留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川西云杉人工林与天然林群落空间分布格局及种间关联性

金亚宁 管增艳 石松林 许倩 贾龙玉 曹吉鑫 陈圣宾 李景吉 王国严 彭培好

高宁, 邢意警, 熊瑞, 等. 丛枝菌根真菌和溶磷细菌协调植物获取磷素的机制[J]. 浙江农林大学学报, 2023, 40(6): 1167-1180. DOI: 10.11833/j.issn.2095-0756.20220765
引用本文: 金亚宁, 管增艳, 石松林, 等. 川西云杉人工林与天然林群落空间分布格局及种间关联性[J]. 浙江农林大学学报, 2022, 39(3): 495-504. DOI: 10.11833/j.issn.2095-0756.20210433
GAO Ning, XING Yijing, XIONG Rui, et al. Mechanisms of plant P acquisition coordinated by arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1167-1180. DOI: 10.11833/j.issn.2095-0756.20220765
Citation: JIN Yaning, GUAN Zengyan, SHI Songlin, et al. Spatial distribution pattern and interspecific correlation between plantation and natural forest of Picea likiangensis var. rubescens in western Sichuan, China[J]. Journal of Zhejiang A&F University, 2022, 39(3): 495-504. DOI: 10.11833/j.issn.2095-0756.20210433

川西云杉人工林与天然林群落空间分布格局及种间关联性

DOI: 10.11833/j.issn.2095-0756.20210433
基金项目: 国家重点研发计划项目(2017YFC0505001)
详细信息
    作者简介: 金亚宁(ORCID: 0000-0003-0192-008X),从事森林生态学研究。E-mail: 2403653966@qq.com
    通信作者: 石松林(ORCID: 0000-0003-2647-045X ),讲师,博士,从事植物分类学、植物生态学与区域生态学研究。E-mail: shisonglin17@cdut.edu.cn
  • 中图分类号: S754

Spatial distribution pattern and interspecific correlation between plantation and natural forest of Picea likiangensis var. rubescens in western Sichuan, China

  • 摘要:   目的  随着国家退耕还林工程的实施,川西云杉Picea likiangensis var. rubescens人工林面积和蓄积量不断增长,已成为川西地区森林资源的重要组成部分。本研究分析道孚县川西云杉人工林与天然林活立木空间分布格局特征及种间关联性差异,以揭示人工林群落动态变化及演替规律。  方法  采用典型样方法设置12块固定样地,测量每株活立木中心位置坐标、胸径、树高和冠幅等,运用点格局分析中的单变量Ripley’s L(t)函数和双变量Ripley’s L12(t)函数分别分析人工林与天然林群落的空间分布格局和群落中树种间的空间关联性。  结果  ①随着恢复年限的增加,人工林群落内川西云杉种群密度呈下降趋势,而群落物种数逐渐增加;②人工林群落中活立木空间分布格局总体上表现为随机分布,而天然林内活立木空间分布以聚集分布为主;③人工林中川西云杉与其他阔叶树种无空间关联性,而天然林群落内主要树种间关联性在小尺度范围上呈不相关,在大尺度上表现为负相关。  结论  经过50 a人工恢复后,川西云杉人工林与天然林在群落空间分布格局和种间关联性方面仍然存在一定的差异,生态恢复进程较慢。建议采取适当间伐与种植天然林优势树种相结合的方式,优化改造人工林结构,从而加快人工林向天然林群落演替进程。图3表1参35
  • 矿质元素的生物地球化学循环直接影响生态系统的生产力和稳定性。磷(P)作为碳、氮之外陆地生态系统最关键的营养元素,在植物体内的分配和代谢决定了植物的生长过程及生产力水平[1]。低磷环境在生态系统内普遍存在,土壤总磷库80%以上的磷不可移动[2],植物难以吸收利用。同时,土壤有效磷(Pi)易被铝离子、铁离子、钙离子吸附固定,与氢氧化合物构成螯合物[35],因此有效磷浓度随土壤发育而下降,导致世界范围内有效磷浓度低于10 µmol·L−1的土壤广泛存在[6]

    为满足农林业生产需求,集约施用磷肥成为生产经营的主要措施。然而,一般磷肥当季利用率仅为10%~25%,75%~90%的磷被转化固定成植物难以吸收的形态[7],导致磷肥利用率低下。同时,随着经济增长和人口剧增,过度开采和不合理的磷肥经营管理造成磷矿资源储备耗竭、水体磷素增加,对生态环境造成严重威胁[810]。近年来,关于土壤磷素循环研究的不断深入,揭示了植物进化形成的一系列复杂适应性策略[1112],并发现土壤功能微生物对土壤磷库活化和植物营养健康有重要影响[1314]。丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和溶磷细菌(phosphate-solubilizing bacteria,PSB)在自然界土壤中普遍存在。研究发现,丛枝菌根真菌和溶磷细菌可以溶解难溶性无机磷、矿化有机磷,两者直接参与土壤磷素活化与植物磷素获取过程,与土壤、植物之间联系密切[1516],在维持土壤磷养分有效性和生态系统功能中发挥重要作用[1618]。鉴于此,为开发可持续土壤磷素高效利用途径,围绕植物-丛枝菌根真菌-溶磷细菌共生关系,详述了丛枝菌根真菌与溶磷细菌在植物磷养分吸收中的作用,强调了植物-丛枝菌根真菌-溶磷细菌互作增效对土壤磷素调动的途径和机制。

    维管植物在长期进化过程中形成了多样化的根功能属性以提高对土壤磷资源的获取,维持体内磷稳态,包括根形态和根构型属性的响应[1112, 1920]、根分泌物属性的调节[3, 12]、磷素分配与再利用的调控[2123]以及与菌根形成紧密的共生关系[24]。其中,光合碳投入是植物根系功能属性变化以促进高效获取地下资源的重要驱动力[25]。低磷条件下,植物光合产物优先向根系分配,部分作用于根系生长及其生理活动,促进根冠比增加[20, 2627],改变根系特征性状,表现为根系比根长与侧根数量的增加[19, 28]、根系生长角度的调整[11, 19]及根毛长度与密度的改变[11, 29],从而提高根系与土壤界面的接触面积。拟南芥Arabidopsis thaliana在低磷水平下通过抑制主根生长,增加根系分支数量,促进侧根伸长生长,形成在土壤浅层分布、高度分支的根系结构[19]。在4种不同根系表型的菜豆Phaseolus vulgaris中根毛与根系生长角度协同影响植物的磷素吸收,低磷胁迫下根系表现为长且密的根毛形态与浅根型结构,可显著促进植株生物量的积累与磷素的吸收[29]。WEN等[28]对16种不同作物分析发现:根系直径与物种的磷养分获取策略关系密切,低磷环境中根系直径较细的物种通过促进根系分支、增加根系比根长和一级根系长度获取磷素,而粗根物种主要依靠丛枝菌根真菌的高定殖率来弥补低磷环境下根系形态表现的缺陷。因此,不同物种、基因型以及根系功能性状类型对磷胁迫的响应表现出不同的可塑性。

    植物光合产物的另一流向则是以根系分泌物的形式释放到根际环境中,包括高分子量化合物酸性磷酸酶(APase)和低分子量化合物酚类、羧酸盐以及糖类等多种物质[12, 3035]。WANG等[30]对拟南芥的研究表明:磷饥饿诱导根系分泌的APases可以释放到根际环境或滞留在根表面,通过水解有机磷,提高有效磷浓度。JUSZCZUK等[31]研究了长期磷酸盐饥饿对豆科Leguminosae植物根系酚类物质分泌量的影响,结果表明:缺磷植株根系酚类物质的分泌量是对照植株根系的5倍。HU等[32]也发现:儿茶酚、原儿茶酸、咖啡酸等酚类物质能够影响土壤磷有效性。与有机磷的矿化不同,根系释放的酚类物质主要通过与土壤中含磷矿物(如闭蓄态磷,O-P)结合,促进磷的解吸[35]。根系低分子量羧酸盐的分泌是植物磷吸收的重要策略,羧酸盐通过络合金属阳离子,并与磷竞争吸附位点的方式,从磷酸铁盐(Fe-P)、磷酸铝盐(Al-P)、闭蓄态磷素(O-P)等难溶性磷酸盐中释放有效磷[35]。ALMEIDA等[34]对3种禾本科Gramineae植物进行研究发现:磷饥饿均会诱导根系柠檬酸盐、异柠檬酸盐和苹果酸盐分泌的增加。TOUHAMI等[12]在禾本科和豆科植物的分泌物中则鉴定到更多种类,包括柠檬酸盐、苹果酸盐、丙二酸盐、乙酸盐、丙酮酸盐、乳酸盐、琥珀酸盐、富马酸盐和莽草酸盐。伴随着羧酸阴离子分泌的同时,根系也会释放氢离子(H+)对根际进行酸化[3],与羧酸阴离子协同作用于土壤难溶性磷酸盐[35],最终促进植物对磷素的吸收利用。此外,低磷导致植物体内APase、RNA酶(RNase)、磷酸烯醇式丙酮酸羧化酶(PEPC)、β-葡萄糖苷酶、ADPG焦磷酸化酶(AGPase)等内源酶促反应加剧[3639],改变植物磷养分和碳同化物质的“库—源—流”格局[20, 22, 3940],调控胁迫条件下根系系统发育[41]。根系主动或被动释放物质进入根际改变了根际土壤的物理、化学和生物学性质,使根际成为植物-微生物、微生物-微生物互作最活跃的热点区域[42],但根系分泌物的种类、分泌量与物种、基因型及植物的营养状况密切相关[34]

    菌根是自然界最重要的生物互作体系之一,丛枝菌根真菌占整个菌根群体的72%以上[43]。目前已经报道发现的丛枝菌根真菌接近300种[44],其中球囊霉科Glomeraceae为优势丛枝菌根真菌[45]。丛枝菌根真菌通过增加根圈范围[46]、表达高亲和力磷转运蛋白[47]、提高土壤磷酸酶活性[48]、分泌有机酸和糖类物质[4951]等多种方式直接或间接作用于土壤特征及微生物类群,与植物养分吸收利用关系密切。

    从资源经济角度看,宿主植物为共生关系的主导者,向丛枝菌根真菌提供满足生存、生长的碳水化合物,作为交换,丛枝菌根真菌向寄主植物提供矿质养分(如磷)[14],其资源交换强度随各自资源分配状态而调整[52],从而实现共生关系的双向控制。同时,丛枝菌根真菌、宿主植物的遗传背景以及土壤磷有效性影响植物-丛枝菌根真菌相互作用的成本与收益[5356]

    菌根植物可以通过2种途径从土壤中获取磷素,即通过根表皮细胞和根毛进行吸收的直接途径以及通过丛枝菌根真菌菌丝进行吸收的菌丝途径,同时养分吸收的内部分工更加“社会化”[5558]。由于植物体内外磷酸盐浓度差巨大,直接途径的养分吸收速度慢、碳资源投入大[5559],而丛枝菌根真菌菌丝体存在高亲和力磷酸盐转运系统,并具有诱导植物体内产生高亲和力磷转运蛋白的能力[47, 5556],是磷胁迫条件下植物磷素供应的主要途径[56, 6061]。因此,菌丝途径的低碳成本以及吸收、转运的高效率使其成为植物获取和利用磷素的优势途径。

    菌丝途径中,丛枝菌根真菌通过纤细的菌丝和广泛的分支网络改善宿主植物磷养分状态。外生菌丝在土壤中广泛生长,可延伸到离根表11.7 cm处,进入比根毛更小的土壤孔隙,增加吸收面积[46]。在扩大吸收范围的同时,丛枝菌根真菌菌丝体向菌丝际环境分泌多种有机物。TOLJANDER等[49]通过核磁共振光谱法分析了菌丝分泌液的组成物质,发现菌丝分泌物主要为甲酸、乙酸、葡萄糖和淀粉类似物;而LUTHFIANA等[62]在2种磷水平下收集了明根孢囊霉Rhizophagus clarus和异形根孢囊霉Rhizophagus irregularis的菌丝分泌液,发现除碳水化合物和大量有机酸外,还包括氨基酸、核酸、脂肪酸、植物激素等物质。外生菌丝的H+分泌在体外培养条件下被证实[63],当H+分泌时,菌丝际土壤发生酸化,菌丝际环境pH降低。此外,接种丛枝菌根真菌能够显著提高土壤磷酸酶活性[48, 6465],与有机酸和其他菌丝分泌物共同作用影响菌根际、菌丝际过程,促进土壤有机磷矿化和难溶性磷酸盐(如Fe-P、Al-P、O-P)溶解,并表现出其他促进植物生长的作用[4849, 65]

    菌根植物磷养分吸收的直接途径和菌丝途径相互作用[66],形成了菌根植物的综合磷吸收系统[55]。目前,采用磷的放射性同位素示踪方法[56, 60]解释植物在菌丝途径和直接途径间的平衡选择。磷养分供应充足条件下,丛枝菌根真菌的定殖和生长发育程度较低,直接途径在菌根植物的磷素获取途径中占据优势;磷养分匮乏条件下,丛枝菌根真菌的定殖和生长发育被促进,菌根植物偏好于通过菌丝途径从土壤中获取磷素,但菌丝途径的磷素贡献受到丛枝菌根真菌发育程度、土壤有效磷条件以及物种差异性等因素的影响[5557]。SAWERS等[15]发现:根外菌丝长度与植物磷摄取量相关,并影响菌丝途径的磷素贡献;ZHANG等[55]的研究发现:土壤无机磷供给水平显著影响菌丝途径对植物磷素吸收的贡献率,而地上部磷需求可能决定了植物对2种吸收途径的权衡选择。此外,也有研究表明:植物种类、基因型和丛枝菌根真菌种类的差异也会影响菌丝途径的磷素贡献率[5657, 67],导致不同丛枝菌根真菌-植物组合在植物磷吸收、生长方面的响应具有功能上的差异。

    菌丝途径的磷养分吸收是以公平公正、互惠互利为原则的“贸易交换”过程[25, 68]。丛枝菌根真菌在宿主皮层细胞形成丛枝结构(丛枝周膜-真菌细胞壁-真菌细胞膜)的养分交换场所[57],外生菌丝则以H+-ATP酶为驱动力在土壤界面吸收磷酸盐,经体内转化为多聚磷酸盐后,通过细胞质流动运输至共生界面并释放[24, 57, 69]。作为交换,宿主植物以糖、脂肪酸等形式向真菌提供植株4%~20%的净光合产量[54, 70]

    高共生质量的丛枝菌根真菌-植物共生关系会发生频繁的养分交换行为。丛枝菌根真菌与宿主植物的资源交换由宿主主导,植物通过选择性分配碳资源,主动选择合作伙伴,并以减少根系碳分配的方式对表现不佳的丛枝菌根真菌进行制裁[7172],而丛枝菌根真菌也会选择向提供更多碳水化合物的根系增加养分转移,进而实现稳定的合作关系[52]

    植物-丛枝菌根真菌共生关系的形成是共生体间养分交流的基础,在菌根植物系统性磷响应中,植物信号的释放影响植物-丛枝菌根真菌的合作关系,调控丛枝菌根真菌的发育。研究表明:独脚金内酯在磷缺乏下受到显著诱导,调控地上部生长发育过程的同时,作为根际信号,刺激丛枝菌根真菌的菌丝分支[7375]。SHI等[76]发现:植物-丛枝菌根真菌共生关系的形成需要植物磷饥饿响应转录因子(PHRs)的参与,PHRs通过P1BS元件介导丛枝菌根真菌共生相关基因的表达,进而影响植物-丛枝菌根真菌的共生质量。此外,miR399在菌根植物叶片的表达增加,也被提出作为植物调节丛枝菌根真菌共生的信号分子,但高磷水平下过表达miR399无法恢复丛枝菌根真菌定殖[77],可能还涉及其他机制[57]

    溶磷细菌作为土壤微生物的重要群体,约占土壤细菌总体的1%~50%[17],多属于芽孢杆菌属Bacillus、假单胞菌属Pseudomonas和欧文氏菌属Erwinia,在土壤磷素的生物循环中发挥重要作用[13]。多数研究表明:溶磷细菌对磷酸铁盐(Fe-P)、磷酸铝盐(Al-P)或磷酸钙盐(Ca-P)和磷酸铅盐(Pb-P)等难溶性磷酸盐[7881]具有良好的活化作用。由于其分布状态与群落结构存在显著的区域特异性、时空变异性和根际效应性[18, 8285],不同类群溶磷细菌的溶磷效能、种群分布及其在土壤磷素活化过程中的微生物互作机制可能因环境、宿主变化产生显著差异[8589]

    酸解是难溶性磷酸盐(包括Fe-P、Al-P、Ca-P、Pb-P、O-P等)在土壤中溶解的主要方式。类似于植物和丛枝菌根真菌,细菌也能够分泌释放低分子量有机酸或伴随呼吸、铵根离子(NH4 +)同化释放H+,影响土壤pH[9093],而分泌物的种类、分泌量可能受到菌株类型、基因型的影响。SONG等[94]发现:洋葱伯克霍尔德菌株Burkholderia cepacia DA23释放的有机酸主要为葡萄糖酸;而吕俊等[95]发现:在马尾松Pinus massoniana根际土中分离得到的洋葱伯克霍尔德菌株则大量分泌柠檬酸、丙二酸等有机酸,表明细菌外分泌性有机酸种类存在差异,但有机酸的解离和H+的释放最终均会改变土壤磷素的有效性。

    土壤有机磷的矿化与溶磷细菌外分泌性植酸酶、磷酸酶活性密切相关[9699],大约30%~40%的可培养土壤微生物产生植酸酶并利用植酸(如酵母菌将植酸作为唯一的利用磷源)[9798]。不可培养的微生物中虽然也存在大量植酸酶,但受限于技术手段,目前研究较少[24]。溶磷细菌普遍具有分泌磷酸酶矿化土壤有机磷的能力。HNAMTE等[99]对休耕和耕种2种土壤分离鉴定得到的44株溶磷细菌,庄馥璐等[89]在苹果Malus pumila根际土壤中分离纯化得到的10株溶磷细菌,均能产生磷酸酶,但不同菌株生产磷酸酶能力呈现差异。此外,LIU等 [100]在水稻Oryza sativa根际土壤中分离得到的3种巨大芽孢杆菌Bacillus megaterium均能合成铁载体,螯合Fe3+,表现出解磷能力。因此,溶磷细菌在土壤磷素资源的活化过程中具有相当贡献,而不同菌株种类和基因型差异可能导致溶磷细菌的解磷机制存在差异。

    溶磷细菌作为土壤与植物根系间磷养分转化和转运的调节因子,受土壤环境因素影响的同时,与植物生长和生理代谢之间具有显著交互作用。包括植物根系在内的植物组织器官为土壤微生物提供能量,刺激其生长和代谢活动[101],释放碳水化合物、有机酸以及酶等化合物,为土壤微生物群体提供碳源[102]。相反,溶磷细菌通过合成植物激素[99100, 103],刺激根系生长,增加根系与磷素的接触面积以及细菌与植物根际的接触几率[103105]。KUDOYAROVA等[103]研究表明:溶磷菌株Paenibacillus illinoisensis IB 1087 和 Pseudomonas extremaustralis IB-Ki-13-1A可合成生长素(IAA),刺激根系生长;LIU等[100]发现:溶磷细菌Bacillus megaterium DD-2、Bacillus aryabhattai DD-3和Bacillus subtilis DD-4 均能产生IAA与赤霉素(GA),对植物的根系生长产生积极作用。溶磷细菌合成植物激素刺激根系生长的同时也会刺激根系分泌物的产生,从而为细菌的生长、生存提供更多碳源[104]

    接种溶磷细菌可显著改善植株光合作用,增加碳固定。PANHWAR等[106]发现:水稻接种Bacillus sp.可显著促进水稻光合作用;谯天敏等[107]在核桃Juglans sigllata上接种温哥华假单胞菌Pseudomonas vancouverensis PAN4,发现植株净光合速率和叶绿素含量均会增加,增幅随接种浓度增高而增大。此外,溶磷细菌能够抑制植株病原菌生长,降低病害发生。MENDES等[108]在甘蔗Saccharum officinarum中分离得到的洋葱伯克霍尔德菌株可以产生抗真菌的代谢物。ETMINANI等[109]发现:防御假单胞菌Pseudomonas protegens Pb78对植物病原菌Pseudomonas syringae pv. syringae Pss20 和 Pseudomonas tolaasii Pt18具有强烈的抑制作用。然而,植物与根际微生物的互作过程可能影响根部扩散屏障的形成,作用于根内生细菌群落和根际微生物群落组成[110],从而影响植物中矿质养分的平衡[111]以及胁迫的耐受性[83]

    虽然溶磷细菌和丛枝菌根真菌协调植物养分获取的过程存在一定差异,但溶磷细菌和丛枝菌根真菌在调控植物对土壤磷素的吸收和利用过程中并不孤立[17],存在积极的相互作用。丛枝菌根真菌缺少有机磷矿化相关基因,依赖溶磷细菌从有机复合物中释放磷素[112113],而溶磷细菌的种类及丰度影响土壤有机磷库的矿化进程,可能决定了丛枝菌根真菌对土壤有机磷库的磷素获取能力[24, 113114]。与根际微生物群落不同,丛枝菌根真菌可能具有高效溶磷菌株筛选的潜力,菌丝际菌群更具独特性、功能性[51]。NUCCIO等[115]通过根室和菌丝室分隔的双室培养系统发现:厚壁菌门Firmicutes类群对何氏球囊霉Glomus hoi有积极响应,而放线菌门Actinobacteria和丛毛单胞菌科Comamonadaceae类群对何氏球囊霉呈消极反应;ANDRADE等[116]对球囊霉属Glomus丛枝菌根真菌的菌丝际菌群鉴定发现:菌丝际菌群以芽孢杆菌属和节杆菌属Arthrobacter为主,根际以假单胞菌属为主,且不同丛枝菌根真菌处理菌丝际群落的多样性和丰度也存在差异;而WANG等[117]发现:在异形根孢囊霉Rhizophagus irregularis菌丝定殖的产碱假单胞菌Pseudomonas alcaligenes能够表现出溶磷功能,可能反映了丛枝菌根真菌菌丝对土壤微生物类群招募的选择性和对资源获取的需求性。

    丛枝菌根真菌为细菌的移动提供物理结构和生存资源。丛枝菌根真菌外生菌丝在土壤中形成广泛的菌丝网络,溶磷细菌可以沿着菌丝表面水膜游动[118]到达根系表面和不同土壤空间,进而改变根际细菌群落[119]。然而由于土壤空间资源有效性时空斑块的存在,细菌群落的建立往往受到资源限制。丛枝菌根真菌通过外生菌丝体分泌植物光合产物,吸引和富集有益微生物[117]。ZHANG等[120]发现:丛枝菌根真菌可以分泌果糖吸引溶磷细菌富集,刺激细菌生长。JIANG等[118]也发现:菌丝分泌物刺激溶磷细菌数目的增加,但也有研究[121]认为:低磷条件下,溶磷细菌活性不受丛枝菌根真菌分泌物的刺激,同时存在磷养分竞争关系。

    丛枝菌根真菌与溶磷细菌间的协同作用介导植物的生长表现[122123]。在南方红豆杉Taxus chinensis var. mairei根系同时接种草木樨中华根瘤菌Sinorhizobium meliloti CHW10B与缩球囊霉Glomus constrictum可以改变根际微生物组的群落结构及丰度,促进南方红豆杉的生长[124];在玉米Zea mays根系接种链霉菌Streptomyces sp. W94和异形根孢囊霉时,异形根孢囊霉根外菌丝体的发育被促进,从而促进植株的根系生长和磷的吸收[125];同时,也有研究表明:在红三叶草Trifolium pratense 根系同时接种摩西斗管囊霉Funneliformis mosseae和假单胞菌Pseudomonas sp.时,两者的协同作用不仅对红三叶草的生长和养分吸收无积极影响,而且不利于丛枝菌根真菌侵染植物根系[126]。因此,丛枝菌根真菌与溶磷细菌间的协同作用对植物生长表现的影响具有高度的物种特异性,其中菌根的形成及其作用的发挥可能是影响植物生长表现的主要因素之一。

    菌根辅助菌即对丛枝菌根真菌孢子萌发或菌丝生长发挥积极作用的菌丝际细菌[51, 127],主要包括假单胞菌属、芽孢杆菌属、类芽孢杆菌属 Paenibacillus、红球菌属Rhodococcus和链霉菌属Streptomyces[123, 125, 127130],能够通过促进丛枝菌根真菌的定殖与发育影响植物性能表现,帮助丛枝菌根真菌与植物建立共生关系并将根际转变为菌根际。丛枝菌根真菌定殖过程中菌根辅助菌产生的IAA及其诱导的基因表达有助于菌根定殖期间的表型变化,进而促进定殖[131],而丛枝菌根真菌的成功定殖也会诱导植物激素水平[132]和根系分泌物化学成分[128]的改变,从而引起根系形态、结构的改变,同时在分泌物的数量和质量上影响根际微生物种群,使植物可以通过调节不同过程,灵活地做出响应。

    植物-丛枝菌根真菌-溶磷细菌协同互作进行物质交流以适应养分胁迫环境的同时,也产生一系列信号交流,调控植物和微生物相关基因的表达[74, 133],进而可能推动微生物群落与植物的协同进化。植物、丛枝菌根真菌和溶磷细菌之间以丛枝菌根真菌为连接媒介,通过丛枝界面和菌丝际界面进行微调通信,菌丝际溶磷细菌影响植物-丛枝菌根真菌共生界面丛枝结构上碳-磷交换相关基因(MtPT4、MtHA1、STR)的表达水平[134],菌丝际界面溶磷细菌分泌磷酸酶和葡萄糖酸,矿化有机磷,溶解难溶性无机磷[121, 135],增加丛枝菌根真菌对有效磷的吸收和运输,进一步增强丛枝菌根真菌流向植物的磷通量以及植物向丛枝菌根真菌提供的碳通量。丛枝菌根真菌获得的碳,一部分用于丛枝菌根真菌自身生长发育,另一部分被丛枝菌根真菌外生菌丝转移到菌丝际环境招募溶磷细菌[117],同时形成特定的菌丝际菌群[113]。WANG等[136]在不同气候区实地采样,并利用受控盆栽实验证明了菌丝际微生物组虽然受到环境因素的显著影响,但存在以α变形菌纲Alphaproteobacteria、放线菌门Actinobacteria和γ变形菌纲Gammaproteobacteria为主的核心成员,且相对丰度与磷酸酶活性显著相关。因此,菌丝分泌物因其独特性可能极大地塑造了特定菌丝际细菌的定殖和功能,可能是驱动溶磷细菌与丛枝菌根真菌之间选择的有效信号。同时,丛枝菌根真菌通过提供不稳定碳源增加细菌的数量和活性,其中果糖可能是丛枝菌根真菌-溶磷细菌界面的一种信号分子[121, 135]。溶磷细菌可以通过响应丛枝菌根真菌分泌的果糖调节蛋白质分泌系统,刺激磷酸酶基因的表达以及磷酸酶释放到生长介质中的速率[136]。也有研究表明[137]:溶磷细菌在响应丛枝菌根真菌分泌物的同时也会刺激菌丝表面磷转运蛋白基因的表达,进而促进磷的转运。

    细菌利用自身的信号转导系统响应菌丝分泌物信号。双元信号系统(TCS)是细菌普遍存在且非常保守的感知和响应外界刺激的调节组分,也是重要的代谢调节系统[138]。DUAN等[139]分析了水拉恩氏菌Rahnella aquatilis TCS中参与碳传感和营养传感的16个基因以及参与调控无机、有机磷活化的8个基因的表达水平,发现TCS在识别菌丝分泌物和菌丝际营养信号中起关键作用,有效地调控菌丝际磷素活性。此外,ZHANG等[140]发现:丛枝菌根真菌可能通过刺激参与细菌三羧酸(TCA)循环中柠檬酸合成酶基因(glt A)的表达,影响溶磷细菌三磷酸腺苷的生成水平,进而影响溶磷细菌的代谢。然而,由于基因的遗传冗余、共生体系培养方式及原位分析技术手段的限制,植物-丛枝菌根真菌-溶磷细菌共生体系间的信号交流在很大程度上仍然未知。

    高效的磷养分循环是土壤、植物、微生物多界面互作的系统过程,磷养分胁迫下丛枝菌根真菌与溶磷细菌增强植物磷素获取能力的作用对植物生长和生产至关重要。根系作为植物吸收养分的主要器官,将地上和地下连为一体,控制着植物-土壤-微生物系统间的碳物质流动以在胁迫环境中招募丛枝菌根真菌、溶磷细菌定殖,并在土壤中形成以丛枝菌根真菌为纽带的“植物-根系-根际-丛枝菌根真菌-菌丝际-溶磷细菌”高度动态的根际生命共同体。菌丝际界面内丛枝菌根真菌与溶磷细菌的相互作用,提高了溶磷细菌矿化土壤有机磷和溶解难溶性无机磷的能力,促进了丛枝菌根真菌对土壤有效磷的吸收与转运,进而调控了植物对磷养分的获取、利用过程。现有研究探讨了受控条件下丛枝菌根真菌、溶磷细菌接种对植物生长发育表现的改善,多数研究局限于植物-丛枝菌根真菌、丛枝菌根真菌-溶磷细菌等单一性组合的作用结果,通常忽略了依赖于物种差异性、区域特异性以及时空变异性对植物-丛枝菌根真菌-溶磷细菌相互作用的功能产生的影响。

    未来可以在以下几个方面进行深度研究:①丛枝菌根真菌在植物-丛枝菌根真菌-溶磷细菌互作体系中发挥关键作用,菌根属性是预测和理解生态系统磷养分循环的关键因素[141]。为深入了解菌根属性在植物-丛枝菌根真菌-溶磷细菌互作体系中的作用,破译互作体系作用机制,未来研究应在三者共生体系的基础上关注菌根形态、生理或物候特征与其功能属性的联系。②植物碳投入与收益间的平衡策略对深入理解植物-丛枝菌根真菌-溶磷细菌物质交换机制及其调控途径尤为重要,关注碳驱动下植物-根系-根际-丛枝菌根真菌-菌丝际-溶磷细菌体系的能量流动,分析、鉴定互作体系下植物、丛枝菌根真菌、溶磷细菌代谢物的组成及其潜在功能,对于丰富植物-根系-根际-土壤-微生物多界面互作增效,提高养分效率的相关理论基础具有重要意义。③在自然生态系统中大量的生物或非生物胁迫作用于植物-丛枝菌根真菌-溶磷细菌互作体系,进而影响其功能属性,使得田间条件下植物-丛枝菌根真菌-溶磷细菌互作增效作用机制持续成为一个重大的挑战。未来可深化土壤环境因素、土壤微生物竞争关系、生物菌剂施用对土壤微生物群落构建及其功能组装的影响研究,深入探讨人工合成菌群互作机制等途径,系统剖析可持续农林业生产的根际工程。

  • 图  1  川西云杉人工林与天然林样地树种空间分布

    Figure  1  Spatial distribution of tree species in each plot for plantations and natural forests P. likiangensis var. rubescens

    图  2  川西云杉人工林与天然林样地活立木的空间点格局分析

    Figure  2  Point pattern analysis of standing trees in each plot for plantations and natural forests of P. likiangensis var. rubescens

    图  3  川西云杉人工林与天然林样地活立木的空间关联性

    Figure  3  Spatial association of standing trees in each plot for plantations and natural forests of PL

    表  1  川西云杉人工林与天然林样地基本信息

    Table  1.   General information of each plot for plantation and natural forests of P. likiangensis var. rubescens

    样地号类型林龄/a林分密度/
    (株·hm−2)
    云杉种群密度/
    (株·hm−2)
    海拔/m坡向坡度/(°)郁闭度树种
    AR30-1 人工林 30 1 650 1 625 3 688 东北 23 0.70 PL、BA、BP
    AR30-2 人工林 30 2 125 2 100 3 702 东北 26 0.70
    AR30-3 人工林 30 1 825 1 825 3 692 东北 25 0.60
    AR40-1 人工林 40 2 500 1 800 3 760 东北 38 0.80 PL、BU、SV、PD、CC、BA、SW、AS
    AR40-2 人工林 40 2 625 1 625 3 756 东北 37 0.85
    AR40-3 人工林 40 2 600 1 925 3 728 东北 37 0.85
    AR50-1 人工林 50 1 025 825 3 810 东北 30 0.65 PL、BP、BU、SV、SW、RV
    AR50-2 人工林 50 1 425 1 175 3 790 东北 36 0.80
    AR50-3 人工林 50 2 025 1 325 3 770 东北 38 0.80
    NF-1 天然林 >150 475 50 3 840 东北 6 0.45 PL、BU、RV、AS
    NF-2 天然林 >150 1 100 25 3 842 东北 8 0.50
    NF-3 天然林 >150 1 600 25 3 845 东北 10 0.40
      说明:PL为川西云杉,BA为红桦Betula albosinensis,BP为白桦B. platyphylla,BU为糙皮桦B. utilis,SV为川滇花楸Sorbus     vilmorinii,PD为山杨Populus davidiana,CC为微毛樱桃Cerasus clarofolia,SW为皂柳Salix wallichiana,RV为亮叶杜鹃     Rhododendron vernicosum,AS为鳞皮冷杉Abies squamata
    下载: 导出CSV
  • [1] 张金屯, 孟东平. 芦芽山华北落叶松林不同龄级立木的点格局分析[J]. 生态学报, 2004, 24(1): 35 − 40.

    ZHANG Jintun, MENG Dongping. Spatial pattern analysis of individuals in different age-classes of Larix principis-rupprechtii in Luya mountain reserve, Shanxi, China [J]. Acta Ecol Sin, 2004, 24(1): 35 − 40.
    [2] 许爱云, 许冬梅, 刘金龙, 等. 基于零模型的宁夏荒漠草原优势种群点格局分析[J]. 生态学报, 2020, 40(12): 4180 − 4187.

    XU Aiyun, XU Dongmei, LIU Jinlong, et al. Point pattern analysis of dominant populations based on null models in desert steppe in Ningxia [J]. Acta Ecol Sin, 2020, 40(12): 4180 − 4187.
    [3] 孙伟中, 赵士洞. 长白山北坡椴树阔叶红松林群落主要树种分布格局的研究[J]. 应用生态学报, 1997, 8(2): 119 − 122.

    SUN Weizhong, ZHAO Shidong. Distribution patterns of main tree species in Tilia broadleaf Korean pine forest on northern slope of Changbai Mountain [J]. Chin J Appl Ecol, 1997, 8(2): 119 − 122.
    [4] 池森, 王从军, 黎庆菊, 等. 喀斯特次生林幼树更新空间分布格局及种间关联性[J]. 应用生态学报, 2020, 31(12): 3989 − 3996.

    CHI Sen, WANG Congjun, LI Qingju, et al. Spatial distribution and interspecific associations of regenerating saplings in karst secondary forests [J]. Chin J Appl Ecol, 2020, 31(12): 3989 − 3996.
    [5] 刘珏宏, 高慧, 张丽红, 等. 内蒙古锡林郭勒草原大针茅-克氏针茅群落的种间关联特征分析[J]. 植物生态学报, 2010, 34(9): 1016 − 1024.

    LIU Juehong, GAO Hui, ZHANG Lihong, et al. Comparative analysis of interspecific association within the Stipa grandis-S. krylovii community in typical steppe of Inner Mongolia, China [J]. Chin J Plant Ecol, 2010, 34(9): 1016 − 1024.
    [6] 刘淑燕, 岳永杰, 余新晓, 等. 北京山区刺槐林种群的空间点格局[J]. 东北林业大学学报, 2010, 38(4): 33 − 36.

    LIU Shuyan, YUE Yongjie, YU Xinxiao, et al. Spatial pattern of Robinia pseudoacacia plantation population in mountainous area of Beijing [J]. J Northeast For Univ, 2010, 38(4): 33 − 36.
    [7] 张金屯. 植物种群空间分布的点格局分析[J]. 植物生态学报, 1998, 22(4): 57 − 62.

    ZHANG Jintun. Analysis of spatial point pattern for plant species [J]. Chin J Plant Ecol, 1998, 22(4): 57 − 62.
    [8] RIPLEY B D. Spatial Statistics[M]. New York: Wiley, 1981.
    [9] LOOSMORE N B, FORD E D. Statistical inference using the G or K point pattern spatial statistics [J]. Ecology, 2006, 87(8): 1925 − 1931.
    [10] CHAKRABORTY A, GELF A E, WILSON A M, et al. Point pattern model ling forde graded presence-only dataover large regions [J]. J Royal Stat Soc Ser C, 2011, 60(5): 757 − 776.
    [11] 樊登星, 余新晓. 北京山区栓皮栎林优势种群点格局分析[J]. 生态学报, 2016, 36(2): 318 − 325.

    FAN Dengxing, YU Xinxiao. Spatial point pattern analysis of Quercus variabilis and Pinus tabulaeformis populations in a mountainous area of Beijing [J]. Acta Ecol Sin, 2016, 36(2): 318 − 325.
    [12] 申静霞, 袁秀锦, 李迈和, 等. 土壤温度和水分变化对川西云杉幼苗氮和磷含量的影响[J]. 林业科学, 2019, 55(4): 31 − 41.

    SHEN Jingxia, YUAN Xiujin, LI Maihe, et al. Effects of soil temperature and moisture on nitrogen and phosphorus contents in Picea balfouriana seedlings [J]. Sci Silv Sin, 2019, 55(4): 31 − 41.
    [13] 刘庆, 吴彦, 何海. 中国西南亚高山针叶林的生态学问题[J]. 世界科技研究与发展, 2001, 23(2): 63 − 69.

    LIU Qing, WU Yan, HE Hai. Ecological problems of subalpine coniferous forest in the southwest of China [J]. World Sci-Tech R&D, 2001, 23(2): 63 − 69.
    [14] 刘兴良, 宿以明, 刘世荣, 等. 川西高山林区人工林生态学的研究——人工林分区与分类[J]. 四川林业科技, 2004(1): 1 − 9.

    LIU Xingliang, SU Yiming, LIU Shirong, et al. Studies of ecology of plantations in alpine forest areas of western Sichuan: division and classification of plantations [J]. J Sichuan For Sci Technol, 2004(1): 1 − 9.
    [15] 马姜明, 刘世荣, 史作明, 等. 川西亚高山暗针叶林恢复过程中群落物种组成和多样性的变化[J]. 林业科学, 2007, 47(5): 20 − 26.

    MA Jiangming, LIU Shirong, SHI Zuoming, et al. Changes of species composition and diversity in the restoration process of sub-alpine dark brown coniferous forests in Western Sichuan, China [J]. Sci Silv Sin, 2007, 47(5): 20 − 26.
    [16] 冯秋红, 王毅, 刘兴良, 等. 川西亚高山不同林龄云杉人工林林地水源涵养能力比较研究[J]. 四川林业科技, 2004, 41(1): 5 − 10.

    FENG Qiuhong, WANG Yi, LIU Xingliang, et al. Comparison on ground cover and soil hydrological function of Picea asperata Mast plantation at different ages in the subalpine region of western Sichuan [J]. J Sichuan For Sci Technol, 2004, 41(1): 5 − 10.
    [17] 庞学勇, 刘庆, 刘世全, 等. 川西亚高山云杉人工林土壤质量性状演变[J]. 生态学报, 2004, 24(2): 261 − 267.

    PANG Xueyong, LIU Qing, LIU Shirong, et al. Changes of soil fertility quality properties under subalpine spruce plantation in Western Sichuan [J]. Acta Ecol Sin, 2004, 24(2): 261 − 267.
    [18] RIPLEY B D. Modelling spatial patterns [J]. J Royal Stat Soc Ser B Methodol, 1977, 39(2): 172 − 212.
    [19] DIGGLE P J. Statistical Analysis of Spatial Point Patterns[M]. London: Academic Press, 1983: 140−15.
    [20] 王鑫厅, 侯亚丽, 刘芳, 等. 羊草+大针茅草原退化群落优势种群空间点格局分析[J]. 植物生态学报, 2011, 35(12): 1281 − 1289.

    WABG Xinting, HOU Yali, LIU Fang, et al. Point pattern analysis of dominant populations in a degraded community in Leymus chinensisStipa grandis steppe in Inner Mongolia, China [J]. Chin J Plant Ecol, 2011, 35(12): 1281 − 1289.
    [21] 梁爽, 许涵, 林家怡, 等. 尖峰岭热带山地雨林优势树种白颜树空间分布格局[J]. 植物生态学报, 2014, 38(12): 1273 − 1282.

    LIANG Shuang, XU Han, LIN Jiayi, et al. Spatial distribution pattern of the dominant species Gironniera subaequalis in tropical montane rainforest of Jianfengling, Hainan Ialand, China [J]. Chin J Plant Ecol, 2014, 38(12): 1273 − 1282.
    [22] MOLONEY K A, WIEGAND T, et al. Handbook of Spatial Point-pattern Analysis in Ecology[M]. Boca Ration: CRC Press, 2013: 715﹣715.
    [23] 高福元, 石福习. 基于不同零模型的三江平原沼泽湿地主要物种小尺度点格局分析[J]. 生态学报, 2015, 35(7): 2029 − 2037.

    GAO Fuyuan, SHI Fuxi. Small-scale point pattern analysis based on different null models for detecting spatial patterns of dominant spacies in Sanjiang Plain, China [J]. Acta Ecol Sin, 2015, 35(7): 2029 − 2037.
    [24] 沈志强, 华敏, 丹曲, 等. 藏东南川滇高山栎种群不同生长阶段的空间格局与关联性[J]. 应用生态学报, 2016, 27(2): 387 − 394.

    SHEN Zhiqiang, HUA Min, DAN Qu, et al. Spatial pattern analysis and associations of Quercus aquifolioides population at different growth stages in southeast Tibet, China [J]. Chin J Appl Ecol, 2016, 27(2): 387 − 394.
    [25] 刘旻霞. 亚高寒草甸不同坡向金露梅种群的空间分布格局及空间关联[J]. 应用生态学报, 2017, 28(6): 1817 − 1823.

    LIU Minxia. Spatial distribution and spatial association of Potentilla fruticosa populations on different slope aspects in subalpine meadow [J]. Chin J Appl Ecol, 2017, 28(6): 1817 − 1823.
    [26] 李宪, 廖良宁, 杨海鹏, 等. 杉木与火力楠人工混交林群落空间格局研究[J]. 西南林业大学学报(自然科学), 2020, 40(5): 1 − 9.

    LI Xian, LIAO Liangning, YANG Haipeng, et al. Spatial pattern of artificial mixed forest of Cunninghamia lanceolata and Michelia macclurei [J]. J Westsouth For Univ Nat Sci Ed, 2020, 40(5): 1 − 9.
    [27] 杨君珑, 王辉, 王彬, 等. 子午岭油松林灌木层主要树种的空间分布格局和种间关联性研究[J]. 西北植物学报, 2007, 27(4): 4791 − 4796.

    YANG Junlong, WANG Hui, WANG Bing, et al. Spatial distribution pattern and interspecific association of main tree spacies in Pinus tabuliformis forest in Ziwuling Mountains [J]. Acta Bot Boreal-Occident Sin, 2007, 27(4): 4791 − 4796.
    [28] 胡文强, 黄世能, 李家湘, 等. 南岭石坑崆山顶矮林乔木优势种群的种间关联性[J]. 生态学杂志, 2013, 32(10): 2665 − 2671.

    HU Wenqiang, HUANG Shineng, LI Jiaxiang, et al. Interspecific associations among dominant tree populations in an elfin forest community in Shikengkong of Nanling Mountains, China [J]. Chin J Ecol, 2013, 32(10): 2665 − 2671.
    [29] 刘宪钊, 李卫珍, 王金龙, 等. 2种不同起源华北落叶松林空间点格局及植物多样性[J]. 南京林业大学学报(自然科学版), 2017, 41(6): 102 − 108.

    LIU Xianzhao, LI Weizhen, WANG Jinlong, et al. Spatial distributions and species diversity of two types of Larix principis-rupprechtii [J]. J Nanjing For Univ Nat Sci Ed, 2017, 41(6): 102 − 108.
    [30] 闫海冰, 韩有志, 杨秀清, 等. 华北山地典型天然次生林群落的树种空间分布格局及其关联性[J]. 生态学报, 2010, 30(9): 2311 − 2321.

    YAN Haibing, HAN Youzhi, YANG Xiuqing, et al. Spatial distributions patterns and associations of tree species in typical natural secondary mountain forest communities of Northern China [J]. Acta Ecol Sin, 2010, 30(9): 2311 − 2321.
    [31] 刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, 38(1): 1 − 10.

    LIU Shirong, YANG Yujing, WANG Hui. Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services [J]. Acta Ecol Sin, 2018, 38(1): 1 − 10.
    [32] YANG Jida, ZHANG Zhiming, ZHAXI Dawa, et al. Spatial distribution patterns and intra-specific competition of pine (Pinus yunnanensis) in abandoned farmland under the Sloping Land Conservation Program [J]. Ecol Eng, 2019, 135: 17 − 27.
    [33] 秦燕燕, 蒋斌, 曹秀文, 等. 间伐强度对白龙江林区云杉人工林植物多样性及其更新的影响[J]. 草业科学, 2014, 31(4): 599 − 606.

    QIN Yanyan, JIANG Bin, CAO Xiuwen, et al. Effects of thinning intensity on diversity of undergrowth vegetation and regeneration in artificial spruce forest [J]. Pratacult Sci, 2014, 31(4): 599 − 606.
    [34] 幸福, 包维楷, 庞学勇, 等. 云杉人工纯林中树木个体径向生长过程及林窗疏伐后的释放效应[J]. 应用与环境生物学报, 2013, 19(2): 262 − 271.

    XING Fu, BAO Weikai, PANG Xueyong, et al. Radial growth process of Picea asperata and its response to gap model thinning within the single spruce plantation at the western Sichuan, China [J]. Chin J Appl Environ Biol, 2013, 19(2): 262 − 271.
    [35] QI Lin, YANG Jian, YU Dapao, et al. Responses of regeneration and species coexistence to single-tree selective logging for a temperate mixed forest in eastern Eurasia [J]. Ann For Sci, 2016, 73: 449 − 460.
  • [1] 武秀娟, 奥小平.  吕梁山西侧辽东栎天然林优势种群点格局分析 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240535
    [2] 黄靖涵, 毕华兴, 赵丹阳, 王宁, 刘泽晖, 张荣.  晋西黄土区典型人工林土壤水分的垂直分布特征 . 浙江农林大学学报, 2024, 41(2): 387-395. doi: 10.11833/j.issn.2095-0756.20230228
    [3] 宋思婧, 丁山, 庞春梅, 郑枭, 王通, 余树全.  天目山常绿落叶阔叶混交林细叶青冈种群结构与空间分布格局 . 浙江农林大学学报, 2023, 40(5): 1073-1081. doi: 10.11833/j.issn.2095-0756.20220784
    [4] 曹羚, 金晟康, 叶尔江·拜克吐尔汉, 努尔斯娅·阿不都热苏力, 车畅.  额敏县新疆野苹果种群空间分布格局及其关联性 . 浙江农林大学学报, 2023, 40(2): 390-397. doi: 10.11833/j.issn.2095-0756.20220267
    [5] 詹小豪, 王旭航, 叶诺楠, 吴初平, 袁位高, 伊力塔.  浙江建德典型天然次生林群落主要乔木树种空间分布格局及种间关系 . 浙江农林大学学报, 2021, 38(4): 659-670. doi: 10.11833/j.issn.2095-0756.20200586
    [6] 范忆, 楼一恺, 库伟鹏, 戴其林, 王铮屹, 赵明水, 余树全.  天目山紫楠种群年龄结构与点格局分析 . 浙江农林大学学报, 2020, 37(6): 1027-1035. doi: 10.11833/j.issn.2095-0756.20190631
    [7] 许俊丽, 张桂莲, 张希金, 高志文, 仲启铖, 张亚萍, 宋坤, 达良俊.  上海市人工林土壤理化性质与群落特征的相关性 . 浙江农林大学学报, 2018, 35(6): 1017-1026. doi: 10.11833/j.issn.2095-0756.2018.06.004
    [8] 孙宇晗, 王士博, 王润涵, 郑小雨, 闫飞.  利用Voronoi图评价油松人工林空间结构 . 浙江农林大学学报, 2018, 35(5): 877-884. doi: 10.11833/j.issn.2095-0756.2018.05.012
    [9] 郑泽睿, 施拥军, 周国模, 陈婷, 杨一, 裴晶晶.  毛竹碳汇林栽植方式在成林初期对空间分布格局变化特征的影响 . 浙江农林大学学报, 2017, 34(3): 395-405. doi: 10.11833/j.issn.2095-0756.2017.03.003
    [10] 汪洋, 闵水发, 江雄波, 郑德国, 宋丛文, 章定青, 付秋生, 陈文学.  红椿天然林优树选择 . 浙江农林大学学报, 2016, 33(5): 841-848. doi: 10.11833/j.issn.2095-0756.2016.05.016
    [11] 王群, 张金池, 田月亮, 叶立新, 刘胜龙.  浙江凤阳山天然混交林林分空间结构分析 . 浙江农林大学学报, 2012, 29(6): 875-882. doi: 10.11833/j.issn.2095-0756.2012.06.011
    [12] 杨子清, 陈平留, 刘健, 余坤勇, 廖晓丽, 游浩辰, 龚从宏.  杉木人工林空间分布格局时空变化分析 . 浙江农林大学学报, 2012, 29(3): 374-382. doi: 10.11833/j.issn.2095-0756.2012.03.008
    [13] 张春英, 张春玲, 林晓侠, 胡赛强, 何春玲, 葛新驰.  武夷山自然保护区植被景观类型空间关联性的多尺度效应 . 浙江农林大学学报, 2011, 28(6): 863-869. doi: 10.11833/j.issn.2095-0756.2011.06.005
    [14] 汪平, 贾黎明, 李效文, 李江婧.  北京西山地区侧柏游憩林群落结构及植物多样性 . 浙江农林大学学报, 2010, 27(4): 565-571. doi: 10.11833/j.issn.2095-0756.2010.04.015
    [15] 彭建松, 柴勇, 孟广涛, 方向京, 李贵祥, 和丽萍.  云南金沙江流域云南松天然林林隙特征 . 浙江农林大学学报, 2005, 22(1): 50-55.
    [16] 刘春华.  福建青冈天然林和人工林群落特征及生长的比较 . 浙江农林大学学报, 2005, 22(1): 56-60.
    [17] 曹光球, 林思祖, 曹子林, 丁?.  半天然杉阔混交林杉木及其伴生树种种群空间格局 . 浙江农林大学学报, 2002, 19(2): 148-152.
    [18] 林金国, 许春锦, 陈慈禄, 张文富.  格氏栲人工林和天然林木材物理力学性质的比较 . 浙江农林大学学报, 1999, 16(4): 397-400.
    [19] 陈美高.  天然米槠林皆伐炼山后栽人工林植物区系组成变化* . 浙江农林大学学报, 1997, 14(2): 147-150.
    [20] 陶涛, 光太俊, 黄庆丰, 唐雪海, 欧强新, 刘华.  天马国家级自然保护区落叶阔叶林主要树种空间分布格局及其关联性 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240486
  • 期刊类型引用(4)

    1. 冯菲,陈静,徐宏光,胡虹,马焕,李延,解复红. 解磷微生物在可持续农业中的研究及应用进展. 河南科学. 2025(01): 129-136 . 百度学术
    2. 王国炜,史利桦,崔冬明,王坤光,豆哲超,马静,迟志广,匡家灵,左元梅. 微生物铁载体对南方土壤中铁和磷的协同活化及促进小白菜生长的效应和机制. 中国农业大学学报. 2025(06): 26-35 . 百度学术
    3. 骆争荣,郑伟成,唐战胜,蔡臣臣,陈旭波,郑子洪. 浙江九龙山香果树生境土壤微生物多样性及其影响因素. 浙江农林大学学报. 2024(05): 1013-1023 . 本站查看
    4. 黄活志,刘洋,陈阿,陈康,王秀荣. 接种丛枝菌根真菌促进磷高效基因型大豆生长和磷吸收. 植物营养与肥料学报. 2024(12): 2354-2365 . 百度学术

    其他类型引用(1)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210433

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/3/495

图(3) / 表(1)
计量
  • 文章访问数:  1164
  • HTML全文浏览量:  266
  • PDF下载量:  105
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-06-17
  • 修回日期:  2021-11-22
  • 录用日期:  2021-11-29
  • 网络出版日期:  2022-01-19
  • 刊出日期:  2022-05-23

川西云杉人工林与天然林群落空间分布格局及种间关联性

doi: 10.11833/j.issn.2095-0756.20210433
    基金项目:  国家重点研发计划项目(2017YFC0505001)
    作者简介:

    金亚宁(ORCID: 0000-0003-0192-008X),从事森林生态学研究。E-mail: 2403653966@qq.com

    通信作者: 石松林(ORCID: 0000-0003-2647-045X ),讲师,博士,从事植物分类学、植物生态学与区域生态学研究。E-mail: shisonglin17@cdut.edu.cn
  • 中图分类号: S754

摘要:   目的  随着国家退耕还林工程的实施,川西云杉Picea likiangensis var. rubescens人工林面积和蓄积量不断增长,已成为川西地区森林资源的重要组成部分。本研究分析道孚县川西云杉人工林与天然林活立木空间分布格局特征及种间关联性差异,以揭示人工林群落动态变化及演替规律。  方法  采用典型样方法设置12块固定样地,测量每株活立木中心位置坐标、胸径、树高和冠幅等,运用点格局分析中的单变量Ripley’s L(t)函数和双变量Ripley’s L12(t)函数分别分析人工林与天然林群落的空间分布格局和群落中树种间的空间关联性。  结果  ①随着恢复年限的增加,人工林群落内川西云杉种群密度呈下降趋势,而群落物种数逐渐增加;②人工林群落中活立木空间分布格局总体上表现为随机分布,而天然林内活立木空间分布以聚集分布为主;③人工林中川西云杉与其他阔叶树种无空间关联性,而天然林群落内主要树种间关联性在小尺度范围上呈不相关,在大尺度上表现为负相关。  结论  经过50 a人工恢复后,川西云杉人工林与天然林在群落空间分布格局和种间关联性方面仍然存在一定的差异,生态恢复进程较慢。建议采取适当间伐与种植天然林优势树种相结合的方式,优化改造人工林结构,从而加快人工林向天然林群落演替进程。图3表1参35

English Abstract

高宁, 邢意警, 熊瑞, 等. 丛枝菌根真菌和溶磷细菌协调植物获取磷素的机制[J]. 浙江农林大学学报, 2023, 40(6): 1167-1180. DOI: 10.11833/j.issn.2095-0756.20220765
引用本文: 金亚宁, 管增艳, 石松林, 等. 川西云杉人工林与天然林群落空间分布格局及种间关联性[J]. 浙江农林大学学报, 2022, 39(3): 495-504. DOI: 10.11833/j.issn.2095-0756.20210433
GAO Ning, XING Yijing, XIONG Rui, et al. Mechanisms of plant P acquisition coordinated by arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1167-1180. DOI: 10.11833/j.issn.2095-0756.20220765
Citation: JIN Yaning, GUAN Zengyan, SHI Songlin, et al. Spatial distribution pattern and interspecific correlation between plantation and natural forest of Picea likiangensis var. rubescens in western Sichuan, China[J]. Journal of Zhejiang A&F University, 2022, 39(3): 495-504. DOI: 10.11833/j.issn.2095-0756.20210433
  • 植物空间格局分析是研究植物群落特征、种内与种间关系及与环境关系的一种重要方法[1],被广泛用于群落动态变化研究,有利于揭示群落形成、演替和发展的内在机制[2]。空间分布格局类型主要有随机分布、均匀分布和聚集分布[1]。种群空间格局依赖于一定的空间尺度,可能在小尺度上表现为聚集分布,在大尺度上为随机分布或均匀分布[3-4]。空间关联性是植物群落特征的重要体现,有助于理解群落构建和演替动态过程[4]。空间关联性通常可分为空间正相关、负相关和无空间相关关系,可以反映群落内种间及种内相互作用关系[5]。植物空间格局的分析方法较多,传统的空间格局分析方法是基于单一尺度的若干个植物样方来研究植物种群的空间分布格局,只能认识到特定尺度上的空间分布格局[3-7]。RIPLEY[8]在1977年提出了使用K(t)函数分析种群的空间分布格局方法。随后,在K(t)函数的基础上又相继发展了O-ring函数、G(t)函数和Lest(t)函数[9-10],克服了单一尺度下空间分布格局方法的不足,现已被广泛用于研究不同空间尺度下群落空间分布格局以及种内与种间关系[11]

    川西云杉Picea likiangensis var. rubescens林主要分布在青藏高原东缘海拔3 000~4 100 m的区域,是中国西南地区亚高山针叶林的重要组成部分,在固碳、涵养水源和保护生物多样性等方面发挥着多种生态功能,是青藏高原生态安全屏障区[12-13]。20世纪40年代以来,川西云杉林遭受大面积砍伐和破坏,区域森林生态系统严重退化[14]。由于区域环境条件较为恶劣、自然恢复效果缓慢,森林生态恢复方式主要采用人工造林。从20世纪60年代开始,在青藏高原东缘亚高山区域陆续开展了人工造林工程,造林树种以川西云杉为主,形成了大面积的川西云杉人工林[15]。目前,关于川西云杉人工林的研究多集中在群落物种多样性、水源涵养和土壤质量等方面[16-18],对川西云杉人工林群落空间分布格局及种间关联性的研究鲜有报道。因此,本研究以川西云杉人工林为研究对象,比较分析不同林龄的人工林与天然林群落空间格局及种间关联性的差异,有助于认识人工林群落动态变化和演替规律,为青藏高原东缘亚高山采伐迹地的生态恢复及人工林结构的优化与改造提供科学依据。

    • 研究区位于四川省甘孜藏族自治州道孚县木茹乡林场,30°32′~32°21′N,100°32′~101°44′E,海拔3 600~3 900 m,地处青藏高原东缘。该区域属于典型的寒温带大陆性高原季风气候,冬季寒冷干燥,夏季温暖湿润,昼夜温差较大。依据国家气象台站(道孚县)数据(1957—2019年),年平均气温为8.1 ℃,最冷月和最暖月分别为1月和7月,平均气温分别为−1.9和16.0 ℃;年降水量为614.0 mm,85%的降水量集中在5—9月。土壤类型以山地棕壤和山地褐土为主。区域亚高山针叶林以川西云杉林、鳞皮冷杉Abies squamata林和红杉Larix potaninii林为主,分布海拔为3 200~4 200 m。人工造林以川西云杉为主要树种,栽种时采用5~7年生实生苗,初始密度为3 750株·hm−2

    • 在川西云杉人工林和天然林集中分布区,分别选择林龄30、40和50 a的人工林以及天然林,各设置3个20 m×20 m的样地,共12个样地(表1)。采用全球定位系统(GPS)记录每个样地的经纬度和海拔,使用地质罗盘记录样地的坡向和坡度。对每个样地内所有胸径≥1 cm的乔木树种个体进行逐木调查,记录每个个体的空间位置坐标,以西南角为坐标原点,并测量其胸径、高度、枝下高和冠幅等。依据野外调查数据,林龄30、40和50 a的人工林样地中保留的川西云杉平均株数分别为(66±1)、(60±5)和(44±7) 株;天然林样地内乔木平均株数为(42±18)株。

      表 1  川西云杉人工林与天然林样地基本信息

      Table 1.  General information of each plot for plantation and natural forests of P. likiangensis var. rubescens

      样地号类型林龄/a林分密度/
      (株·hm−2)
      云杉种群密度/
      (株·hm−2)
      海拔/m坡向坡度/(°)郁闭度树种
      AR30-1 人工林 30 1 650 1 625 3 688 东北 23 0.70 PL、BA、BP
      AR30-2 人工林 30 2 125 2 100 3 702 东北 26 0.70
      AR30-3 人工林 30 1 825 1 825 3 692 东北 25 0.60
      AR40-1 人工林 40 2 500 1 800 3 760 东北 38 0.80 PL、BU、SV、PD、CC、BA、SW、AS
      AR40-2 人工林 40 2 625 1 625 3 756 东北 37 0.85
      AR40-3 人工林 40 2 600 1 925 3 728 东北 37 0.85
      AR50-1 人工林 50 1 025 825 3 810 东北 30 0.65 PL、BP、BU、SV、SW、RV
      AR50-2 人工林 50 1 425 1 175 3 790 东北 36 0.80
      AR50-3 人工林 50 2 025 1 325 3 770 东北 38 0.80
      NF-1 天然林 >150 475 50 3 840 东北 6 0.45 PL、BU、RV、AS
      NF-2 天然林 >150 1 100 25 3 842 东北 8 0.50
      NF-3 天然林 >150 1 600 25 3 845 东北 10 0.40
        说明:PL为川西云杉,BA为红桦Betula albosinensis,BP为白桦B. platyphylla,BU为糙皮桦B. utilis,SV为川滇花楸Sorbus     vilmorinii,PD为山杨Populus davidiana,CC为微毛樱桃Cerasus clarofolia,SW为皂柳Salix wallichiana,RV为亮叶杜鹃     Rhododendron vernicosum,AS为鳞皮冷杉Abies squamata
    • 空间点格局分析最初由RIPLEY[18]提出,后经DIGGLE等[19]发展,现已广泛应用于植物群落空间分布以及种内与种间空间关联性的研究中。Ripley’s K(t)函数公式如下:

      $$ {K}{\left(t\right)}=\frac{A}{{n}^{2}}\sum\limits_{i = 1}^n \sum\limits_{j = 1}^n \frac{{I}_{t}\left({u}_{ij}\right)}{{w}_{ij}}\left(i\ne j\right) 。 $$

      其中:A是样地面积,n为样地所有个体总数,t为空间尺度,可以是>0 的任何值,$ {u}_{ij} $是第i株与j株树木之间的距离,$ {I}_{t}\left({u}_{ij}\right) $是指示函数。当$ {u}_{ij} $t时,$ {I}_{t}\left({u}_{ij}\right) $=1,当$ {u}_{ij} $t时,$ {I}_{t}\left({u}_{ij}\right) $=0;$ {w}_{ij} $为权重值,用于边缘校正。Ripley’s K(t)函数是一个累积分布函数,在应用过程中常因为累积效应的存在影响结果的准确性[11],后在Ripley’s K(t)函数的基础上发展形成了L(t)函数。

      空间分布格局分析采用单变量L(t)函数,其公式为:

      $$ {L}{\left(t\right)}=\sqrt{\frac{{K}{\left(t\right)}}{\text{π} }-t} 。 $$

      本研究空间尺度为0~5 m,利用R语言“spatial”程序包中Monte Carlo拟合检验,假设个体分布符合泊松分布,样方检验的零假设是完全空间随机零假设(complete spatial randomness, CSR),通过模拟泊松分布和99次独立模拟得到的点过程,计算估计L函数,获得模拟曲线的逐点上下包络。L(t)值位于上包迹线以上为聚集分布,在上下包迹线之间为随机分布,在下包迹线以下为均匀分布。

    • 空间关联性运用双变量点格局分析方法,即L12(t)函数,其公式如下:

      $$ {K}_{12}\left(t\right)=\frac{A}{{n}_{1}{n}_{2}}\sum\limits_{i = 1}^n \sum\limits_{j = 1}^n\frac{{I}_{t}\left({u}_{ij}\right)}{{w}_{ij}}\left(i\ne j\right) \text{;} $$
      $$ {L}_{12}\left(t\right)=\sqrt{\frac{{K}_{12}\left(t\right)}{{\text{π}} }-t} 。 $$

      其中:n1n2分别为样地内川西云杉和其他乔木植株的总数。 对于双变量点格局分析来说,$ {L}_{12}{\left(t\right)} $值若位于上下包迹线内,则种间关系为不相关;位于上包迹线之上,为正相关,位于下包迹线以下,为负相关。

    • 空间格局分析较为复杂,往往需要针对不同的问题假设选择不同的零模型[20]。为了认识人工林与天然林群落中活立木的空间分布状况以及样地内种间关联性,本研究选择最常用的零模型——完全空间随机模型(CSR),该模型主要是假设研究样地中各个体间不受其他生物或非生物的影响,相互独立,即研究个体在研究区域内的密度是恒定的,且个体分布符合泊松分布[21-24]

    • 所有数据处理分析、图形制作等均通过R语言实现,点格局分析采用“Spatstat”程序包完成。

    • 表1可见:人工林群落主要有川西云杉、红桦、白桦、糙皮桦、川滇花楸、山杨、微毛樱桃和皂柳等树种组成,天然林群落主要有鳞皮冷杉、川西云杉、糙皮桦和亮叶杜鹃等树种组成,可见人工林与天然林群落树种组成存在差异。在人工林中林龄为30 a样地内所含树种最少,仅有3种,而林龄为40 a样地内所含树种最多,达8种。总体上,随着林龄的增加,人工林样地内树种数量呈先增加后减少的趋势,物种组成整体上逐渐丰富,川西云杉种群密度呈下降趋势。

      分析人工林和天然林群落内优势树种的空间分布发现(图1):人工林与天然林群落树种组成和结构存在明显差异,天然林除了鳞皮冷杉和川西云杉外,其他阔叶树种的个体数量较多,人工林川西云杉种群密度明显高于天然林;在人工林样地中,川西云杉林分密度差异较大,林龄为30 a的人工林样地内川西云杉植株密度最大,林龄为50 a的人工林样地内川西云杉植株密度最小,表明随着林龄增加,开始出现林木自疏现象;同时,在人工林样地中,林龄为30 a的人工林群落内几乎没有其他树种分布,而林龄为40和50 a人工林群落内有大量其他阔叶树种分布,表明随着林龄增加,人工林内的树种多样性呈现增加趋势。

      图  1  川西云杉人工林与天然林样地树种空间分布

      Figure 1.  Spatial distribution of tree species in each plot for plantations and natural forests P. likiangensis var. rubescens

    • 图2所示:不同空间尺度下,川西云杉人工林各样地之间个体分布格局差异相对较小,林龄为30 a的人工林中活立木在所有空间尺度上均表现为随机分布格局,随机分布程度随着空间尺度增大而增强;林龄40 a的人工林中,AR40-1、AR40-3样地活立木在所有尺度上均为随机分布,AR40-2样地中活立木在0~1.0 m空间尺度内呈聚集分布,在大于1.0 m的空间范围内呈随机分布;林龄40 a的人工林中活立木在所有尺度上为随机分布。在天然林中,NF-1样地活立木在所有尺度上为随机分布,NF-2样地活立木在1.3~2.6 m范围内呈随机分布,在0~1.3 m和2.6~5.0 m空间尺度下为聚集分布,NF-3样地在研究范围内均为聚集分布。

      图  2  川西云杉人工林与天然林样地活立木的空间点格局分析

      Figure 2.  Point pattern analysis of standing trees in each plot for plantations and natural forests of P. likiangensis var. rubescens

    • 由于林龄为30 a的人工林以川西云杉为主,其他树种仅有2株,所以本研究中不分析AR30-1、AR30-2、AR30-3共3块样地物种间的空间关联性。对林龄为40和50 a的人工林以及天然林样地物种间的空间关联性进行分析(图3),结果表明:人工林和天然林群落树种空间关联性存在明显差异,所有人工林群落中川西云杉与其他树种间总体上表现为无空间关联性;而天然林样地中鳞皮冷杉与其他树种间的空间关联性变化较大,NF-1样地表现为无空间关联性,NF-2样地在1.8~2.6 m空间尺度上为负相关,其余尺度上为无空间关联性,NF-3样地除在0~2.1 m空间尺度上无空间关联外,其余尺度上均为显著的负相关,并随着空间尺度的增大,负相关程度逐渐增强。

      图  3  川西云杉人工林与天然林样地活立木的空间关联性

      Figure 3.  Spatial association of standing trees in each plot for plantations and natural forests of PL

    • 植物种群的空间分布格局是自身的生物学特性、环境、植物种内和种间相互作用以及人为干扰的共同结果[25-27]。有研究[27-28]表明:种群空间格局的变化表现出种群适应新环境的生存策略及应对机制,利于种群更有效地获取资源。本研究分析了川西云杉人工林与天然林群落中活立木空间分布格局,除AR40-2样地在小尺度上呈聚集分布,大尺度上为随机分布外,其他人工林样地在所有研究尺度上均呈随机分布,而天然林群落空间格局总体上呈聚集分布。刘宪钊等[29]对华北落叶松Larix principis-rupprechtii人工林研究得出,群落空间点格局分布总体表现为小尺度上的聚集分布和中大尺度上的随机分布。闫海冰等[30]对华北山地典型次生林群落进行研究也得出,华北落叶松、云杉(白杄Picea meyeri和青杄Picea wilsonii)、桦木(白桦和红桦)、山杨天然次生林在小尺度上聚集分布,随尺度增加空间格局逐渐表现为随机分布。人工林与天然林群落空间格局的差异可能是因为林分起源不同,人工种植导致人工林具有较大导向性,林分密度和郁闭度均较大,林下更新相对较差,群落以均匀分布为主;而天然林以自然更新为主,受种子传播扩散限制,天然更新的幼树一般聚集生长于母树附近,故种子萌发不均匀可能导致活立木空间格局为聚集分布[26]。同时,树木呈聚集分布,在一定程度上能够相互庇护并以集群形式获取有利资源,提高其生存与竞争能力,有利于维持种群自身稳定[25]。本研究中川西云杉人工林随着恢复年份的增加,栽种的5年生幼苗在生长过程中不断天然更新与自然稀疏,一定程度上削弱了人为导向,同时树木个体对生存空间和养分的需求不断增长,越来越激烈的竞争使得弱势个体不断死亡、淘汰,导致个体越来越倾向于服从随机分布[27]

      种间关联性体现种群在群落中的相互关系,反映其争夺有利资源的能力[31]。在本研究中,人工林样地川西云杉与其他植物间以不相关为主,物种间不存在竞争资源的关系。这可能是人工林中川西云杉种群密度大,其他树种通过种子扩散进入人工林中,多分布在林间空地,因而种间竞争在群落动态中的作用微弱。该区域在前期森林砍伐时,保留的大量腐木、枝丫、叶和树根等腐烂分解后进入土壤,补充大量的营养元素,使人工林保持了可持续利用的资源,种间竞争关系相对弱。天然林样地鳞皮冷杉与其他植物在小尺度上不相关,大尺度上为负相关,这表明天然林树种间在资源及生存空间的争夺中存在较为激烈的竞争关系,这可能由于天然林中物种呈聚集分布,对资源利用的程度较高,树种间竞争关系强烈。

      自从实施退耕还林工程和天然林资源保护工程以来,川西高原人工林面积不断增加,已经成为该区森林资源的重要组成部分,在改善生态环境、调节气候和保护生物多样性等方面扮演着重要角色[15]。然而,目前人工林面临着质量差、林分结构不合理和树种单一等生态问题[32-33]。本研究发现:随着林龄的增加,人工林群落内川西云杉种群密度呈下降趋势,周围天然林中的阔叶树种不断扩散到人工林中,物种组成逐渐丰富,川西云杉与其他阔叶树种无空间关联性,表明了人工林正逐渐向天然林群落演替,但川西云杉人工林与天然林仍然存在一定的差异。有研究[34-35]显示:间伐能够促进云杉人工林的生长、林下更新,提高幼树和幼苗的成活率。针对人工林中活立木种群随机分布和种间无关联性的特性,可以适当间伐一些生长较差的川西云杉植株,为其他阔叶树种进入人工林群落内提供生存空间。同时根据刘世荣等[31]提出的近自然改造的方式,适当种植天然林存在的主要物种,将人工针叶纯林转化为以乡土树种为主的混交林,并抚育人工林中已存在的阔叶树种,丰富物种组成,改善人工林群落结构,从而加快人工林向天然林群落演替进程。

参考文献 (35)

目录

/

返回文章
返回