Turn off MathJax
Article Contents

FAN Qinghua, LIU Xiaojun, LI Peng, ZHANG Yi, REN Zhengyan, ZHANG Huwei, TAO Qingrui, XU Shibin. Characterization and attribution of water-soil-nutrient leaching from red soil under vegetation restoration conditions[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240473
Citation: FAN Qinghua, LIU Xiaojun, LI Peng, ZHANG Yi, REN Zhengyan, ZHANG Huwei, TAO Qingrui, XU Shibin. Characterization and attribution of water-soil-nutrient leaching from red soil under vegetation restoration conditions[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240473

OnlineFirst articles are published online before they appear in a regular issue of the journal. Please find and download the full texts via CNKI.

Characterization and attribution of water-soil-nutrient leaching from red soil under vegetation restoration conditions

doi: 10.11833/j.issn.2095-0756.20240473
  • Received Date: 2024-08-02
  • Accepted Date: 2024-11-01
  • Rev Recd Date: 2024-10-23
  •   Objective  This study aims to investigate the variations of soil nutrients during leaching processes under different vegetation restoration modes in degraded red soil regions and to enrich the understanding of water-soil-nutrient loss patterns and their influencing mechanism.   Method  4 different vegetation restoration modes, named Pinus massoniana pure forest (PM), P. elliottii pure forest (PE), mixed P. massoniana and Schima superba forest (RMS), and mixed P. elliottii and S. superba forest (RES), were taken as the objects of the study. The characteristics of the soil runoff, sediment production, sediment particle changes and nutrient loss during the process of leaching were investigated in four leaching intensities, namely, 60, 90, 120, and 150 mm·h−1 in the red soil vegetation restoration area of Taihe County, Jiangxi Province.   Result  (1) With the increase of leaching intensity, the flow rate and sediment yield of red soil also increased, and the composition and stability characteristics of sediment particles changed significantly. Mean weight diameter (DMW) and >0.250 mm sediment particles (R0.25) increased significantly (P<0.05). PM with low understory vegetation cover had low agglomerate stability under leaching erosion, and soil aggregates in RMS with high vegetation cover had high stability. (2) At a leaching intensity of 150 mm·h−1, the nutrient loss in red soil was significantly higher than that in 60 mm·h−1, but there was no significant difference in nutrient loss in 90 and 120 mm·h−1. Sediment was the main medium for nutrient migration and loss in this study. (3) Nutrient loss in red soil was positively correlated with leaching intensity, runoff yield rate, sediment yield, and R0.25, while negatively correlated with sediment ≤0.053 mm particles. (4) Random forest analysis showed that leaching intensity and runoff rate were the main factors affecting nutrient loss, with contribution rates of 16.33% and 20.91%, respectively.   Conclusion  With the increase of leaching intensity, the runoff and sediment yield significantly increase, and the composition and stability of sediment particles change. Moreover, leaching intensity and runoff rate are the main factors affecting nutrient loss. In the ecological construction of the subtropical degraded red soil zone in China, emphasis should be placed on enhancing the richness of understory vegetation in the vegetation restoration area in order to improve the structure of the forest stand and consolidate the results of management. [Ch, 7 fig. 2 tab. 44 ref.]
  • [1] ZHANG Lei, XU Yimeng, BAI Meixia, ZHOU Yan, QIN Hua, XU Qiufang, CHEN Junhui.  Effects of biochar combined with organic amendments on carbon composition and eco-enzymatic stoichiometry of red soil . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20230468
    [2] LI Peng, LIU Xiaojun, LIU Yuanqiu, TAO Lingjian, FU Xiaobin, MAO Menglei, LI Wenqin, WANG Chen.  Characteristics and influencing factors of soil carbon stocks in different vegetation restoration models in red soil erosion areas . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20230408
    [3] LIANG Chuxin, FAN Tao, CHEN Peiyun.  Stoichiometric characteristics and influencing factors of soil C, N and P in Pinus yunnanensis forests under different restoration modes on rocky desertification slope land in eastern Yunnan . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20220417
    [4] YU Jinzhu, WU Chenchen, JI Haonan, LI Songhao, WU Qifeng, QIN Hua, CHEN Junhui.  Effects of mineral conditioner on the yield of sweet potato and ecoenzymatic stoichiometry in a hilly red soil . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20220487
    [5] AN Xiaonan, WANG Yunqi, LI Yifan.  Effects of simulated acid rain leaching on the litter decomposition of coniferous broad-leaved mixed forest and evergreen broad-leaved forest in Mount Jinyun . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20210350
    [6] ZHANG Ge, WANG Qizhi, HE Yuan, ZENG Qianting, HE Jing, WANG Yong, YANG Jie, ZHENG Jiangkun.  Changes of plant community diversity and environmental interpretation in Beichuan landslide site . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20210188
    [7] DAN Xiaoqian, CHEN Zhaoxiong, CHENG Yi, CAI Zucong, ZHANG Jinbo.  Response of nitrogen transformations to moisture changing in red soil . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20200624
    [8] ZHAO Jing, HAO Mengjie, WANG Qingyu, LIU Meiying.  Distribution characteristics of soil organic carbon storage in photovoltaic power station under different vegetation restoration modes . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20210500
    [9] OU Shengye, DING Li, YU Ninger, WU Shengchun, LIANG Peng.  Application of Bos grunniens waste on nutrient leaching reduction for the desertified soil . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.20190703
    [10] CUI Yanhong, SHI Changqing, SUN Liwen, PENG Xianfeng, ZHANG Yan, ZHAO Tingning.  Vegetation restoration and regeneration of the secondary disaster area in Beichuan after the May 12, 2008 earthquake . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2018.02.004
    [11] YU Fei, SONG Qi, LIU Meihua.  Several topics on wetland seeds bank research . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2014.01.022
    [12] MA Jiawei, HU Yangyong, YE Zhengqian, WANG Xudong, WU Dongtao, 
    SHAN Shengdao, WANG Hailong.  Bamboo char for soil fertility improvement and nutrient uptake,yield,and quality in Brassica chinensis . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2013.05.004
    [13] LI Xiao-jun, ZHANG Ming-ru, ZHANG Li-yang, WU Gang.  Photosynthesis,light-use efficiency and water-use efficiency for woody species in the hilly area of the Taihang Mountains . Journal of Zhejiang A&F University, doi: 10.11833/j.issn.2095-0756.2011.02.002
    [14] WEI Yuan, ZHANG Jin-chi, YU Yuan-chun, YU Li-fei.  Ecological characteristics of soil microbial amount during succession of degraded karst vegetation on the Guizhou Plateau . Journal of Zhejiang A&F University,
    [15] ZHANG Lǜ-qin, ZHANG Ming-kui.  Changes of organic C, N and P pools in red soil in transformation between agricultural land and forestry land . Journal of Zhejiang A&F University,
    [16] CHEN Shuang-lin, HONG You-you, ZHANG De-ming, WU Bo-lin.  Circannual rhythm of young stands structure of Phyllostachys iridescens and Phyllostachys propinqua in red soil area . Journal of Zhejiang A&F University,
    [17] ZHAO Li-jun, LI Ji-yue, ZHU Li-qiong.  A study of application of solid-water in vegetation restoration . Journal of Zhejiang A&F University,
    [18] YU Shu-quan, LI Cui-huan, JIANG Li-yuan, XIE Ji-quan.  Community ecology of secondary vegetation in Qiandao Lake , Zhejiang Province . Journal of Zhejiang A&F University,
    [19] LI Cui-huan, YU Shu-quan, ZHOU Guo-mo.  Review of reserches in restoration of subtropical evergreen broad-leaved forests . Journal of Zhejiang A&F University,
    [20] WANG Bai-po, DAI Wen-sheng, CHENG Xiao-jian, YU Wei-wu, WANG Li-zhong, BAO Li-hong, YAN Rong-bao.  Adaptability of 8 types of commercial trees growing in the hilly regions and their effects on changes of soil nutrient . Journal of Zhejiang A&F University,
  • [1]
    FANG Haiyan, ZHAI Yuyu, LI Chaoyue. Evaluating the impact of soil erosion on soil quality in an agricultural land, northeastern China [J/OL]. Scientific Reports, 2024, 14( 1): 15629[2024-07-02]. doi: 10.1038/s41598-024-65646-5.
    [2]
    ZHAO Lixiang, GUO Zhonglu, NIE Xiaofei, et al. Effects of extreme rainfall events on runoff and sediment in the southern red soil area: a long series analysis based on the upper the Lianjiang River of Ganjiang River (1984−2020) [J]. Journal of Lake Sciences, 2023, 35(6): 2133 − 2143.
    [3]
    LIU Xiaojun, ZHANG Yi, XIAO Tingqi, et al. Runoff velocity controls soil nitrogen leaching in subtropical restored forest in southern China [J/OL]. Forest Ecology and Management, 2023, 548 : 121412[2024-07-02]. doi: 10.1016/j.foreco.2023.121412.
    [4]
    YADAV D, SINGH D, BABU S, et al. Intensified cropping reduces soil erosion and improves rainfall partitioning and soil properties in the marginal land of the Indian Himalayas [J]. International Soil and Water Conservation Research, 2024, 12(3): 521 − 533.
    [5]
    GAN Fengling, SHI Hailong, GOU Junfei, et al. Responses of soil aggregate stability and soil erosion resistance to different bedrock strata dip and land use types in the karst trough valley of Southwest China [J]. International Soil and Water Conservation Research, 2024, 12(3): 684 − 696.
    [6]
    YANG Ruizhe, YANG Shilong, CHEN Lanlan, et al. Effect of vegetation restoration on soil erosion control and soil carbon and nitrogen dynamics: a meta-analysis [J/OL]. Soil and Tillage Research, 2023, 230 : 105705[2024-07-02]. doi: 10.1016/j.still.2023.105705.
    [7]
    ZHAO Qiguo. Some considerations for present soil and water conservation and ecology security of south China [J] Bulletin of Soil and Water Conservation, 2006, 26 (2): 1 − 8.
    [8]
    WANG G, LI Z, ZHANG J, et al. Loss rules of total nitrogen and total phosphorus in the soils of southwest mountains in Henan Province, China under artificial rainfall [J]. Applied Ecology & Environmental Research, 2019, 17(1): 451 − 561.
    [9]
    ZHOU Peng, TIAN Long, GRAHAM N, et al. Spatial patterns and environmental functions of dissolved organic matter in grassland soils of China [J/OL]. Nature Communications, 2024, 15 (1): 6356[2024-07-02]. doi: 10.1038/s41467-024-50745-8.
    [10]
    CHEN Yang, ZHANG Haidong, YU Dongsheng, et al. Effects of vegetation structure types and rainfall patterns on soil and water loss of understory vegetation in red soil areas of South China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 150 − 157.
    [11]
    HUANG Bowen, ZHA Ruibo, MAO Lanhua, et al. Evolution of soil and water conservation benefits in the process of vegetation restoration on slope of eroded and degraded red soil [J]. Journal of Soil and Water Conservation, 2022, 36(4): 135 − 142.
    [12]
    GAO Jun, SHI Changqing, YANG Jianying, et al. Analysis of spatiotemporal heterogeneity and influencing factors of soil erosion in a typical erosion zone of the southern red soil region, China [J/OL]. Ecological Indicators, 2023, 154 : 110590[2024-07-02]. doi: 10.1016/j.ecolind.2023.110590.
    [13]
    SHEN Yafei, CHENG Ruimei, XIAO Wenfa, et al. Effects of understory removal and thinning on soil aggregation, and organic carbon distribution in Pinus massoniana plantations in the three Gorges Reservoir area [J/OL]. Ecological Indicators, 2021, 123 : 107323[2024-07-02]. doi: 10.1016/j.ecolind.2020.107323.
    [14]
    ZHANG Chenyang, YANG Wei, WANG Ling, et al. Characteristics of aggregate turnover and sediment transport by interrill erosion using rare earth elements in red soil [J]. Acta Pedologica Sinica, 2024, 61(6): 1492 − 1505.
    [15]
    LI Muchun, LI Baiyan, WANG Yunchen. Research progress in urban land use change simulation over the past thirty years [J]. Journal of Ningxia University (Natural of Science Edition), 2024, 45(1): 87 − 96.
    [16]
    DONG Yue, YANG Jinling, ZHA Xiaorui, et al. Nitrate leaching and N accumulation in a typical subtropical red soil with N fertilization [J/OL]. Geoderma, 2022, 407 : 115559[2024-07-02]. doi: 10.1016/j.geoderma.2021.115559.
    [17]
    KE Piaopiao, SI Gaoyue, LUO Yao, et al. Soil nitrogen and sulfur leaching in a subtropical forest at a transition state under decreasing atmospheric deposition [J/OL]. Forests, 2021, 12 (12): 1798[2024-07-02]. doi: 10.3390/f12121798.
    [18]
    RASHMI I, BISWAS A K, KARTIKA K S, et al. Phosphorus leaching through column study to evaluate P movement and vertical distribution in black, red and alluvial soils of India [J]. Journal of the Saudi Society of Agricultural Sciences, 2020, 19(3): 241 − 248.
    [19]
    LI Yanyan, LIU Liangying, WU Chunsheng, et al. δ13C characteristic of soil organic carbon under different vegetation restoration in subtropical red soil region [J]. Journal of Nuclear Agricultural Sciences, 2020, 34 (11): 2561 − 2568.
    [20]
    YAO Xiong, YU Kunyong, WANG Guangyu, et al. Effects of soil erosion and reforestation on soil respiration, organic carbon and nitrogen stocks in an eroded area of southern China [J]. Science of the Total Environment, 2019, 683: 98 − 108.
    [21]
    LIU S, SIX J, ZHANG H X, et al. Integrated aggregate turnover and soil organic carbon sequestration using rare earth oxides and 13C isotope as dual tracers [J/OL]. Geoderma, 2023, 430 : 116313[2024-07-02]. doi: 10.1016/j.geoderma.2022.116313.
    [22]
    HE Song, GONG Yongwei, XIE Peng, et al. Leaching characteristics of nitrogen and phosphorus from green roof growing media based on soil column experiments [J]. China Water & Wastewater, 2022, 38(17): 125 − 130.
    [23]
    ZHANG Ang, ZHAO Xinyi. Changes of precipitation pattern in China: 1961−2010 [J]. Theoretical and Applied Climatology, 2022, 148: 1005 − 1019.
    [24]
    ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils [J]. Soil Science Society of America Journal, 1986, 50(3): 627 − 633.
    [25]
    BAO Shidan. Soil Agrochemical Analysis [M]. Beijing: China Agriculture Press, 2000.
    [26]
    KEMPER W D, ROSENAU R C. Aggregate stability and size distribution [M]//KLUTE A. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. 2nd ed. Madison: Soil Science Society of America, Inc., 1986: 425 − 442.
    [27]
    DAN Xiaoqian, CHEN Zhaoxiong, CHENG Yi, et al. Response of nitrogen transformations to moisture changing in red soil [J]. Journal of Zhejiang A&F University, 2021, 38(5): 896 − 905.
    [28]
    WANG Yafei, YOU Wei, FAN Jun, et al. Effects of subsequent rainfall events with different intensities on runoff and erosion in a coarse soil [J]. Catena, 2018, 170: 100 − 107.
    [29]
    LI Shuang, ZHANG Qiufen, ZHENG Yuexin, et al. Analysis of runoff-sediment scale transfer effect on slope surface of Loess Hilly Region and its influencing factors [J]. Research of Soil and Water Conservation, 2024, 31(4): 1 − 10.
    [30]
    ZHONG Yixun, ZHANG Xiaoming, GAO Chao, et al. Response of runoff and sediment process to rainfall characteristics in bare land plots in southern foot of Dabie Mountain [J]. Journal of Soil and Water Conservation, 2023, 37(4): 132 − 141.
    [31]
    CHEN Tao, ZHOU Lijun, QI Shi, et al. Soil aggregate stability and anti-erodibility of typical forest stands in Huaying mountain area [J]. Journal of Zhejiang A&F University, 2021, 38(6): 1161 − 1169.
    [32]
    ZHANG Xiang, LI Xiao, LIN Jie, et al. Characteristics of soil aggregates and organic carbon in eroded gully in red soil region of Southern China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 115 − 123.
    [33]
    ZHANG Yifei, WANG Ling, XU Ling, et al. Splash erosion characteristics and turnover process of red soil aggretates driven by rainfall [J]. Research of Soil and Water Conservation, 2023, 30(4): 27 − 33, 41.
    [34]
    YANG Yunli, XU Ming, ZHANG Jiao, et al. Characteristics of communities and soil physico-chemical properties of different Pinus massoniana in central Guizhou [J]. Research of Soil and Water Conservation, 2022, 29(1): 119 − 126.
    [35]
    SONG Xiaoyan, ZHANG Danju, ZHANG Jian, et al. Effects of gaps on distribution of soil aggregates and organic carbon in Pinus massoniana plantation [J]. Chinese Journal of Applied Ecology, 2014, 25(11): 3083 − 3090.
    [36]
    HE Hongzao, ZHANG Zhenming, LI Deyan, et al. Soil aggregates, distribution characteristics and organic carbon protection mechanism of Pinus massoniana forests of different ages [J]. Pakistan Journal of Botany, 2022, 54(5): 1803 − 1812.
    [37]
    ZHANG Shuzi, YIN Jianting, REN Qiwen, et al. Effect of dominant species on diversity pattern of neighbor species in coniferous-broadleaved mixed forest in northern Hebei mountains [J]. Scientia Silvae Sinicae, 2022, 58(4): 32 − 39.
    [38]
    HUANG Zhiguang, OUYANG Zhiyun, LI Fengrui, et al. Response of runoff and soil loss to reforestation and rainfall type in red soil region of southern China [J]. Journal of Environmental Sciences, 2010, 22(11): 1765 − 1773.
    [39]
    WANG Ruzhen, WU Hui, SARDANS J, et al. Carbon storage and plant-soil linkages among soil aggregates as affected by nitrogen enrichment and mowing management in a meadow grassland [J]. Plant and Soil, 2020, 457: 407 − 420.
    [40]
    LIN Yuxuan, AI Jianguo, SONG Xinzhang, et al. Effects of simulated nitrogen deposition and phosphorus addition on soil respiration in Chinese fir forest [J]. Journal of Zhejiang A&F University, 2021, 38(3): 494 − 501.
    [41]
    LI Wendan, CHEN Dan, CHENG Jinli, et al. Characteristics and influencing factors of soil particulate and mineral-associated organic carbon in cropland soil across Sichuan Basin [J/OL]. Environmental Science, 2024[2024-07-02]. doi: 10.13227/j.hjkx.202402001.
    [42]
    XIAO Shengsheng, TANG Chongjun, WANG Lingyun, et al. Soil erosion-induced selective transfer of organic carbon in red soil slope field under natural rainfall [J]. Acta Pedologica Sinica, 2017, 54(4): 874 − 884.
    [43]
    NORBERG L, ARONSSON H. Effects of cover crops sown in autumn on N and P leaching [J]. Soil Use and Management, 2020, 36(2): 200 − 211.
    [44]
    SUN Xiaolei, BOL R, KLUMPP E, et al. Organic phosphorus leaching risk from agricultural soils across China [J/OL]. Chemical and Biological Technologies in Agriculture, 2022, 9 : 35[2024-07-02]. doi: 10.1186/s40538-022-00302-6.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(2)

Article views(65) PDF downloads(1) Cited by()

Related
Proportional views

Characterization and attribution of water-soil-nutrient leaching from red soil under vegetation restoration conditions

doi: 10.11833/j.issn.2095-0756.20240473

Abstract:   Objective  This study aims to investigate the variations of soil nutrients during leaching processes under different vegetation restoration modes in degraded red soil regions and to enrich the understanding of water-soil-nutrient loss patterns and their influencing mechanism.   Method  4 different vegetation restoration modes, named Pinus massoniana pure forest (PM), P. elliottii pure forest (PE), mixed P. massoniana and Schima superba forest (RMS), and mixed P. elliottii and S. superba forest (RES), were taken as the objects of the study. The characteristics of the soil runoff, sediment production, sediment particle changes and nutrient loss during the process of leaching were investigated in four leaching intensities, namely, 60, 90, 120, and 150 mm·h−1 in the red soil vegetation restoration area of Taihe County, Jiangxi Province.   Result  (1) With the increase of leaching intensity, the flow rate and sediment yield of red soil also increased, and the composition and stability characteristics of sediment particles changed significantly. Mean weight diameter (DMW) and >0.250 mm sediment particles (R0.25) increased significantly (P<0.05). PM with low understory vegetation cover had low agglomerate stability under leaching erosion, and soil aggregates in RMS with high vegetation cover had high stability. (2) At a leaching intensity of 150 mm·h−1, the nutrient loss in red soil was significantly higher than that in 60 mm·h−1, but there was no significant difference in nutrient loss in 90 and 120 mm·h−1. Sediment was the main medium for nutrient migration and loss in this study. (3) Nutrient loss in red soil was positively correlated with leaching intensity, runoff yield rate, sediment yield, and R0.25, while negatively correlated with sediment ≤0.053 mm particles. (4) Random forest analysis showed that leaching intensity and runoff rate were the main factors affecting nutrient loss, with contribution rates of 16.33% and 20.91%, respectively.   Conclusion  With the increase of leaching intensity, the runoff and sediment yield significantly increase, and the composition and stability of sediment particles change. Moreover, leaching intensity and runoff rate are the main factors affecting nutrient loss. In the ecological construction of the subtropical degraded red soil zone in China, emphasis should be placed on enhancing the richness of understory vegetation in the vegetation restoration area in order to improve the structure of the forest stand and consolidate the results of management. [Ch, 7 fig. 2 tab. 44 ref.]

FAN Qinghua, LIU Xiaojun, LI Peng, ZHANG Yi, REN Zhengyan, ZHANG Huwei, TAO Qingrui, XU Shibin. Characterization and attribution of water-soil-nutrient leaching from red soil under vegetation restoration conditions[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240473
Citation: FAN Qinghua, LIU Xiaojun, LI Peng, ZHANG Yi, REN Zhengyan, ZHANG Huwei, TAO Qingrui, XU Shibin. Characterization and attribution of water-soil-nutrient leaching from red soil under vegetation restoration conditions[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20240473
  • 土壤侵蚀是当今世界最为普遍的生态环境问题之一。土壤侵蚀过程受到诸多因素的影响,存在较大不确定性,进而限制人们对其机理及伴随的养分淋溶流失的认识[1]。中国国土面积广阔,侵蚀类型多样,水力侵蚀占比较高[2]。南方红壤区多丘陵和山地,地势崎岖不平,且属亚热带季风气候,年降雨量充沛,为水力侵蚀提供了有效发生条件[3]。土壤中的有机碳、全氮、全磷是植物生长的关键养分,影响着陆地生态系统的稳定性[4]。水力侵蚀通过雨水冲刷和水流下渗破坏土壤结构,导致土壤表层被剥离,土壤稳定性降低,同时土壤中的碳、氮、磷等养分也随水土流失而迁移损失[5]。养分流失会导致土壤质量退化,威胁粮食安全和生态系统稳定[2]。植被恢复可以减缓水流入渗速度和冲刷强度,是改善土壤理化结构、提高土壤肥力及增强生态系统功能的有效措施,也是应对水力侵蚀的有效手段[6]。但众多植被恢复区缺乏灌草层,地表裸露,致使浅沟侵蚀发育强烈,诸多区域存在“远看青山在,近看水土流”的现象[7]。此外,南方红壤区土壤产流机制主要为蓄满产流,降雨形成的土壤渗透水会携带大量的营养元素迁移到深层土壤,发生淋溶侵蚀[8];或离开陆地生态系统进入水中,使得植物的生长发育受到养分限制,并引发水体富营养化等一系列生态环境问题[9]。因此,明确不同植被恢复条件下水-土-养分淋溶规律,可为红壤区生态修复策略优化提供理论依据。

    相关学者针对中国南方红壤区降雨特征[10]、立地类型[11]、地貌条件[12]、植被结构[13]等开展了大量研究。结果表明:雨强越大、坡度越陡峭、植被覆盖度越少,越容易发生严重的水土流失;侵蚀区红壤团聚体被大量侵蚀,以泥沙颗粒形式被径流搬运到沉积区,导致侵蚀区泥沙颗粒的组成与沉积区团聚体颗粒密切相关[14]。表层土壤在水力的作用下发生破碎、迁移,并伴随着土壤养分的横向移动;在红壤区,诸多植被恢复人工林中,植被的截留作用使得地表径流大量减少,水流通过植物根系大量下渗到深层土壤中,在破坏土壤结构的同时将土壤表层及养分带到地下水中,造成非点源污染[15]。最近的研究表明:亚热带红壤区农田氮素淋溶对地下水质量造成了严重威胁[16],亚热带森林土壤表层氮的过量输出发生在上层土壤,而深层土壤是氮的“净汇”[17]。RASHMI等[18]研究表明:红壤中的可溶性磷随着淋溶次数的增加而逐渐减少。然而,目前对淋溶侵蚀和养分淋失机制的研究较少,特别是在大规模植被恢复背景下,亚热带红壤区的养分纵向迁移过程仍需深入研究。

    江西省吉安市泰和县于1991年开展了大规模的植被恢复[19],栽种10余种针、阔叶树种,为进一步研究植被恢复不同淋溶侵蚀强度下的水-土-养分迁移规律提供了试验基础。本研究以不同植被恢复模式下的表层土壤为对象,通过模拟淋溶实验分析退化红壤在植被恢复条件下的淋溶过程,探讨养分淋失对不同恢复模式、淋溶条件及土壤性质的响应,研究淋溶过程中的径流、泥沙和养分流失规律及成因,以期为该地区水土流失和养分管理及植被恢复模式的优化提供理论支持。

    • 研究区位于江西省吉安市泰和县 (26°27′~26°58′N,114°17′~115°20′E),多山地、丘陵,平均海拔为90 m,第四纪红土母质;属亚热带季风气候,年平均日照时数为1 756.4 h,年平均气温为18.7 ℃,年平均降水量为1 580.6 mm,50%以上全年降水量集中在4—7月上旬。20世纪80年代以前,由于特殊的地理环境和人为破坏,当地土壤侵蚀严重,土地贫瘠[20]。20世纪90年代在该区进行了植被恢复,所选树种有马尾松Pinus massoniana、湿地松P. elliottii、枫香Liquidambar formosana、木荷Schima superba[21]

    • 于2019年7月进行样地选取及样品采集。选取该地区马尾松纯林(PM)、湿地松纯林(PE)、马尾松-木荷混交林(RMS)、湿地松-木荷混交林(RES)等4种植被恢复模式为研究对象。每种植被恢复模式选取5个样地作为重复,各样地设置20 m×20 m样方,去除表层凋落物后,按5点取样法采取0~10、10~20、20~40 cm原状土,共采集60个样品。所有样品均装在铝制样品盒中,并在冷却器中运输至实验室。每个样品的一部分被保留用于土柱淋溶实验。将剩余土样除去根和石块后,风干,并过2 mm筛,用于土壤理化性质测定。使用100 cm3的环刀采集土壤样品,用于测定土壤容重(BD)和含水率。各植被恢复模式土壤基本状况如表1

      植被恢复模式 含水率/% 容重/(g·cm−3) pH 胸径/m 树高/m
      马尾松纯林 11.21±0.96 b 1.41±0.04 a 5.08±0.04 a 11.40±0.75 b 7.39±0.26 a
      湿地松纯林 13.10±1.88 b 1.44±0.08 a 5.06±0.05 a 17.32±2.05 a 8.98±0.74 a
      马尾松-木荷混交林 20.99±3.16 a 1.37±0.33 a 5.05±0.06 a 14.08±0.36 b 8.39±0.33 a
      湿地松-木荷混交林 11.23±0.86 b 1.46±0.07 a 5.15±0.04 a 13.64±0.47 b 8.33±0.63 a
      植被恢复模式 林下植被盖度/% 凋落物密度/(kg·m−2) 林分密度/(株·hm−2) 郁闭度/%
      马尾松纯林 51.00±13.00 b 0.84±0.08 b 1 650±77 a 0.50±0.16 c
      湿地松纯林 38.00±5.00 c 1.06±0.08 ab 825±159 d 0.56±0.04 bc
      马尾松-木荷混交林 71.00±7.00 a 1.01±0.06 ab 1 312±169 b 0.73±0.08 a
      湿地松-木荷混交林 68.00±6.00 a 1.16±0.86 a 1 068±146 c 0.59±0.07 b
        说明:不同小写字母表示不同植被恢复模式的土壤理化性质差异显著(P<0.05)。

      Table 1.  Basic physical and chemical properties of red soil under different vegetation restoration modes in the study area

    • 实验装置如图1所示。实验土柱由内径为10 cm、高为50 cm的聚氯乙烯圆形管制成。在土柱底部放置1块3 cm厚的多孔板,并使用250 g·m−2的土工布作为过滤层,以防止土壤颗粒损失。在过滤层下方设置出水软管。在正式填充之前,将凡士林涂布在管道内壁上,以避免土层与管壁之间的间隙效应,并防止贴壁优先流的发生。采用分层填筑的方法填筑土层。在填筑过程中向每层土层加水,以达到田间自然容重,最终形成40 cm厚的模拟基质土柱。为了使水分均匀分布,减少水分对土柱的干扰,填充后再填充1层直径为3 mm的干净玻璃珠,并在基底与玻璃珠的接触面上布置1层150目尼龙网。基于马氏瓶原理,为了保证入口流速均匀,防止水压变化对入口流速的影响,在立柱上方固定1个入口装置。在土柱的10 cm处,有1个圆形开口,用于收集径流和泥沙[22]

      Figure 1.  Leaching experiment equipment diagram

      根据当地普通侵蚀性暴雨(>72.5 mm·d−1)产生>60 mm径流状况[23],设计4种淋溶强度:60 mm·d−1(低淋溶强度)、90 mm·d−1(中低淋溶强度)、120 mm·d−1(中高淋溶强度)、150 mm·d−1(高淋溶强度),分别代表普通、大、强、超强侵蚀性降雨。在2 h的淋溶实验中,将出口放置在采样软管下,在第5、10、20、30、45、60、90、120 分钟分别收集1次含泥沙的径流样品。静置后,分别分离径流泥沙于量筒和铝盒中,测量径流量和烘干后土样质量。用干筛法和湿筛法测定泥沙颗粒组成;根据Elliott方法将泥沙颗粒筛分为>2.000、2.000~0.250、0.250~0.053和≤0.053 mm (下限排除法)等 4个粒级[24]

    • 土壤有机碳(SOC)采用重铬酸钾-外加热容量法测定;土壤全氮(TN)采用凯氏定氮法测定;土壤全磷(TP)采用钼锑抗法测定;土壤容重(BD)采用环刀法测定;用Phoenix 8000型总有机碳分析仪测定径流中的有机碳、全氮、全磷[25]。采用平均质量直径(DMW,mm)和 >0.250 mm泥沙颗粒质量分数(R0.25)表征泥沙颗粒稳定性。分别采用以下公式计算[26]:${D}_{\mathrm{M}\mathrm{W}}=\displaystyle\sum _{i=1}^{n}\left({x}_{i}{W}_{i}\right) $;${R}_{0.25}=\dfrac{{W}_{R > 0.25}}{{M}_{\mathrm{T}}} $。其中:xi表示粒级颗粒的平均直径(mm);Wi表示粒级颗粒质量所占样品总质量的百分比(%);WR>0.25代表泥沙>0.250 mm泥沙颗粒质量之和;R0.25为>0.250 mm泥沙颗粒质量分数;MT为颗粒的总质量,n代表标准筛数量。

    • 运用Excel 2021初步整理数据, SPSS 27.0进行数据处理, Origin 2023b软件制图。所有图表中显示的数据均为平均值±标准误。运用单因素方差分析(one-way ANOVA)进行不同数据的差异比较。采用Pearson相关性分析研究不同植被恢复条件下红壤的养分淋溶流失特征与径流泥沙的关系。通过R语言rf Permute包进行随机森林(random forest)分析,计算径流、泥沙及泥沙颗粒组成等因子对土壤养分淋溶流失的影响程度。

    • 图2A可知:淋溶初期各植被恢复模式土壤产流率快速上升,达到峰值后呈波动性稳定;土壤产流率、总产流量在不同淋溶强度下存在显著差异(P<0.05),而相同淋溶强度下植被恢复类型对土壤产流率及总产流量没有显著影响(表2)。150 mm·h−1淋溶下,5 min内即有土壤初始产流,快于其他淋溶强度,说明高淋溶强度会减少土壤产流滞后时间。

      Figure 2.  Runoff and sediment production processes of red soil under different leaching intensities

       项目 植被恢复模式 不同淋溶强度下的产流率/(mL·min−1)和产沙率/(g·min−1)
      60 mm·h−1 90 mm·h−1 120 mm·h−1 150 mm·h−1
      产流率/(mL·min−1) 马尾松纯林 1.25±0.10 Ad 1.89±0.15 Ac 2.66±0.23 Ab 3.35±0.18 Aa
      湿地松纯林 1.27±0.10 Ad 1.82±0.16 Ac 2.60±0.23 Ab 3.46±0.20Aa
      马尾松-木荷混交林 1.25±0.10 Ad 1.86±0.16 Ac 2.53±0.23 Ab 3.33±0.14Aa
      湿地松-木荷混交林 1.29±0.11 Ad 1.86±0.17 Ac 2.63±0.23 Ab 3.46±0.16Aa
      产沙率/(g·min−1) 马尾松纯林 1.53±0.19 Ad 2.17±0.31 Ac 2.71±0.35 Ab 3.78±0.45Aa
      湿地松纯林 1.48±0.17 Ad 2.11±0.29 Ac 2.88±0.37 Ab 3.60±0.41Aa
      马尾松-木荷混交林 1.51±0.19 Ad 2.14±0.29 Ac 2.58±0.31 Ab 3.78±0.45Aa
      湿地松-木荷混交林 1.47±0.17 Ad 1.96±0.27 Ac 2.90±0.26 Ab 3.58±0.39Aa
        说明:不同小写字母表示同一植被恢复模式下,不同淋溶强度产流产沙特征差异显著(P<0.05);不同大写字母表示同一淋溶强度下,不同植被恢复模式产流产沙特征差异显著(P<0.05)。

      Table 2.  The characteristics of runoff and sediment yield rates under different vegetation restoration models on red soil

      土壤产沙特征与产流特征类似(图2B)。土壤产流率在第10 分钟达到峰值随后降低,而产沙率在5~10 min内快速上升,于第30 分钟达到峰值。120、150 mm·h−1淋溶下产流率无显著差异,分别为1.85、2.68 mL·min−1;但产沙率表现为150 mm·h−1显著高于120 mm·h−1,分别为2.27、1.63 g·min−1(P<0.05),这说明在不同淋溶强度下,土壤产沙时间滞后于产流时间。本研究中各淋溶强度(从低到高) 下土壤总产流量分别为169.4、257.4、382.1、430.5 mL;总产沙量分别为110.9、163.8、206.7、287.4 g。

    • 淋溶强度变化影响产流产沙的同时,也影响泥沙颗粒组成。淋溶强度增大,红壤各土层团聚体更易以大颗粒形式从原始土层中剥离,各植被恢复模式流失泥沙中>2.000 mm颗粒质量分数平均增加25.45%、≤0.053 mm颗粒质量分数平均减少31.79 %,而2.000~0.250 mm和0.250~0.053 mm泥沙颗粒质量分数变化不显著(图3)。马尾松纯林>2.000 mm泥沙颗粒质量分数(11.24%)在150 mm·h−1淋溶显著低于其他植被恢复模式(P<0.05)(图4A),而马尾松纯林其他粒级颗粒质量分数在150 mm·h−1淋溶与另外3种植被恢复模式无显著差异,这说明马尾松纯林>2.000 mm团聚体在高强度淋溶侵蚀下较其他林地更易周转为其他粒径颗粒。

      Figure 3.  Changes in particle size distribution of sediment in red soil under different leaching intensities under 4 vegetation restoration modes

      Figure 4.  Stability of sediment particles in 4 vegetation restoration modes under different leaching intensities

      淋溶强度增加,泥沙颗粒DMWR0.25升高,即泥沙颗粒稳定性随淋溶强度的增加而提高,但在单一淋溶强度下,不同植被恢复模式泥沙颗粒稳定性指标存在差异(图4)。

      马尾松-木荷混交林在150 mm·h−1淋溶强度下DMW为2.07 mm,R0.25在60、150 mm·h−1分别为72.51%、85.38%,均显著高于其他植被恢复模式(P<0.05,图4),说明马尾松-木荷混交林在60和150 mm·h−1淋溶下,流失的泥沙颗粒较其他植被恢复模式更为稳定。马尾松纯林泥沙颗粒DMWR0.25在150 mm·h−1淋溶强度下分别为1.49 min,77.24 %,显著低于其他植被恢复模式(P<0.05),这说明马尾松纯林团聚体在应对高强度淋溶侵蚀时稳定性较差。各植被恢复模式红壤泥沙颗粒指标在90、120 mm·h−1淋溶无显著差异。

    • 淋溶侵蚀破坏土壤结构,产生径流泥沙,同时伴随着养分迁移。高淋溶强度(150 mm·h−1) 下4种植被恢复模式径流携带的有机碳、全氮、全磷分别为16.13、11.53、0.15 mg·L−1,而低淋溶强度(60 mm·h−1)中径流流失养分对应为5.45、7.69、0.061 mg·L−1。150 mm·h−1淋溶强度下径流携带养分显著高于60 mm·h−1(P<0.05);90、120 mm·h−1淋溶强度径流携带养分无显著差异(图5A1、5B1、5C1)。不同淋溶强度下泥沙携带的养分特征与径流类似(图5A2、5B2、5C2)。

      Figure 5.  Nutrient changes in runoff (left) and sediment (right) under different leaching intensities

      本研究泥沙有机碳、全氮、全磷流失量占径流泥沙流失总养分的比例分别为99.92%、98.22%、99.95%,说明这3种养分的主要流失介质是泥沙。此外,各植被恢复模式泥沙有机碳、全氮、全磷在90、120 mm·h−1淋溶强度均无显著差异(图5)。这与泥沙颗粒稳定特征类似。

    • 表层土壤在应对不同淋溶强度时产生径流泥沙,进而影响养分迁移,因此分析了表层土壤养分淋溶的主要影响因子的相关性(图6)。结果表明:产流率和产沙率是影响颗粒粒径质量分数及相关稳定性的重要指标,而产流量和产沙量对泥沙不同粒径颗粒质量分数影响不显著。其中,≤0.053 mm颗粒质量分数与产流率和产沙率呈现显著负相关(P<0.05),而R0.25DMW与产流率和产沙率呈现极显著正相关(P<0.01)。此外,径流泥沙均与土壤养分淋溶流失呈现极显著正相关(P<0.001)。

      Figure 6.  Correlation analysis between nutrient loss and runoff and sediment in red soil

      泥沙颗粒及其稳定性指标亦会影响养分淋失。≤0.053、>2.000 mm颗粒质量分数及R0.25DMW是径流有机碳、径流全磷及泥沙有机碳的主要影响因子。径流全氮、泥沙全氮、泥沙全磷与泥沙颗粒的相关指标无显著性影响。

    • 利用随机森林模型评估各变量对红壤养分淋溶流失的重要性,结果如图7所示。产流率、泥沙量、产沙率及淋溶强度是影响红壤养分淋溶流失的主要因子。产流率是影响泥沙养分淋溶流失的最主要影响因子,其对泥沙有机碳、泥沙全磷和泥沙全氮的重要性分别为13.94%、18.86%、16.18%,对泥沙中养分淋失的贡献度均值为16.33%;而淋溶强度是影响径流养分淋溶流失的最主要影响因子,对径流有机碳、径流全磷、径流全氮的贡献分别为21.00%、21.98%、19.76%,总体上淋溶强度径流中养分流淋溶流失贡献达20.91%。径流和R0.25也是影响径流全磷流失的另外2个重要影响因子,其重要性分别为14.17%和12.21%。

      Figure 7.  Factors related to nutrient loss in red soil of vegetation restoration modes

    • 淋溶侵蚀是红壤水土流失的主要驱动力[27]。本研究中土壤产沙时间滞后于产流时间,这是因为水流通过土壤孔隙下渗过程中破坏了土壤结构,导致土壤通透性变差,堵塞水流下渗,使产流率小于产沙率;高淋溶强度(150 mm·h−1)使红壤产流滞后时间减少,则是因为150 mm·h−1淋溶侵蚀能极大地增强径流动能,加快土壤颗粒周转,减少摩擦,使径流位移时间减少[20]。以往的研究亦表明:产沙滞后现象广泛存在,影响因素包括雨强、土地利用类型等[28]。李爽等[29]的研究表明:弱降雨产沙量的峰值出现时间比强降雨的峰值滞后,这主要与土壤结构稳定性和水流运动能量有关;钟祎珣等[30]研究亦表明:土壤初始产流时间的关键因子是雨强。这些观点与结论与本研究一致。植被恢复红壤在相同淋溶强度下产流、产沙特征无显著差异。这是由于在野外条件下,与耕地或裸地相比较,林地有密集的枯枝落叶覆盖和比较丰富的有机层,使得林地土壤渗透性、孔隙度提高,团聚体稳定性增强,土壤抗侵蚀能力提升;此外,这与植被恢复年限有关,经过30 a以上的植被恢复,各植被恢复模式红壤的理化性质均恢复到了较好的状态[6]

      >0.250 mm泥沙颗粒质量分数(R0.25)、平均质量直径(DMW)是表征颗粒稳定性常用的指标,R0.25DMW越大,团聚体稳定性越强[31]。淋溶强度增加,泥沙颗粒稳定性指标变高。这是因为随着淋溶强度的增加,径流流速加快,表层土被直接剥离、堆积到一起,使泥沙中不同粒径颗粒的质量分数接近原始表层红壤结构,这也解释了淋溶强度提高的原因,>2.000 mm泥沙颗粒质量分数增加,≤0.053 mm颗粒质量分数减少。相关性分析表明:淋溶强度与>2.000 mm颗粒质量分数呈极显著正相关,与≤0.053 mm颗粒质量分数呈极显著负相关;张相等[32]对红壤丘陵区侵蚀沟道内颗粒特征研究也得出类似的结论。泥沙2.000~0.250、0.250~0.053 mm颗粒质量分数在淋溶侵蚀过程中变化不显著,原因是大颗粒及黏粉粒级颗粒破碎重组会向这2个粒级颗粒周转,抵消两者在淋溶侵蚀过程周转为其他粒径的损失[18]。张逸飞等[33]研究表明:红壤团聚体在降雨驱动下会在相邻粒径颗粒间周转,表现为大团聚体易破碎成小团聚体,黏粉粒级团聚体形成小团聚体。这一结论验证了本研究的结果。

      水力侵蚀是南方红壤土地退化的主要形式之一,不仅导致水土流失,还伴随着土壤养分的迁移和空间分布的变化[1]。在这个过程中,侵蚀区的红壤团聚体以泥沙颗粒形式被剥离、搬运到沉积区;泥沙颗粒的组成和稳定性会影响土壤养分在迁移、沉积过程中的损失或储存[5]。为此,分析了侵蚀过程中被剥离的红壤团聚体在泥沙中的颗粒组成:马尾松纯林在高淋溶强度(150 mm·h−1)下相比其他林地,其泥沙团聚稳定性指标DMWR0.25显著小于其他林地。这主要是因为马尾松作为当地植被恢复的先锋树种,原始自然环境立地条件差、林分结构单一,导致马尾松纯林生长缓慢,存在严重的林下水土流失,无法充分发挥其原有生态功能[34]。国内外研究表明:林下植被覆盖度和林地间隙对马尾松林地土壤团聚体和有机碳分布有显著影响,过高或过低的林地间隙和植被覆盖度会降低马尾松林地土壤团聚体稳定性及有机碳分布[13, 35]。并且,随着马尾松树龄的增加,其土壤团聚体稳定性呈现为在幼龄林至近熟林期间稳定性增加、在成熟林以后土壤稳定性降低的趋势 [36]。本研究中,马尾松纯林树龄为30 a左右,处于成熟期,其过高的林分密度是导致其林下植被覆盖度、郁闭度、凋落物均显著低于其他林地的重要原因。这也间接导致了其土壤团聚体稳定性不如其他植被恢复模式。相反,湿地松-木荷混交林泥沙颗粒稳定性为4种植被恢复模式下最好,是因为该混交林拥有较丰富的林下植被覆盖度和较低的林分密度[37],能更好地改善当地生态环境,增强土壤的养分及大颗粒质量分数(粒径>0.250 mm)。因此,在后续的植被恢复治理中,应对马尾松纯林进行间伐,补植林下植被,以改善其不合理的林地结构,巩固植被恢复治理成果。

    • 不同淋溶强度影响土壤产流产沙,继而影响土壤养分迁移[21]。随机森林分析表明:产流率和淋溶强度分别是泥沙和径流中养分淋溶流失的最主要影响因子。随着淋溶强度增加,土壤总产流量和总产沙量在淋溶强度由60 mm·h−1增加至90 mm·h−1时提升幅度最大,分别达到152.95%和147.70%;当淋溶强度大于90 mm·h−1时,总产流量和总产沙量提升幅度均下降,在90、120 mm·h−1淋溶强度下,红壤产流产沙、颗粒周转特征无显著差异。这解释了各植被恢复模式泥沙有机碳、全氮、全磷在90、120 mm·h−1淋溶强度下均无显著差异。HUANG 等[38]研究表明:由于植被特性和土壤特性得到了改善,中国南方红壤造林区的土壤侵蚀模数之间没有显著差异。本研究结果从侧面验证了这一结果。60、150 mm·h−1淋溶强度水土流失特征的巨大差异性使养分迁移也显著不同。有学者对长时间自然降雨条件下的径流、泥沙流失和土壤养分淋溶流失特性的研究也得出类似结论[4]。各级颗粒中与红壤养分淋溶流失关系最为密切的是黏粉粒级颗粒(≤0.053 mm),这可能是由于土壤养分供应的主要结构单元是大颗粒,且大颗粒很容易被土壤微生物分解和矿化,养分容易随着颗粒破碎而周转到更小粒级颗粒中[39];微颗粒拥有更大的比表面积,结构不易破坏,在自然状态下更易吸附较多的养分[3]。但也有研究表明:红壤养分与大粒径团聚体质量分数相关[34, 37]。造成这种差异的原因在于不同研究区坡度差异及林下植被覆盖度等不同。

      土壤养分迁移主要有两大途径:溶解于径流中的养分及侵蚀泥沙颗粒所携带的养分[40]。本研究中有机碳、全氮、全磷主要迁移介质为泥沙。随机森林分析表明:产流率是影响泥沙中养分淋溶流失的最重要因子,因此产流率可以简单表征研究区红壤养分淋溶流失状况。土壤有机碳损失主要有径流的溶解损失和沉积物的吸附损失2种。但有研究发现:有机碳的损失往往主要处于吸附状态[41]。肖胜生等[42]研究指出:只有当淋溶侵蚀不足以输送大量土壤颗粒时,可溶性有机碳的迁移才是土壤有机碳损失的主要途径。本研究区域雨季集中,短历时高强度的降雨会导致大量泥沙颗粒迁移,故泥沙为本研究中有机碳主要流失介质。土壤对磷素吸附性强[43],磷酸根很容易被土壤颗粒和阳离子吸附沉淀,或经过一系列化学、物理反应后被微生物固定。SUN等[44]研究指出:只有当土壤中有效磷超过一定的临界值时,磷素才会随水迁移出土壤,因此全磷主要以泥沙迁移损失。也有学者发现:土壤全氮流失的主要介质为径流[8],与本研究结果不一致。这可能是由于本研究采样时间正好处于雨季之后,旱季期间积累的氮素已被雨水冲刷;另一方面,土壤氮素淋溶到了更深土层。因此,后续研究应加强氮素淋溶对红壤养分淋溶的影响,进一步探究红壤养分淋溶流失规律。

      自然暴雨条件下,降雨入渗产流十分复杂。后续研究可以引入侧向流对红壤养分及水土流失的影响。此外,由于南方红壤区多丘陵和山地,植被覆盖度较高,因此需要考虑植被枝叶对雨水截流的作用以及地形对红壤水土流失的影响。还需在野外设置不同坡度和林下植被覆盖度的条件,进行现场模拟降雨实验,并结合室内分析实验,进一步观察红壤的水土及养分流失特征。

    • 淋溶强度是红壤水土养分流失的重要影响因素。红壤水土流失量、>2.000 mm泥沙颗粒的质量分数、泥沙颗粒的平均质量直径和>0.250 mm颗粒质量分数随着淋溶强度的增加而增多,≤0.053 mm泥沙颗粒质量分数随着淋溶强度的增加而减少。马尾松纯林土壤团聚体在淋溶侵蚀下稳定性低,而湿地松-木荷混交林土壤团聚体稳定性高。高淋溶强度下红壤养分流失显著高于低淋溶强度,而90和120 mm·h−1的淋溶强度下养分流失差异不显著。产流率是影响泥沙养分流失的主要因素,对泥沙养分重要程度达13.94%~18.86%;淋溶强度则是影响径流养分流失的主要因素,对径流养分流失重要程度达19.76%~21.98%。在后续的植被恢复治理中,应对马尾松纯林进行间伐,补植林下植被,以改善其不合理的林地结构,巩固植被恢复治理成果。

Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return