HUO Yan, ZHAO Xueqing, HUANG Houyi, et al. Phenotypic genetic diversity of ornamental pomegranate cultivars[J]. Journal of Zhejiang A&F University, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
Citation: WU Xiujuan, AO Xiaoping. Point pattern analysis of dominant populations in Quercus mongolica natural forest on the west side of Lüliang Mountain[J]. Journal of Zhejiang A&F University, 2025, 42(X): 1−9 doi:  10.11833/j.issn.2095-0756.20240535

OnlineFirst articles are published online before they appear in a regular issue of the journal. Please find and download the full texts via CNKI.

Point pattern analysis of dominant populations in Quercus mongolica natural forest on the west side of Lüliang Mountain

DOI: 10.11833/j.issn.2095-0756.20240535
  • Received Date: 2024-09-10
  • Accepted Date: 2025-01-20
  • Rev Recd Date: 2025-01-09
  •   Objective  This study aims to explore the spatial distribution pattern of tree species in Quercus mongolica natural forest, a major forest type in Shanxi Province, and understand its growth and development status, so as to provide reference for the rational management of the forest and conversion of Q. mongolica plantation.   Method  The research object was a 0.96 hm2 plot of Q. mongolica natural forest investigated in 2021 in Chengzhuanggou Forest Farm on the west side of Lüliang Mountain. The diameter class structure was used instead of the age structure. The spatial distribution pattern and spatial correlation of individuals with different diameter levels in the dominant population were analyzed by point pattern analysis.   Result   Q. mongolica and Acer ginnala were dominant species, and their diameter structure was an inverted J type, indicating a growth type with stable population structure and good regeneration. The population of Q. mongolica showed a cluster distribution within the research scale, while that of A. ginnala exhibited a pattern of small-scale cluster distribution and large-scale random distribution. The small diameter individuals of the two dominant populations were mainly clustered in small scale, while the large diameter individuals were randomly distributed. The intraspecies association of Q. mongolica was positive only among middle and small size trees, and the smaller the diameter difference, the greater the degree and spatial scale range of positive association. The population of A. ginnala showed positive correlation only between small-scale GradeⅠand GradeⅡindividuals. With the increase of the scale, the overall correlation between the dominant populations changed from no correlation to negative correlation and then to no correlation. The spatial correlation between populations of different diameter classes only appeared among trees of medium and small diameter classes, and the correlation was negative.   Conclusion  Q. mongolica natural forest in the study area is at the early stage of succession, with a stable dominant population structure and good renewal status. To accelerate the succession process, artificial intervention should appropriately supplemented to promote the development of forest stands towards top-level communities. [Ch, 5 fig. 1 tab. 31 ref.]
  • [1] LI Qige, YU Yefei, CHEN Weijie, HE Anguo, CHEN Zilin, JIN Xiaofeng.  Community structure and dominant population dynamics of Rhododendron fortunei in Mount Dapanshan, Zhejiang Province . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20240476
    [2] SONG Sijing, DING Shan, PANG Chunmei, ZHENG Xiao, WANG Tong, YU Shuquan.  Population structure and spatial distribution pattern of Cyclobalanopsis gracilis in the evergreen and deciduous broad-leaved forest in Mount Tianmu . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20220784
    [3] CAO Ling, JIN Shengkang, Yeerjiang Baiketuerhan, Nuersiya Abuduresuli, CHE Chang.  Spatial pattern and correlation of Malus sieversii population in Emin County . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20220267
    [4] JIN Yaning, GUAN Zengyan, SHI Songlin, XU Qian, JIA Longyu, CAO Jixin, CHEN Shengbin, LI Jingji, WANG Guoyan, PENG Peihao.  Spatial distribution pattern and interspecific correlation between plantation and natural forest of Picea likiangensis var. rubescens in western Sichuan, China . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20210433
    [5] ZHAN Xiaohao, WANG Xuhang, YE Nuonan, WU Chuping, YUAN Weigao, YI Lita.  Spatial distribution patterns and interspecific relationship of dominant tree species in the tree layer of typical natural secondary forest communities in Jiande, Zhejiang Province . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20200586
    [6] ZHANG Zhonghui, GUO Jianbin, WANG Yanhui, WANG Xiao.  Population structure and spatial distribution pattern of Quercus wutaishanica in Liupan Mountains . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20200707
    [7] ZHOU Saixia, GAO Puxin, PAN Fuxing, LONG Jing, HU Yunan, LIU Xiangping, PENG Yansong.  Natural population distribution pattern of Sinojackia rehderiana in an evergreen broadleaf forest . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2020.02.004
    [8] FAN Yi, LOU Yikai, KU Weipeng, DAI Qilin, WANG Zhengyi, ZHAO Mingshui, YU Shuquan.  Age structure and spatial point pattern of Phoebe sheareri population in Mount Tianmu . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20190631
    [9] XIE Mingming, GUO Sujuan, SONG Ying, ZHANG Li, SUN Huijuan.  Spatial distribution and seasonal dynamics of fine roots of Castanea mollissima . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2018.01.008
    [10] ZHENG Zerui, SHI Yongjun, ZHOU Guomo, CHEN Ting, YANG Yi, PEI Jingjing.  Planting pattern's influence for characteristics of variation of spatial distribution pattern in the early stages of moso bamboo carbon sink stands . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2017.03.003
    [11] WANG Yang, LENG Yanzhi, SU Changjiang, SONG Congwen, CHENG Dehua, CAO Yingnan, ZHANG Min, FU Cuilin.  Spatial structure and distribution pattern of natural Toona ciliata populations in the Enshi Region . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2016.01.003
    [12] WANG Jing, WEI Xinliang, XU Jian, FAN Peipei.  Spatial distribution patterns of a coniferous-broadleaved mixed forest in Mount Tianmu, China . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2014.05.002
    [13] ZHANG Yang, SHEN Jiahong, ZHANG Fanggang.  Structure and dynamics of forest community in the West Lake Scenic of Hangzhou, China . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2014.04.015
    [14] ZHANG Jinrui, GAO Jiarong, CUI Qiang, YANG Qilin.  Point pattern analysis for relationships of Vitex negundo var. heterophylla in three typical stands . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2013.02.011
    [15] YANG Zi-qing, CHEN Ping-liu, LIU Jian, YU Kun-yong, LIAO Xiao-li, YOU Hao-chen, GONG Cong-hong.  Spatio-temporal variation of distribution patterns in Cunninghamia lanceolata plantations . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2012.03.008
    [16] CHEN Ya-feng, YU Shu-quan, YAN Xiao-su, YI Li-ta, BAO Chun-quan.  Community structure of three different forests in Tonglu,Zhejiang Province . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2011.03.010
    [17] ZHANG Chun-ying, ZHANG Chun-ling, LIN Xiao-xia, HU Shai-qiang, HE Chun-ling, GE Xin-chi.  Multi-scale effects of spatial correlation for vegetative landscape types in the Wuyishan Nature Reserve . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2011.06.005
    [18] WANG Ping, JIA Li-ming, LI Xiao-wen, LI Jiang-jing.  Community structure and plant diversity of a Platycladus orientalis recreational plantation in West Mountain area of Beijing . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2010.04.015
    [19] CAO Guang-qiu, LIN Si-zu, CAO Zi-lin, DING Bi.  Spatial distribution pattern of Chinese fir and its associated tree species in Mount Hutuo . Journal of Zhejiang A&F University,
    [20] TAO Tao, GUANG Taijun, HUANG Qingfeng, TANG Xuehai, OU Qiangxin, LIU Hua.  Spatial distribution pattern and correlation of main tree species in deciduous broad-leaved forest in Tianma National Nature Reserve . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20240486
  • [1]
    QIU Jing, HAN Anxia, HE Chunmei, et al. Spatial distribution pattern and intraspecific association of dominant species Quercus aliena var. acutiserrata in Qinling Mountains, China[J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2035−2042.
    [2]
    ZHANG Xiaohong, ZHANG Huiru, LU Jun, et al. Community structure characteristics and spatial distribution of dominant species of secondary Quercus mongolica forest in Changbai Mountains, China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1571−1579.
    [3]
    NATHAN R. Long-distance dispersal of plants[J]. Science, 2006, 313(5788): 786−788.
    [4]
    HOU J H, MI X C, LIU C R, et al. Spatial patterns and associations in a Quercus-Betula forest in northern China[J]. Journal of Vegetation Science, 2004, 15(3): 407−414.
    [5]
    WANG Jingxuan, ZHANG Jiaxin, XIANG Zeyu, et al. Spatial distribution pattern and correlation of dominant species in the arbor layer at a 25 hm2 forest plot in Lushan Mountain, China[J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1491−1499.
    [6]
    WANG Liping, WU Junjie, CHAI Yong, et al. Spatial patterns and associations of dominant species in a subtropical mid-mountain moist evergreen broadleaf forest in Gaoligong Mountains, Southwest China[J]. Chinese Journal of Plant Ecology, 2024, 48(2): 180−191.
    [7]
    BEN-SAID M. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review[J/OL]. Ecological Processes, 2021, 10 (1): 56[2024-08-10]. DOI: 10.1186/s13717-021-00314-4.
    [8]
    YI Lita. Community Characteristics of Quercus liaotungensis Koidz. in the Lingkong Mountain in Shanxi Province, China[D]. Beijing: Beijing Forestry University, 2008.
    [9]
    NING Peng. Study on the Growth Models Including Climate Dactors and Dynamic Prediction of Dominant Tree Species in Zhongtiao Mountains[D]. Taigu: Shanxi Agricultural University, 2023.
    [10]
    REN Da. Short term effects of cutting intensity on stand growth and understory species diversity of Quercus Liaotungensis[J]. Shanxi Forestry Science and Technology, 2021, 50(4): 14−17.
    [11]
    LIU Mingbo, HAN Hairong, CHENG Xiaoqin, et al. Spatial structure characteristics and their influences on productivity of typical natural forests in the Lingkong Mountain, Shanxi Province[J]. Journal of Northwest Forestry University, 2022, 37(1): 33−40.
    [12]
    WANG Jing, BI Runcheng, ZHANG Qindi, et al. Niche characteristics of dominant plant species in a Quercus wutaishanica community in Taiyue Mountain Shanxi Province[J]. Ecological Science, 2016, 35(4): 62−70.
    [13]
    ZHANG Zhonghui, GUO Jianbin, WANG Yanhui, et al. Populaion structure and spatial distribution pattern of Quercus wutaishanica in Liupan Mountains[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1091−1099.
    [14]
    WANG Yan, BI Runcheng, XU Qiang. Community characteristics and spatial distribution of mixed conifer and broad-leaved forest in south Taiyue Mountain, Shanxi Province of China[J]. Guihaia, 2017, 37(7): 901−911.
    [15]
    ZHANG Jintun, MENG Dongping. Spatial distribution patterns of dominant tree species in Pinus tabulaeformis-Quercus liaotungensis forest in Luyashan Mountain, China[J]. Acta Botanica Boreall-Occidentalia Sinica, 2006, 26(8): 1682−1685.
    [16]
    HU Ercha, WANG Xiaojiang, ZHANG Wenjun, et al. Age structure and point pattern of Butula platyphylla in Wulashan Natural Reserve of Inner Mongolia[J]. Acta Ecologica Sinica, 2013, 33(9): 2867−2876.
    [17]
    TU Hongrun, LI Jiaofeng, LIU Runhong, et al. Spatial distribution patterns and association of Loropetalum chinense population in karst hills of Guilin, Southwest China[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2621−2630.
    [18]
    CAO Ling, JIN Shengkang, Yeerjiang Baiketuerhan, et al. Spatial pattern and correlation of Malus sieversii population in Emin County[J]. Journal of Zhejiang A&F University, 2023, 40(2): 390−397.
    [19]
    JIN Yaning, GUAN Zengyan, SHI Songlin, et al. Spatial distribution pattern and interspecific correlation between plantation and natural forest of Picea likiangensis var. rubescens in western Sichuan, China[J]. Journal of Zhejiang A&F University, 2022, 39(3): 495−504.
    [20]
    DONG Lingbo, MA Rong, TIAN Dongyuan, et al. Structure and dynamics of co-dominant species in different succession stages of natural forests in Daxing’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2077−2087.
    [21]
    DONG Li, GUO Donggang, DUAN Yihao, et al. Spatial distribution patterns of regenerating Quercus wutaishanica-Pinus tabulaeformis in relation to topographic factors in the Lingkong Mountain[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(6): 914−921.
    [22]
    WANG Yiling, ZHANG Qindi, HAO Xiaojie, et al. Structure and spatial distribution of Acer ginnala population in Qiliyu, Shanxi[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(5): 1027−1035.
    [23]
    FENG Yun, MA Keming, ZHANG Yuxin, et al. Life history characteristics and spatial pattern of Quercus liaotungensis population in Dongling Mountain of Beijing, China[J]. Chinese Journal of Ecology, 2009, 28(8): 1443−1448.
    [24]
    HUANG Wei, XUE Weipeng, CHEN Zhoujuan, et al. Analysis and evaluation of stand spatial structure characteristics of Pinus tabuliformis aerial seeding forest[J]. Journal of Forest and Environment, 2022, 42(4): 425−433.
    [25]
    WANG Zhiming, GUO Qiuju, AI Xunru, et al. Structure characteristics of Pinus massoniana natural secondary forest at different altitude of Enshi[J]. Journal of Southwest Forest University, 2019, 39(1): 114−122.
    [26]
    DU Huaqiang, TANG Mengping, ZHOU Guomo, et al. Linking species diversity with spatial scale dependence to spatial patterns using multifractal analysis[J]. Acta Ecologica Sinica, 2007, 27(12): 5038−5049.
    [27]
    XIE Chuanqi, TIAN Minxia, ZHAO Zhongrui, et al. Spatial point pattern analysis of Abies georgei var. smithii in forest of Sygera Mountains in southeast Tibet, China[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1617−1624.
    [28]
    LAN Hangyu, DUAN Wenbiao, CHEN Lixin, et al. Spatial point patterns and associations of populations in the coniferous and deciduous broadleaved mixed forest in Xiaoxing’an Mountain[J]. Acta Ecologica Sinica, 2019, 39(18): 6660−6669.
    [29]
    BROOKER R W, MAESTRE F T, CALLAWAY R M, et al. Facilitation in plant communities: the past, the present, and the future[J]. Journal of Ecology, 2008, 96(1): 18−34.
    [30]
    CHEN Lie, ZHAO Xiuhai, ZHANG Yun. Spatial distribution patterns and associations of Pinus koraiensis and Tilia amurensis in Tilia-Korean pine forest on the north slope of Changbai Mountain, Northeastern China[J]. Journal of Beijing Forestry University, 2009, 31(3): 6−10.
    [31]
    ZOU Shuzhen, YIN Caijia, YANG Qian, et al. Competition pattern of standing trees in secondary Pinus forest in the Ziwuling Mountains, China[J]. Bulletin of Botanical Research, 2023, 43(1): 140−149.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.3 %FULLTEXT: 10.3 %META: 83.2 %META: 83.2 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.7 %其他: 17.7 %其他: 0.5 %其他: 0.5 %Absecon: 0.2 %Absecon: 0.2 %Buk-gu: 0.2 %Buk-gu: 0.2 %Seattle: 0.1 %Seattle: 0.1 %上海: 1.2 %上海: 1.2 %上达比: 0.1 %上达比: 0.1 %东莞: 0.8 %东莞: 0.8 %临汾: 0.1 %临汾: 0.1 %丽水: 0.8 %丽水: 0.8 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %九江: 0.3 %九江: 0.3 %佳木斯: 0.1 %佳木斯: 0.1 %保定: 0.1 %保定: 0.1 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %北京: 2.9 %北京: 2.9 %北伯根: 0.2 %北伯根: 0.2 %十堰: 0.4 %十堰: 0.4 %南京: 0.6 %南京: 0.6 %南宁: 0.3 %南宁: 0.3 %南昌: 0.9 %南昌: 0.9 %南通: 0.3 %南通: 0.3 %博阿努瓦: 0.4 %博阿努瓦: 0.4 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.7 %呼和浩特: 0.7 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.5 %嘉兴: 0.5 %图尔库: 0.3 %图尔库: 0.3 %圣保罗: 0.3 %圣保罗: 0.3 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %大同: 0.2 %大同: 0.2 %大庆: 0.1 %大庆: 0.1 %天水: 0.1 %天水: 0.1 %天津: 1.9 %天津: 1.9 %宁波: 0.1 %宁波: 0.1 %安阳: 0.1 %安阳: 0.1 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 0.5 %密蘇里城: 0.5 %崇左: 0.1 %崇左: 0.1 %巴斯泰姆: 0.3 %巴斯泰姆: 0.3 %布里斯班: 0.1 %布里斯班: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广安: 0.2 %广安: 0.2 %广州: 1.0 %广州: 1.0 %张家口: 2.7 %张家口: 2.7 %德克萨斯: 0.3 %德克萨斯: 0.3 %惠州: 0.2 %惠州: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 1.9 %扬州: 1.9 %昆明: 0.2 %昆明: 0.2 %晋中: 0.3 %晋中: 0.3 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 3.0 %杭州: 3.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.7 %武汉: 0.7 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.2 %泰安: 0.2 %洛阳: 0.1 %洛阳: 0.1 %海口: 0.1 %海口: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 1.0 %温州: 1.0 %湖州: 0.2 %湖州: 0.2 %湛江: 0.7 %湛江: 0.7 %漯河: 3.5 %漯河: 3.5 %潍坊: 0.1 %潍坊: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.1 %福州: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.4 %绍兴: 0.4 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 13.1 %芒廷维尤: 13.1 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.6 %苏州: 0.6 %菏泽: 0.1 %菏泽: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 19.6 %西宁: 19.6 %西安: 0.4 %西安: 0.4 %贵阳: 0.9 %贵阳: 0.9 %资阳: 0.1 %资阳: 0.1 %运城: 1.6 %运城: 1.6 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.8 %郑州: 0.8 %重庆: 0.4 %重庆: 0.4 %金昌: 0.1 %金昌: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 5.0 %长沙: 5.0 %青岛: 0.8 %青岛: 0.8 %黄冈: 0.1 %黄冈: 0.1 %其他其他AbseconBuk-guSeattle上海上达比东莞临汾丽水乌鲁木齐九江佳木斯保定加利福尼亚北京北伯根十堰南京南宁南昌南通博阿努瓦台州合肥呼和浩特哈尔滨哥伦布嘉兴图尔库圣保罗圣彼得堡大同大庆天水天津宁波安阳宣城密蘇里城崇左巴斯泰姆布里斯班常州常德广安广州张家口德克萨斯惠州成都扬州昆明晋中晋城朝阳杭州格兰特县桂林武汉汕头沈阳泰安洛阳海口淮南深圳温州湖州湛江漯河潍坊石家庄福州纽约绍兴舟山芒廷维尤芝加哥苏州菏泽衢州西宁西安贵阳资阳运城遵义邯郸郑州重庆金昌长春长沙青岛黄冈Highcharts.com
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(1)

Article views(66) PDF downloads(2) Cited by()

Related
Proportional views

Point pattern analysis of dominant populations in Quercus mongolica natural forest on the west side of Lüliang Mountain

doi: 10.11833/j.issn.2095-0756.20240535

Abstract:   Objective  This study aims to explore the spatial distribution pattern of tree species in Quercus mongolica natural forest, a major forest type in Shanxi Province, and understand its growth and development status, so as to provide reference for the rational management of the forest and conversion of Q. mongolica plantation.   Method  The research object was a 0.96 hm2 plot of Q. mongolica natural forest investigated in 2021 in Chengzhuanggou Forest Farm on the west side of Lüliang Mountain. The diameter class structure was used instead of the age structure. The spatial distribution pattern and spatial correlation of individuals with different diameter levels in the dominant population were analyzed by point pattern analysis.   Result   Q. mongolica and Acer ginnala were dominant species, and their diameter structure was an inverted J type, indicating a growth type with stable population structure and good regeneration. The population of Q. mongolica showed a cluster distribution within the research scale, while that of A. ginnala exhibited a pattern of small-scale cluster distribution and large-scale random distribution. The small diameter individuals of the two dominant populations were mainly clustered in small scale, while the large diameter individuals were randomly distributed. The intraspecies association of Q. mongolica was positive only among middle and small size trees, and the smaller the diameter difference, the greater the degree and spatial scale range of positive association. The population of A. ginnala showed positive correlation only between small-scale GradeⅠand GradeⅡindividuals. With the increase of the scale, the overall correlation between the dominant populations changed from no correlation to negative correlation and then to no correlation. The spatial correlation between populations of different diameter classes only appeared among trees of medium and small diameter classes, and the correlation was negative.   Conclusion  Q. mongolica natural forest in the study area is at the early stage of succession, with a stable dominant population structure and good renewal status. To accelerate the succession process, artificial intervention should appropriately supplemented to promote the development of forest stands towards top-level communities. [Ch, 5 fig. 1 tab. 31 ref.]

HUO Yan, ZHAO Xueqing, HUANG Houyi, et al. Phenotypic genetic diversity of ornamental pomegranate cultivars[J]. Journal of Zhejiang A&F University, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
Citation: WU Xiujuan, AO Xiaoping. Point pattern analysis of dominant populations in Quercus mongolica natural forest on the west side of Lüliang Mountain[J]. Journal of Zhejiang A&F University, 2025, 42(X): 1−9 doi:  10.11833/j.issn.2095-0756.20240535
  • 种群的空间分布格局是指在一定时间内,个体在其生活空间中的位置、状态和布局[1]。研究种群空间分布格局是揭示植物群落演替动态的基础,是合理安排森林经营活动的基本前提[2],一直以来都是生态理论研究的核心[34],判定种群的空间分布类型和空间关联性为其主要的研究内容[5]。空间分布格局的研究方法众多,主要有扩散系数/方差平均值比法、平均拥挤度法、最近邻体法等,但这些方法只能分析特定尺度环境下的种群分布格局。由于种群空间分布格局和关联性对空间尺度的依赖性较强,因此这些方法在一定程度上存在局限性[6]。点格局分析方法以种群个体的空间位置坐标为基础,能最大限度地利用点与点间的距离,分析任意尺度下种群的空间格局特征及关联性,因而得到了广泛应用,已成为国际上分析种群格局的主要方法之一[7]

    辽东栎Quercus mongolica林是暖温带落叶阔叶林区域典型的地带性植被类型之一,在山西分布广泛,是山西森林的主要组成部分[8]。目前,对于辽东栎的研究集中在生长模型构建[9]、生物多样性[10]、林分空间结构[11]、生态位特征[12]等方面,对辽东栎林空间分布格局的研究主要在宁夏的六盘山[13]、山西的灵空山[14]和芦芽山[15]等地,且这些研究多以辽东栎与油松Pinus tabuliformis形成的共优种为研究对象。有研究表明:种群的空间分布格局在不同生境和不同群落类型中表现不同[16],因此对以辽东栎为主要优势种的天然林进行研究,有助于了解同一树种在不同群落中空间分布格局形成过程的差异。本研究以吕梁山西侧城庄沟林场的辽东栎天然林为研究对象,分析其优势种群结构和空间分布格局,探讨不同径级优势种的空间分布格局,不同径级优势种的种内和种间空间关联性,以便了解该地区辽东栎天然林优势植物的分布形态及其与环境之间的关系,对比不同地区辽东栎林空间分布格局的差异性。研究结果有助于认识辽东栎天然林内物种的共存机制,可为辽东栎天然林的合理经营和人工辽东栎林的改造提供参考。

    • 研究地位于山西省黑茶山国有林管理局城庄沟林场(37°58′~38°09′N,111°11′~111°17′E),吕梁山西侧,海拔为1 400~1 900 m,林地多分布于阴坡,属中高山天然林区。主要天然植被为针阔混交林和落叶阔叶林,乔木主要为辽东栎、油松、山杨Populus davidiana、白桦Betula platyphylla、茶条槭Acer ginnala等,灌木主要有绣线菊Spiraea pubescens、黄刺玫Rosa xanthina、虎榛子Ostryopsis davidiana等,草本主要为薹草Carex lanceolata等。气候属暖温带大陆性气候,年平均气温为8.8 ℃,≥10 ℃年平均积温为3 212.0 ℃,年无霜期为160.0 d,年平均降水量为518.8 mm。

    • 2021年在海拔1 700 m的半阴坡无人为干扰的辽东栎天然林设立样地,面积为160 m×60 m,采用相邻格子法将样地划分为24个20 m×20 m的小样方,调查并记录样地内所有胸径≥2.5 cm的乔木树种及胸径、坐标等详细信息。

    • 以物种重要值确定样地内的优势种。重要值计算公式为:重要值=(相对多度+相对频度+相对显著度)/3[6],其中相对多度指某物种株数占所有种总株数的百分比,相对频度指某物种在20 m×20 m样方中出现的次数占所有种出现次数的百分比,相对显著度指某物种胸高断面积占所有种胸高断面积的百分比。

    • 结合文献[14],确定起测胸径(DBH)为2.5 cm,径级划分为:Ⅰ级(2.5 cm≤DBH<7.5 cm)、Ⅱ级(7.5 cm≤DBH<12.5 cm)、Ⅲ级(12.5 cm≤DBH<17.5 cm)、Ⅳ级(17.5 cm≤DBH<22.5 cm)、Ⅴ级(22.5 cm≤DBH<27.5 cm)、Ⅵ级(27.5 cm≤DBH<32.5 cm)、Ⅶ级(32.5 cm≤DBH<37.5 cm)、Ⅷ级(37.5 cm≤DBH<42.5 cm)。

    • 优势种群的空间分布格局采用Ripley的L函数计算,公式为:$ \mathop L\limits^{} (t) = \sqrt {\mathop K\limits^{} (t)/{\text{π}} } - t $[1718]。不同径级间的关联性采用多元点格局分析计算,公式为:$ {\mathop L_{12} }(t) = \sqrt {\mathop {{K_{12}}}\limits^{} (t)/{\text{π}}} - t $[1819],其中:$ \mathop K\limits^{} (t) = \dfrac{A}{{{n^2}}}\displaystyle\sum\limits_{i = 1}^n {\displaystyle\sum\limits_{j = 1}^n {w_{ij}^{ - 1}{I_t}({u_{ij}})} } (i \ne 1) $,$ \mathop {{K_{12}}}\limits^{} (t) = \dfrac{A}{{{n_1}{n_2}}}\displaystyle\sum\limits_{i = 1}^{{n_1}} {\displaystyle\sum\limits_{j = 1}^{{n_2}} {w_{ij}^{ - 1}{I_t}({u_{ij}})} } (i \ne j) $, t为空间尺度,A为样地面积,n为林木株数,n1n2为样地内2个不同径级的林木株数,K(t)公式中ij分别为1个种群的任意2株林木,K12(t)公式中ij分别为2个径级的任意1株林木,$ {u_{ij}} $为2株林木ij间的距离,$ {I_t}({u_{ij}}) $为指示函数,当$ u_{i j} $≤t时,$ I_{t}\left(u_{i j}\right) $=1,$ u_{i j} $>t时,$ I_{t}\left(u_{i j}\right) $=0,wij为权重值,用于边缘矫正。采用Monte Carlo拟合检验,随机拟合99次,计算上下包迹线,得到99%的置信区间,L(t)值和L12(t)值若在包迹线以内,则种群符合随机分布,不同径级间无关联;在上包迹线以上则种群属于聚集分布,不同径级间正关联;在下包迹线以下则种群呈均匀分布,不同径级间负关联。

      优势种群的空间分布格局和不同径级间的关联性均在Programita软件中完成分析。

    • 表1可看出:辽东栎天然林中共出现8种乔木植物,其中辽东栎在所有样方中均出现,重要值最大,达58.76%,且个体数(相对多度)和胸径在乔木层中最大,为样地乔木层的建群种。茶条槭重要值次之,为11.06%,其个体数和出现的样方数仅次于辽东栎,小胸径林木数量较多,导致相对显著度小于山杨,为样地的主要伴生种。其余6种乔木的重要值均较小,故将辽东栎和茶条槭作为优势种。

      树种相对多度/%相对频度/%相对显著度/%重要值/%树种相对多度/%相对频度/%相对显著度/%重要值/%
      辽东栎69.8025.8180.6658.76山丁子3.8312.902.786.51
      茶条槭9.6718.285.2411.06山杏5.5712.902.306.92
      白桦1.647.531.093.42油松1.198.600.683.49
      山杨6.847.535.886.75鹅耳枥1.466.451.373.09
        说明:山丁子Malus baccata;山杏Prunus sibirica;鹅耳枥Carpinus turczaninowii

      Table 1.  Importance values of tree species in Q. mongolica community

      群落中2种优势种的径级结构相似,表现为随径级增加个体数减少的趋势,径级分布呈倒“J”型特性(图1),即小径级个体(DBH<12.5 cm)较多。林内更新较好,处于增长阶段。

      Figure 1.  Diameter class structure of dominant species

    • 辽东栎和茶条槭种群的空间分布格局不尽相同。辽东栎种群在整个研究尺度均呈聚集分布,但随尺度增大,聚集程度逐渐减小。茶条槭种群在0~8 m尺度内表现为聚集分布,但随尺度增大聚集程度逐渐减小,在20.8 m尺度上呈程度很小的聚集分布,其余尺度上均呈随机分布(图2)。

      Figure 2.  Spatial distribution pattern of dominant species

      优势种群不同径级的空间分布格局如图3,其中Ⅰ~Ⅳ级辽东栎(DBH<22.5 cm)在研究尺度上呈不同程度的聚集分布与随机分布的组合,Ⅰ级辽东栎在0~11.2 m尺度上呈聚集分布,其余尺度为随机分布,Ⅱ、Ⅲ级辽东栎在整个研究尺度上几乎均为聚集分布,且聚集程度随研究尺度增大而减小,Ⅳ级辽东栎在0~1.6和6.4~9.6 m尺度上有聚集,其余尺度为随机分布。Ⅴ级及以上辽东栎在整个研究尺度均呈随机分布。可见,辽东栎的聚集分布仅表现为中小径级林木。

      Figure 3.  Spatial distribution pattern of dominant species at different diameter class

      Ⅰ、Ⅱ级茶条槭在小尺度上为聚集分布,随尺度增大其分布格局变为随机分布。其中Ⅰ级茶条槭在0~4.8 m尺度上为聚集分布,Ⅱ级茶条槭在0~1.6和8.0 m尺度上为聚集分布,其余尺度和其他径级在整个研究尺度上均为随机分布。

    • 本研究中优势种径级较多,得到的空间关联性图数量大。为便于说明,仅图4图5展示了辽东栎和茶条槭种内和种间存在空间正关联和负关联的径级。辽东栎种内的关联性主要出现在Ⅰ~Ⅳ级林木间,其中Ⅰ级林木与Ⅱ级林木在空间尺度0~14.4 m呈正关联,其余尺度呈无关联,Ⅰ级林木与Ⅲ级林木在8.0、14.4~16.0、24.0~27.2 m尺度上呈正关联,其余尺度为无关联,Ⅱ级林木与Ⅲ级林木在整个研究尺度上均呈正关联,且关联程度较大,Ⅱ级林木与Ⅳ级林木在研究尺度内以正关联为主,但关联性较弱,在3.2、6.4~8.0、14.4~16.0、19.2和25.6 m尺度上表现为无关联,Ⅲ级林木与Ⅳ级林木仅在3.2~6.4 m尺度上为无关联,其余尺度均为正关联。可见,辽东栎种内关联性仅存在于中小径级林木间,且以正关联为主,径级差距越小,正关联的程度和空间尺度范围越大。

      Figure 4.  Intraspecies spatial correlation of dominant species

      茶条槭种内关联性仅出现在Ⅰ级林木与Ⅱ级林木间,且L12(t)值仅在0~6.4 m尺度内位于置信区间上方,呈正关联,但其与上包迹线接近,关联性较弱,其余尺度上表现为无关联。

      辽东栎与茶条槭种群间以负关联为主(图5),L12(t)值仅在0~1.6 m尺度内及28.8 m处位于置信区间内呈无关联,其余尺度均为负关联,说明辽东栎与茶条槭种群间对于资源的竞争较为激烈。

      Figure 5.  Interspecies spatial correlation of dominant species

      辽东栎与茶条槭不同径级的种间关联性主要出现在不同种群的Ⅰ~Ⅲ级林木间,且为负关联,较大径级种间均无关联性,Ⅰ级辽东栎与Ⅰ级茶条槭的负关联出现在较大空间尺度(22.4~28.8 m),在小尺度上表现为无关联,与Ⅱ级茶条槭在4.8、8.0~9.6、12.8、16.0~19.2、22.4~25.6 m尺度上均呈负关联,与Ⅲ级茶条槭仅在3.2~8.0 m尺度上呈负关联;Ⅱ级辽东栎与Ⅰ级茶条槭在小尺度上无关联,在较大尺度(11.2~28.8 m)上呈负关联,与Ⅱ级茶条槭在1.6~6.4、8.0~12.8、20.8~22.4 m尺度上呈负关联,与Ⅲ级茶条槭在3.2~4.8、8.0~9.6、14.4~17.6 m尺度上呈负关联;Ⅲ级辽东栎与Ⅰ级茶条槭在3.2、8.0、11.2~12.8、16.0~17.6、20.8、25.6~28.8 m尺度上呈负关联。可见,优势种群间的关联性仅出现在中小径级间,且随茶条槭径级的增大负关联的尺度由大变小,随辽东栎径级的增大负关联的尺度增大。

    • 径级结构能反映种群生长发育状况和植物群落的稳定性[17],幼龄个体数量是维持种群稳定性的基础[20]。本研究中优势种群辽东栎和茶条槭的幼龄个体数量均较大,种群后备资源丰富,均为增长型,具有较强的持续发育能力。这与它们自身的生物学特性有关。辽东栎在林下荫蔽湿润的环境下更利于萌发[21],茶条槭结实量大,种子可通过风媒散布而产生大量幼苗[22]。本研究中Ⅰ级辽东栎个体数量较Ⅱ级稍少,这与前人的研究结果[21]类似,原因可能与环境过滤有关。辽东栎从种子萌发到生长至Ⅰ级时会经历对光、水和土壤养分等有限资源的强烈竞争,出现死亡高峰,但辽东栎具有很强的萌生更新能力,其种群顺利渡过这一更新瓶颈之后保持相对稳定[23]。采用黄维等[24]在研究油松飞播林林分空间结构中使用的熵权法确定权重,进而构建空间结构综合指数的方法,对辽东栎天然林林分空间结构进行分级评价,其空间结构综合指数为0.603 5,属于4级,即空间结构较好。王志鸣等[25]认为:林分空间结构越好,其稳定性越高。由此可见,本研究中的辽东栎天然林的稳定性较高。

      种群分布格局受植物生物学特性和生境因子的共同影响[16]。辽东栎种子较大,下落位置主要集中在母树周围,这一生物学特性使其种群在研究尺度内呈聚集分布。这一结果与王燕等[14]对太岳山针阔混交林中辽东栎的研究结果一致,但与张中惠等[13]在六盘山辽东栎林的研究结果不同,从而验证了生境和群落类型不同种群的空间分布格局不尽相同的观点[16]。茶条槭为翅果,易随风飘落,种子特性并不会造成聚集分布,而且茶条槭为喜光树种,林下更新受控于上层林隙和枯立木冠层空隙[22],因此林下光照条件是限制茶条槭更新的主要生境因子,也是茶条槭聚集分布格局形成的主导因子。种群的空间分布格局随尺度而变化,具有强烈的尺度依赖性[26],因此茶条槭种群总体呈现出小尺度上聚集而大尺度随机分布的格局,辽东栎种群随尺度增加聚集程度降低也与此有关。种群的空间分布格局受径级的影响,不同径级的空间分布格局不同[27]。辽东栎和茶条槭种群均表现为小径级个体在小尺度上以聚集分布为主,大径级个体为随机分布格局,这与温带地区的许多研究结果一致[18,28]。原因可能是小径级个体生命力脆弱,生长过程中需要多个个体聚集起来应对外界不利因素,以此来提高存活率。

      空间关联性反映了物种对有限资源的竞争结果,或者是恶劣条件下物种在生存中相互促进的结果[29]。本研究中,辽东栎种群种内仅在中小径级林木间表现为正关联,且径级差距越小,正关联的程度和空间尺度范围越大,茶条槭种群仅在小尺度的Ⅰ级林木和Ⅱ林木间表现为正关联。可见,径级差距与种内空间关联性密切相关,这与陈列等[30]对长白山北坡红松Pinus koraiensis和紫椴Tilia amurensis种群的研究结果及涂洪润等[17]对桂林岩溶石山檵木Loropetalum chinense种群的研究结果一致。辽东栎和茶条槭均表现为小径级个体数量多,分布密度大,在不同尺度范围内聚集分布。小径级个体间竞争资源的能力较低,更需要彼此相互协调来抵抗不利因素[1],故正关联的尺度和程度较大。随着林木生长,在资源限制的条件下,与大径级林木相比,中、小径级林木对资源的竞争力较小,它们只有相互庇护才有利于发挥群体效应,增大存活机会,以适应长期的自然选择,故中、小径级林木间也表现为正关联。当林木生长到较大径级后,在长期的发育过程中适应了当地环境,占据了适宜的生态位,对资源可以相互分享和协调,故种内中小径级林木间互不干扰,表现出无关联的现象。辽东栎与茶条槭种群间总体关联性表现为随尺度增加,呈无关联转变为负关联再到无关联的特点,不同径级种群间的关联性仅出现在中小径级林木间,且随茶条槭径级的增大负关联的空间尺度变小,随辽东栎径级的增大负关联的空间尺度范围增大。原因可能与这2个优势种更新所需要的生境条件不同有关,但随径级增大种群间对资源的竞争更加激烈,故其负关联尺度会由大尺度向小尺度靠近。这也说明了种群间的空间关联性是植物与环境和资源利用相适应的结果。

      一般认为,群落处于演替初级阶段时,物种间的关联程度较低,甚至产生较大的负关联。本研究中优势种群辽东栎与茶条槭间以负关联为主的种间关系,表明该群落仍处于演替初级阶段。优势种群更新状态良好,且种内在一定尺度范围内均表现为正关联,说明优势种群处于相对稳定的状态。邹书珍等[31]在子午岭对4个不同演替阶段的油松种群进行研究,发现演替初级阶段种群径级结构表现为增长型,王艳等[14]依据种群稳定增长且老龄个体数量较少而确定群落处于演替初级阶段。本研究中优势种群相对稳定,且增长型的径级结构进一步证实了该群落处于演替初级阶段。

    • 本研究基于吕梁山西侧0.96 hm2辽东栎天然林样地的调查数据,分析了辽东栎和茶条槭2个优势种群的径级结构和空间分布格局。研究发现:2个优势种群幼龄个体数量均较大,后备资源丰富,处于稳定增长状态。辽东栎种群在研究尺度内呈聚集分布,茶条槭种群则在小尺度为聚集分布,大尺度为随机分布。辽东栎种群中小径级林木间表现为正关联,茶条槭种群仅在小尺度的Ⅰ级和Ⅱ级林木间表现为正关联,优势种群间总体关联性随尺度增加,由无关联转变为负关联再转变为无关联,中小径级种群间表现为负关联。该地辽东栎天然林处于较稳定的演替初级阶段,优势种群结构稳定,更新状态良好。为加快演替进程,可适当辅以人工干预,促进林分向顶级群落发展。

Reference (31)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return