2群体 ZHANG等[43] Chr01,Chr04,Chr14,Chr17,Chr18,Chr20,Chr22,Chr23,Chr25,LGA01 (Chr13),LGA02(Chr08),LGA03(Chr11),LGA05,LGD02(Chr21),LGD03(Chr24),LGD04,LGD07 0.21~6.22 2.50~17.40 陆地棉Siv’on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr03,Chr04,Chr05,Chr07,Chr09,Chr12,Chr14,Chr15,Chr16,Chr18,Chr19,Chr21,Chr23,Chr26 3.30~8.50 7.00~31.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr05,Chr07,Chr08,Chr09,Chr11,Chr12,Chr13,Chr14,Chr15,Chr16,Chr17,Chr18,Chr21,Chr23 7.32~22.54 5.07~15.82 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] 细度 Chr01,Chr02,Chr03,Chr12,Chr16,LGD01 2.16~4.04 16.70~43.90 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[44] Chr02,Chr04,Chr05,Chr06,Chr09,Chr14,Chr15,Chr17,Chr20,Chr23,Chr25,LGA01 (Chr13),LGA05,LGA06,LGD01,LGD02(Chr2l),LGD03(Chr24),LGD04,LGD05,LGD07 2.21~9.78 2.20~30.30 陆地棉Siv’on×海岛棉F-l77的F2和F3群体 PATERSON等[4] Not determined 5.11 43.20 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr01,Chr02,Chr03,Chr04,Chr05,Chr06,Chr08,Chr09,Chr10,Chr12,Chr15,Chr16,Chr17,Chr18,Chr19,Chr20,Chr21,Chr22,Chr23,Chr24,Chr25,Chr26 3.30~8.90 6.00~41.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] 颜色 Chr06,Chr09,Chr14,Chr17,Chr18,Chr22,Chr25,LGA01,LGA02,LGA03,LGD02(Chr21) 2.66~11.67 2.50~14.90 陆地棉Siv’on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr01,Chr02,Chr06,Chr07,Chr08,Chr09,Chr11,Chr14,Chr15,Chr17,Chr18,Chr19,Chr21,Chr22,Chr25 3.30~10.60 6.00~48.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] 马克隆值 Chr05,Chr06,Chr09,Chr11,Chr12,Chr15,Chr16,Chr19,Chr21,Chr22 4.56~9.09 0.80~8.03 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] Chr14,Chr16 2.51~4.23 5.52~9.20 陆地棉HS46 ×陆地棉MARCABU- CAG8US-1-88 RIL LI等[10] 产量 A02(Chr08),A03(Chr11),Chr14,Chr23,Chr25,LG5 3.00~5.28 13.01~28.35 陆地棉Handan 208×海岛棉Pima 90的F2群体 HE等[46] 衣分 D08(Chr19) 3.45 24.34 陆地棉Handan 208×海岛棉Pima 90的F2群体 HE等[46] 然而,棉纤维相关性状QTL的分离和克隆仍然很少。有研究发现在第12条染色体上(A12/D12)与棉纤维品质相关的QTL附近的GhHOX3基因对棉纤维长度起重要调控作用[47],以及定位于同源染色体A8(chr08)和D8(chr24)上的GhSusA1基因过表达可以增强纤维长度和强度[48]。
2.3 棉纤维基因的质量性状定位
在光子显性基因定位中发现,N1和Fbl基因位于chr12上[6],其中N1基因被鉴定为转录因子MYB25-like[49]。光子隐性基因定位研究表明:n2定位在chr26上,sma-4(fz)位于L.G.A3的端部,sma-4(ha)位于L.G.A3中部[6]。超短纤维突变体Li1基因位于chr22上,并已通过精细定位被克隆到,是一个肌动蛋白家族基因[50-53];而Li2基因则位于chr18上[6, 53]。
3. 棉纤维发育组学研究
棉纤维发育过程涉及到大量的基因和通路调控。利用高通量测序技术,对棉纤维发育的转录组和蛋白组分析及表观遗传研究,可以短时间内获得大量信息,捕获到许多参与不同发育阶段的特异性基因及信号通路,为下游单独研究重要基因的功能奠定良好的基础。
3.1 转录组学研究
利用棉花胚珠体外培养技术结合转录组数据分析比较,KIM等[11]在纤维起始分化时期发现了许多在野生型和无毛突变体间表达有差异的基因,包括MYB25,MYB109,PDF1,MYB25-like,HD1等转录调节因子,表明在棉纤维起始分化过程中存在复杂的信号网络调节机制。通过比较短绒突变体(Li1)与野生型之间在开花后1,3和8 d的转录组数据,LIANG等[49]在胚珠中共检测到7 852个差异表达基因,主要参与次生代谢物和脂质代谢途径,其中涉及非长链脂肪酸生物合成的37个基因在Li1突变体纤维的快速伸长发育过程中被显著抑制,这说明脂质代谢途径与纤维伸长密切相关。HOVAV等[54]评估了从开花后初级次生壁到次级次生壁合成过程中棉纤维发育的转录组变化发现,棉纤维发育过程中的基因转录水平很高,在每个阶段占到所有基因的75%~94%,并且半数以上的基因在纤维发育的至少一个阶段中上调。BOLTON等[55]利用基因芯片技术和实时荧光定量PCR技术在Li1突变体中发现超过100个基因在次生壁的生物合成过程中差异表达,其中的3个候选基因:伸展蛋白(extensin),蔗糖合成酶(sucrose synthase)和微管蛋白(actin)的表达量明显偏离野生型的表达水平。通过陆地棉TM-1背景下的海岛棉染色体导入系与亲本纤维的转录组差异比较,FANG等[56]在CSIL-35431和CSIL-31010等2个导入系的次生壁合成过程中发现了大量与TM-1有表达差异的基因,功能富集分析表明这些基因主要富集于次生细胞壁的生物合成、葡糖醛酸合成、纤维素合成等生物途径。
3.2 蛋白质组学研究
利用蛋白组学研究,许多棉纤维发育过程中的重要蛋白被不断发掘,且此技术很好地互补了转录组只能在mRNA水平上研究纤维相关基因的劣势。HU等[12]应用相对和绝对定量(iTRAQ)LC-MS/MS分析技术研究了1 317个纤维特异性表达蛋白,其中205个蛋白在发育阶段中差异表达,190个蛋白在野生和栽培棉之间差异表达。结合转录组、iTRAQ蛋白质组和遗传图谱定位的综合分析方法,MA等[13]发现徐州142野生型与其无绒毛突变体(fl)的胚珠之间存在大量差异表达的基因和蛋白,这些差异基因和蛋白主要存在于氨基酸、核苷酸、脂肪酸和叶酸代谢以及黄酮生物合成中,说明这些代谢途径在纤维发育过程中具有重要作用。
3.3 表观遗传学研究
近年来,棉纤维发育的表观遗传学研究也取得了巨大进展。基于pre-miRNAs和已发现的miRNA靶基因数据,CHEN等[14]对83个miRNA前体及其目标调控基因进行了研究,并构建了miRNAs及其靶位点调控网络,并揭示了这些miRNA及靶基因在纤维不同发育阶段的表达模式。SONG等[15]对纤维和胚珠进行了甲基化组、转录组和小RNA组学分析,发现在胚珠和纤维发育过程中CHH甲基化变化显著。该研究发现,在胚珠中,启动子中的CHH甲基化与可诱导RNA依赖的DNA甲基化(RdDM)和胚珠偏好基因上调的siRNA呈正相关;在纤维细胞中,胚珠衍生细胞产生独立的RdDM的异染色质CHH超甲基化,抑制转座子及附近纤维相关基因的活性。使用甲基化抑制剂5-氮-2′-脱氧胞苷对胚珠进行体外培养,可以减少纤维细胞的数量和长度,这表明DNA甲基化在纤维发育中具有潜在作用。这些研究表明:启动子和转座子及附近基因中的RdDM依赖的甲基化可作为基因和转座子表达的双保险反馈机制。ZOU等[16]对参与纤维起始和伸长过程的长链非编码RNA(lncRNA)进行了系统分析,共鉴定到5 996条lncRNAs,其中长链非编码RNA(lincRNA)3 510条,天然反义转录RNA(lncNAT)2 486条,表明lncRNA对棉纤维的发育至关重要。
4. 棉纤维发育不同时期相关调控基因研究
4.1 棉纤维起始期相关基因
在棉花胚珠EST数据库中,约10%的基因与转录因子密切相关,包括56个转录因子家族成员[57],如MYB类转录因子家族的GL1及其同源基因MYB2[58],MYB109[59],TTG1[60]和GL2[61]等均被发现在棉纤维发育的早期阶段高效表达。棉花GaMYB2基因可以诱导种子表皮毛的产生,且转化拟南芥可以弥补GL1突变对表皮毛起始分化造成的影响[58]。通过干扰GhMYB109的表达,PU等[62]发现棉纤维细胞分化延迟且起始数量减少,说明GhMYB109在棉花纤维分化阶段起重要作用。LOGUERICO等[63]发现GhMYB4和GhMYB5基因在纤维分化期的胚珠中特异表达。WALFORD等[64]发现GhHD1可以介导棉花表皮细胞的分化。辛婧[65]的研究表明转录因子GbSPB8可能调控棉花纤维起始发育。
4.2 棉纤维伸长期相关基因
转脂蛋白和钙信号转导相关蛋白在棉纤维伸长过程中起到极其重要的作用。MA等[66]研究发现:转脂蛋白GhLTP3和GhLTP6的表达量在纤维快速伸长期达到最高水平,此外李锡花等[67]发现GhLTP3的表达量从开花后0~15 d中表达量不断升高,在第15天达到顶峰,之后逐渐下降。赵存鹏等[68]和GAPPER等[69]研究发现:钙调蛋白CaM在低温逆境的条件下能使活性氧(ROS)、超氧游离基、过氧化氢和羟自由基等物质提高,进而使纤维细胞壁松弛,从而影响细胞伸长。CHENG等[70]发现GhCaM7-like基因在纤维快速伸长期显著表达。HUANG等[71]发现钙依赖性蛋白激酶GhCPK1在开花第10天的胚珠中高表达。这些研究都说明钙信号转导在纤维伸长过程中发挥重要作用。除了转脂蛋白和钙信号转导相关蛋白,转录调节因子也参与其中,如ZHANG等[72]发现GbMYB25与GbML1相互作用并通过调节ROS信号调节纤维伸长。HSU等[73]发现GhMYB7可以调控LTP3等脂转移蛋白编码基因。
4.3 棉纤维次生壁合成与加厚期相关基因
DELMER等[74]发现Rac9和Rac13可以控制棉花纤维素沉积方向。ZHAO等[75]发现GhRGP1在纤维发育的初生壁伸长及次生壁加厚后期优势表达,参与植物细胞壁非纤维素类的多糖合成。杨郁文等[76]发现一种Ser/Thr激酶和Try激酶的双受体蛋白GhRLK1与激活和维持次级细胞壁形成的细胞信号传导过程有关。此外,GhRDL1(RD22-Like1)与GhEXPA1互作会影响纤维细胞壁发育,GhRDL1基因过表达会产生长且质量较好的棉纤维[77]。
4.4 棉纤维脱水成熟期相关基因
目前,关于棉纤维细胞脱水成熟期的相关研究较少,对于纤维在脱水成熟过程中细胞与分子水平的变化还不清楚,只是猜想可能涉及到棉纤维细胞的程序性死亡[78]。
5. 研究展望
随着技术的革新,大量棉纤维发育相关基因和涉及的调控网络被不断发现,但是基因间的相互作用及其潜在的调控机制还有待进一步探索。近年来,棉花转基因技术日益成熟,新兴的CRISPR/Cas9基因编辑系统也于2017年3月在棉花基因组靶基因敲除中得到首次应用。JANGA等[79]利用CRISPR/Cas9系统成功将转绿色荧光蛋白(GFP)基因棉花系的GFP基因敲除;LI等[80]以棉花內源GhMYB25为目标基因,使用2种单导向RNA对该基因进行定点突变,突变率分别为100%和98.8%。这些研究表明:CRISPR/Cas9可以在棉花基因组上进行高效和高特异性地突变。随着新技术在棉花中的应用与成熟,棉纤维发育相关基因及其调控机制也有望有更多的发现。
-
表 1 在后熟过程中‘细榧’和‘象牙榧’种实非必需氨基酸质量分数的变化
Table 1. Non-essential amino acid content of ‘Xi Fei’ and ‘Xiangya Fei’ seeds during post-ripening process
品种 时间/d 非必需氨基酸质量分数/(µg·g−1) 天冬氨酸 丝氨酸 谷氨酸 脯氨酸 甘氨酸 丙氨酸 酪氨酸 γ-氨基丁酸 总计 ‘细榧’ 0 40.90±1.15 c 46.37±2.56 b 72.80±5.89 de 44.01±7.91 a 9.43±0.65 b 29.90±1.43 cd 52.87±2.78 f 156.33±8.06 d 433.67±23.61 f 5 42.77±8.77 c 38.90±0.80 cd 89.63±2.79 bc 23.82±3.82 bc 30.20±6.22 a 28.87±2.21 d 114.67±4.99 d 320.00±24.91 a 665.03±36.97 cd 10 42.77±8.77 c 41.60±0.36 bcd 84.83±8.86 cde 14.03±4.24 c 32.73±5.89 a 35.13±0.69 bc 139.67±8.99 abc 331.67±21.70 a 731.30±28.72 abc 15 78.97±3.76 b 40.37±2.74 cd 72.47±5.42 de 15.23±0.97 c 32.07±5.53 a 34.93±3.46 bc 149.33±18.57 a 358.67±33.81 a 766.80±76.40 ab 20 79.27±6.31 b 36.57±1.03 d 81.20±2.97 cde 37.17±9.61 ab 33.47±4.18 a 30.80±0.59 cd 146.00±8.64 ab 353.67±14.50 a 798.13±19.70 a ‘象牙榧’ 0 106.23±8.32 a 51.53±1.67 a 71.97±5.15 e 40.77±8.34 a 12.63±1.24 b 40.53±1.10 a 72.30±5.46 ef 166.67±5.79 d 562.63±13.31 e 5 83.83±4.25 b 38.87±1.95 cd 87.70±13.71 bcd 42.77±7.89 a 26.40±0.45 a 34.60±2.32 bc 79.27±5.78 e 225.33±3.86 c 618.77±39.21 de 10 102.37±4.88 a 42.53±1.46 bc 92.63±5.24 bc 36.37±7.33 ab 29.43±1.00 a 33.27±1.09 cd 104.57±7.73 d 263.67±9.74 bc 704.83±27.31 bc 15 121.67±2.05 a 38.17±5.45 cd 100.20±2.29 b 42.47±7.98 a 26.33±4.22 a 39.03±4.71 ab 117.67±7.32 cd 270.33±16.74 b 755.86±21.37 abc 20 121.00±11.43 a 36.80±2.55 cd 119.33±6.13 a 22.40±12.01 bc 34.30±6.64 a 30.10±0.08 cd 124.67±19.62 bcd 255.67±30.71 bc 744.27±75.48 abc 说明:数值为平均值±标准差。不同小写字母表示‘细榧’和‘象牙榧’在同一物质不同后熟时间间差异显著(P<0.05)。 表 2 在后熟过程中‘细榧’和‘象牙榧’种实必需氨基酸质量分数的变化
Table 2. Essential amino acid content of ‘Xi Fei’ and ‘Xiangya Fei’ seeds during post-ripening process
品种 时间/d 必需氨基酸质量分数/(µg·g−1) 苏氨酸 缬氨酸 蛋氨酸 异亮氨酸 亮氨酸 苯丙氨酸 赖氨酸 总计 ‘细榧’ 0 23.37±1.34 b 28.63±2.43 c 10.07±1.11 cd 24.13±0.17 d 37.97±0.87 cd 57.80±2.38 d 38.53±3.82 b 220.50±14.06 c 5 35.63±2.47 a 44.23±4.76 ab 10.23±0.45 cd 31.70±2.49 abc 44.57±5.82 abcd 89.60±6.73 a 62.33±2.36 a 318.30±27.81 ab 10 38.83±2.25 a 48.60±2.29 a 11.97±0.88 bc 34.73±2.41 ab 48.87±5.57 ab 89.53±1.30 a 72.23±2.15 a 344.77±19.50 a 15 37.43±3.60 a 47.43±4.92 a 9.63±0.74 cd 34.60±3.60 ab 41.73±6.21 abcd 82.07±7.93 ab 67.43±7.71 a 320.33±40.59 ab 20 34.47±2.13 a 44.73±4.72 a 8.20±0.00 de 29.03±1.80 c 36.67±2.32 d 73.00±2.44 bc 63.07±5.31 a 289.17±18.78 b ‘象牙榧’ 0 33.93±0.85 a 37.13±1.90 b 16.00±0.67 a 29.97±0.54 bc 48.67±2.38 abc 87.93±5.41 a 65.50±2.09 a 319.13±8.33 ab 5 34.40±1.24 a 41.60±1.55 ab 11.37±2.38 bc 32.30±2.34 abc 45.63±2.00 abcd 77.33±10.14 abc 59.87±10.17 a 302.50±35.60 ab 10 37.17±1.23 a 47.63±1.28 a 12.70±1.39 b 36.30±2.48 a 51.63±3.41 a 80.73±3.80 ab 67.57±7.62 a 333.73±24.24 ab 15 38.30±1.44 a 48.00±1.14 a 10.30±0.49 cd 35.80±0.41 a 43.07±8.13 abcd 71.00±2.62 bc 66.60±2.87 a 313.07±16.31 ab 20 34.20±3.47 a 43.43±3.52 ab 7.03±0.40 e 32.67±3.18 abc 38.50±3.24 bcd 65.10±7.86 cd 65.17±7.85 a 286.10±33.01 b 说明:数值为平均值±标准差。不同小写字母表示‘细榧’和‘象牙榧’在同一物质不同后熟时间间差异显著(P<0.05)。 -
[1] 黎章矩, 戴文圣. 中国香榧[M]. 北京: 科学出版社, 2007. LI Zhangju, DAI Wensheng. Torreya grandis in China[M]. Beijing: Science Press, 2007. [2] 徐立伟, 马佳慧, 于淼. 香榧的营养和功能成分研究进展[J]. 食品工业, 2020, 41(8): 210−214. XU Liwei, MA Jiahui, YU Miao. Advances in the nutritional and functional ingredients of Torreya grandis [J]. The Food Industry, 2020, 41(8): 210−214. [3] 叶珊, 王为宇, 周敏樱, 等. 不同采收成熟度和堆沤方式对香榧种子堆沤后熟品质的影响[J]. 林业科学, 2017, 53(11): 43−51. YE Shan, WANG Weiyu, ZHOU Minying, et al. Effects of different harvest maturity and after-ripening ways on the harvested quality of Torreya grandis ‘Merrillii’ seeds [J]. Scientia Silvae Sinicae, 2017, 53(11): 43−51. [4] SONG Lili, MENG Xuecheng, SONG Hanbing, et al. A comprehensive metabolomics analysis of Torreya grandis nuts with the effective de-astringent treatment during the postharvest ripening stage[J/OL]. Food Chemistry, 2023, 398 : 133859[2025-03-01]. DOI: 10.1016/j.foodchem.2022.133859. [5] LING Zhenan, JIANG Yifan, RU Junnan, et al. Amino acid metabolism in health and disease[J/OL]. Signal Transduction and Targeted Therapy, 2023, 8 : 345[2025-01-01]. DOI: 10.1038/s41392-023-01569-3. [6] HU Songhe, LI Kaifeng, ZHANG Xing, et al. The impact of the foliar application of amino acid aqueous fertilizer on the flavor of potato tubers[J/OL]. Foods, 2023, 12 (21): 3951[2025-01-01]. DOI: 10.3390/foods12213951. [7] GABRIEL A, NINOMIYA K, UNEYAMA H. The role of the Japanese traditional diet in healthy and sustainable dietary patterns around the world[J/OL]. Nutrients, 2018, 10 (2): 173[2025-01-01]. DOI: 10.3390/nu10020173. [8] 卢柏山, 董会, 赵久然, 等. 不同鲜食玉米品种适采期氨基酸含量分析[J]. 中国农业科技导报, 2023, 25(11): 132−142. LU BaiShan, DONG Hui, ZHAO Jiuran, et al. Amino acid content analysis of different fresh corn varieties at suitable harvest time [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 132−142. [9] 魏光强, 李子怡, 黄艾祥, 等. 基于游离氨基酸、挥发性组分和感官评价的2种酸化技术加工乳饼的滋味特征差异分析[J]. 食品科学, 2021, 42(22): 263−269. WEI Guangqiang, LI Ziyi, HUANG Aixiang, et al. Differential taste characteristics of milk cakes processed by two acidification methods revealed by free amino acids, volatile compounds and sensory evaluation [J]. Food Science, 2021, 42(22): 263−269. [10] ZHANG Zuying, CHEN Wenchao, TAO Liu, et al. Ethylene treatment promotes umami taste-active amino acids accumulation of Torreya grandis nuts post-harvest by comparative chemical and transcript analyses[J/OL]. Food Chemistry, 2023, 408 : 135214[2025-01-01]. DOI: 10.1016/j.foodchem.2022.135214. [11] 姜仲茂, 乌云塔娜, 王森, 等. 不同产地野生长柄扁桃仁氨基酸组成及营养价值评价[J]. 食品科学, 2016, 37(4): 77−82. JIANG Zhongmao, WU Yuntana, WANG Sen, et al. Amino acid composition and nutritional quality evaluation of wild Amygdalus pedunculatus pall. kernels from different growing regions [J]. Food Science, 2016, 37(4): 77−82. [12] 高桂琴, 赵雪娇, 仲昭欣, 等. 15种坚果果仁氨基酸组成及含量差异分析[J]. 食品安全质量检测学报, 2020, 11(4): 1173−1179. GAO Guiqin, ZHAO Xuejiao, ZHONG Zhaoxin, et al. Analysis onthe difference of amino acid composition and concentrations in 15 kinds of nut [J]. Journal of Food Safety & Quality, 2020, 11(4): 1173−1179. [13] 刘华, 王倩, 秦利, 等. 花生野生种核型与氨基酸组分分析 [J/OL]. 中国油料作物学报, 2024-12-16[2025-01-01]. DOI: 10.19802/j. issn. 1007-9084.2024269. LIU Hua, WANG Qian, QIN Li, et al. Karyotypes and amino acid component analysis of Arachis species [J/OL]. Chinese Journal of Oil Crops, 2024-12-16[2025-01-01]. DOI: 10.19802/j.issn.1007-9084.2024269. [14] 魏雅静. 平欧榛子蛋白及其组分的氨基酸组成分析及营养评价[J]. 食品工业, 2022, 43(2): 334−338. WEI Yajing. Analysis of amino acid composition and nutritional evaluation of flat-European hybrid hazelnut protein and its components [J]. The Food Industry, 2022, 43(2): 334−338. [15] 胡芳名, 丁之恩. 黄山不同类型香榧品质研究[J]. 中南林学院学报, 2003, 23(4): 1−4. HU Fangming, DING Zhien. Quality studies of three types of Huangshan Chinese Torreya [J]. Journal of Central South Forestry University, 2003, 23(4): 1−4. [16] HUANG Zicheng, DU Meijun, QIAN Xueqin, et al. Oxidative stability, shelf-life and stir-frying application of Torreya grandis seed oil [J]. International Journal of Food Science & Technology, 2022, 57(3): 1836−1845. [17] 于美, 张川, 曾茂茂, 等. 香榧坚果中油脂和蛋白质的研究进展[J]. 食品科学, 2016, 37(17): 252−256. YU Mei, ZHANG Chuan, ZENG Maomao, et al. Recent advances in research on oils and proteins from Torreya grandis nuts [J]. Food Science, 2016, 37(17): 252−256. [18] 张涛, 宋海云, 贺鹏, 等. 不同澳洲坚果种质果仁氨基酸组成分析与评价[J]. 中国农业科技导报, 2022, 24(1): 119−127. ZHANG Tao, SONG Haiyun, HE Peng, et al. Analysis and evaluation of amino acid composition in different Macadamia ternifolia germplasm [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 119−127. [19] 刘惠红, 马晓芸, 刘书涵, 等. 浙江省诸暨市香榧产业发展研究[J]. 农村经济与科技, 2024, 35(11): 90−93. LIU Huihong, MA Xiaoyun, LIU Shuhan, et al. Study on the development of Torreya grandis industry in Zhuji City, Zhejiang Province [J]. Rural Economy and Science-Technology, 2024, 35(11): 90−93. [20] 邢通, 王成赞, 张林, 等. 鸡肉风味物质的影响因素及其营养调控研究进展[J]. 动物营养学报, 2021, 33(6): 3028−3035. XING Tong, WANG Chengzan, ZHANG Lin, et al. Research advance of factors affecting chicken meat flavor and its nutritional regulation [J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3028−3035. [21] WENG S F, KAI J, GUHA I N, et al. The value of aspartate aminotransferase and alanine aminotransferase in cardiovascular disease risk assessment[J/OL]. Open Heart, 2015, 2 (1): e000272[2025-01-01]. DOI: 10.1136/openhrt-2015-000272. [22] ZHAO J V, KWOK M K, SCHOOLING C M. Effect of glutamate and aspartate on ischaemic heart disease, blood pressure, and diabetes: a Mendelian randomisation study [J]. American Journal of Clinical Nutrition, 2019, 109(4): 1197−1206. [23] PLATT S R. The role of glutamate in central nervous system health and disease–a review [J]. The Veterinary Journal, 2007, 173(2): 278−286. [24] CHEN T J, KUKLEY M. Glutamate receptors and glutamatergic signalling in the peripheral nerves [J]. Neural Regeneration Research, 2020, 15(3): 438−447. [25] FRANKLIN L F D. Structural characterization of tyrosinases and an update on human enzymes [M]// SUPURAN C T, The Enzymes: Vol. 56. Amsterdam: Elsevier, 2024: 55−83. [26] ALMUTAIRI S, SIVADAS A, KWAKOWSKY A. The effect of oral GABA on the nervous system: potential for therapeutic intervention [J]. Nutraceuticals, 2024, 4(2): 241−259. [27] XIE Mengqing, QIN Hao, LIU Li, et al. GABA regulates metabolic reprogramming to mediate the development of brain metastasis in non-small cell lung cancer[J/OL]. Journal of Experimental & Clinical Cancer Research, 2025, 44 (1): 61[2025-01-01]. DOI: 10.1186/s13046-025-03315-9. [28] 杨春霞, 开建荣, 马桂娟, 等. 枸杞鲜果呈味氨基酸含量组成、呈味特征及主成分分析[J]. 中国食品添加剂, 2024, 35(9): 197−205. YANG Chunxia, KAI Jianrong, MA Guijuan, et al. Composition, flavor characteristics and principal component analysis of flavor amino acids in fresh wolfberry fruits [J]. China Food Additives, 2024, 35(9): 197−205. [29] 耿瑞蝶, 王金水. 呈味氨基酸和肽对发酵食品中风味的作用[J]. 中国调味品, 2019, 44(7): 176−178, 183. GENG Ruidie, WANG Jinshui. Effect of flavored amino acids and peptides on the flavor of fermented foods [J]. China Condiment, 2019, 44(7): 176−178, 183. [30] 林媚, 张伟清, 王天玉, 等. 15个杂交柑橘品种的果实游离氨基酸组成及其对风味品质的影响[J]. 果树学报, 2022, 39(3): 352−365. LIN Mei, ZHANG Weiqing, WANG Tianyu, et al. Study on the composition of free amino acid and the effects on fruit flavor quality in 15 hybrid Citrus varieties [J]. Journal of Fruit Science, 2022, 39(3): 352−365. [31] TANG Qian, HUANG Yuxin, SHEN Zhuanglin, et al. 6-Phosphogluconate dehydrogenase 2 bridges the OPP and shikimate pathways to enhance aromatic amino acid production in plants [J]. Science China Life Sciences, 2024, 67(11): 2488−2498. [32] KURIHARA K. Glutamate: from discovery as a food flavor to role as a basic taste (umami) [J]. The American Journal of Clinical Nutrition, 2009, 90(3): 719S−722S. [33] 刘鑫, 王家旺, 隋雨萌, 等. 中国传统发酵蔬菜中微生物多样性及其对品质形成影响研究进展[J]. 食品科学, 2024, 45(10): 290−297. LIU Xin, WANG Jiawang, SUI Yumeng, et al. Microbial diversity and its influence on quality development in Chinese traditional fermented vegetables: a review [J]. Food Science, 2024, 45(10): 290−297. [34] 郭精桐, 赵圆, 孙玉敬. 番茄果实风味及其影响因素的研究进展[J]. 食品科学, 2023, 44(17): 169−177. GUO Jingtong, ZHAO Yuan, SUN Yujing. Recent advances in research on flavor substances in tomato fruit and their influential factors [J]. Food Science, 2023, 44(17): 169−177. 期刊类型引用(6)
1. 冯常辉,李林,张友昌,王琼珊,张教海,王孝刚,夏松波. 棉花纤维品质SNP标记研究进展. 湖北农业科学. 2024(S1): 5-9+13 . 百度学术
2. 龙遗磊,郑凯,齐静潇,蔡永生,邓晓娟,曲延英,陈全家. 海岛棉GbPIN1a基因的克隆与表达特性分析. 农业生物技术学报. 2022(11): 2086-2098 . 百度学术
3. 孟超敏,耿翡翡,卿桂霞,周佳敏,张富厚,刘逢举. 陆地棉磷高效基因GhMGD3的克隆与表达分析. 浙江农林大学学报. 2022(06): 1203-1211 . 本站查看
4. 闵凯丽,晁祥保,滕露,蔡永生,雷慧辰,严中建,郑凯,陈全家. 海岛棉GbHCT10基因的克隆与表达分析. 新疆农业科学. 2021(02): 206-215 . 百度学术
5. 郭宝生,刘素恩,赵存鹏,王兆晓,王凯辉,李丹,刘旭,杜海英,耿军义. 转FBP7::iaaM基因陆地棉种质冀资139纤维品质性状杂种优势分析. 植物学报. 2021(02): 166-174 . 百度学术
6. 赵柯柯,曲延英,段雅洁,石颖颖,范蓉,刘亚丽,陈全家. 海岛棉GbMYB5基因的克隆及表达分析. 分子植物育种. 2021(08): 2512-2520 . 百度学术
其他类型引用(11)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20250169