留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿地种子库研究中的几个问题探讨

俞飞 宋琦 刘美华

俞飞, 宋琦, 刘美华. 湿地种子库研究中的几个问题探讨[J]. 浙江农林大学学报, 2014, 31(1): 145-150. doi: 10.11833/j.issn.2095-0756.2014.01.022
引用本文: 俞飞, 宋琦, 刘美华. 湿地种子库研究中的几个问题探讨[J]. 浙江农林大学学报, 2014, 31(1): 145-150. doi: 10.11833/j.issn.2095-0756.2014.01.022
YU Fei, SONG Qi, LIU Meihua. Several topics on wetland seeds bank research[J]. Journal of Zhejiang A&F University, 2014, 31(1): 145-150. doi: 10.11833/j.issn.2095-0756.2014.01.022
Citation: YU Fei, SONG Qi, LIU Meihua. Several topics on wetland seeds bank research[J]. Journal of Zhejiang A&F University, 2014, 31(1): 145-150. doi: 10.11833/j.issn.2095-0756.2014.01.022

湿地种子库研究中的几个问题探讨

doi: 10.11833/j.issn.2095-0756.2014.01.022
基金项目: 

浙江省自然科学基金资助项目 Y5110226

浙江农林大学科研发展基金资助项目 2008FR101

详细信息
    作者简介: 俞飞,从事种群生态学研究。E-mail:205yufei@163.com
    通信作者: 刘美华,博士,从事种群生态学研究。E-mail:liumeihua@163.com
  • 中图分类号: Q948.1;S718.5

Several topics on wetland seeds bank research

  • 摘要: 湿地种子库研究对于生物多样性保护、湿地恢复和管理具有重要意义。国内外开展了大量湿地种子库以及利用种子库进行湿地植被恢复的研究,但是也存在一些问题。在分析了国内外湿地种子库研究的基础上,指出无性繁殖在湿地生态系统中广泛存在,而且很多优势物种以无性繁殖为主要的繁殖方式,因此,在湿地种子库研究中,采用广义种子库的概念更为科学。此外,干扰因素,尤其是水文条件变化对湿地种子库的影响非常大。水位的高低,洪水的强度、持续时间和频率都会显著影响种子库的物种组成和种子萌发格局,进而对地表植物群落产生影响。研究事实证明,在利用种子库进行湿地恢复时,也必须考虑干扰等因素的影响,否则很难实现群落结构和物种多样性的恢复。
  • [1] MOLES A T,DRAKE D R. Potential contribution of the seed rain and seed bank to regeneration of native forest under plantation pine in New Zealand[J]. New Zealand J Bot, 1999,37:83-93.
    [2] HARPER J L. Population Biology of Plant[M]. London:Academic Press,1977:256-263.
    [3] LIU Wenzhi,ZHANG Quanfa,LIU Guihua. Seed bank of a rever-reservoir wetland system and their implications for vegetation development[J]. Aquat Bot,2009,90(1):7-12.
    [4] LIU Wenzhi,LIU Guihua,ZHANG Quanfa. Influence of vegetation characteristics on soil denitrification in shoreline wetland of the Danjiangkou Reservoir in China[J]. Clean Soil, Air,Water,2011,39(2):109-115.
    [5] YUAN Longyi,LIU Guihua,LI Wei, et al. Seed bank variation along a water depth gradient in a subtropical lakeshore marsh,Longgan Lake,China[J]. Plant Ecol,2007,189(1):127-137.
    [6] 邢福,王莹,许坤,等. 三江平原沼泽湿地群落演替系列的土壤种子库特征[J]. 湿地科学, 2008,6(3):351-358.

    XING Fu,WANG Ying,XU Kun,et al. Characteristics of soil seed bank of community successional series in marshes in Sanjiang Plain[J]. Wetland Sci,2008,6(3):351-358.
    [7] 许坤. 三江平原沼泽湿地植被演替系列β多样性及土壤种子库研究[D]. 长春:东北师范大学, 2005.

    XU Kun. Beta Diversity and Soil Seed Bank of the Typical Vegetation Series in Marsh in Sanjiang Plain[D]. Changchun:Northeast Normal University,2005.
    [8] 欧祖兰,吕仕洪,陆树华,等. 桂西南峰丛洼地退化植被土壤种子库的初步研究[J]. 广西植物,2006,26(6):643-649.

    OU Zulan,LÜ Shihong,LU Shuhua,et al. Preliminary study on soil seed bank of degraded karst vegetation in Southwest Guangxi[J]. Guihaia,2006,26(6):643-649.
    [9] 莫训强,李洪远,蔡喆,等. 天津滨海盐碱湿地突然种子库特征研究[J]. 环境科学与技术, 2010,33(1):52-57.

    MO Xunqiang,LI Hongyuan,CAI Zhe,et al. Characteristics of soil seed bank in saline-alkail wetland of Tianjing Binhai new area[J]. Environ Sci Technol,2010,33(1):52-57.
    [10] SIMPSON R L. Ecology of Soil Seed Bank[M]. San Diego:Academic Press,1989:149-209.
    [11] POIANI K A,JOHNSON W C. Effect of hydroperiod on seed-bank composition in semipermanent prairie wetlands[J]. Can J Bot,1989,67:856-864.
    [12] 侯志勇,陈心胜,谢永宏,等. 洞庭湖湿地土壤种子库特征及其与地表植被的相关性[J]. 湖泊科学,2012,24(2):287-293.

    HOU Zhiyong,CHEN Xinsheng,XIE Yonghong,et al. Characteristics of soil seed bank and its relationship with aboveground vegetation in Lake Dongting[J]. J Lake Sci,2012,24(2):287-293.
    [13] 李守淳,卢蓓,刘晖,等. 鄱阳湖湿地土壤种子库特征及其与地表植被的关系[J]. 江西师范大学学报:自然科学版,2011,35(4):431-436.

    LI Shouchun,LU Bei,LIU Hui,et al. Soil seed bank and its relation to vegetation in the littoral zone of Poyang Lake[J]. J Jiangxi Norm Univ Nat Sci,2011,35(4):431-436.
    [14] 王国栋,吕宪国,姜明,等. 三江平原恢复湿地土壤种子库特征及其与植被的关系[J]. 植物生态学报,2012,36(8):763-773.

    WANG Guodong,LÜ Xianguo,JIANG Ming,et al. Characteristics of the soil seed banks and relationships with the vegetation in restored wetlands in Sanjiang Plain,northeast of China[J]. Chin J Plant Ecol,2012,36(8):763-773.
    [15] LIU Guihua,LI Wei,ZHOU Ju,et al. How does the propagule bank contribute to cyclic vegetation change in a lakeshore marsh with seasonal draw-down[J]. Aquat Bot,2006,84:137-143.
    [16] 李有志. 小叶章和芦苇种子萌发以及幼苗生长对环境因子的响应研究[D]. 长沙:湖南农业大学,2007.

    LI Youzhi. Studies on the Responses of Seed Germination and Seedling Growth of Deyeuxia angustifolia,Phragmites communis to Environmental Factor[D]. Changsha:Hunan Agricultural University,2007.
    [17] VANDER V A G,DAVIS C B. The role of seed banks in the vegetation dynamics of prairie glacial marshes[J]. Ecology,1978,59:322-335.
    [18] 徐凌翔,程玉,刘帆,等. 尕海湖滨湿地种子库初探[J]. 植物科学学报,2011,29(5):589-598.

    XU Lingxiang,CHENG Yu,LIU Fan,et al. Seed banks of a lakeshore wetland,Gahai Lake[J]. Plant Sci J,2011,29(5):589-598.
    [19] 刘贵华. 长江中下游湿地的种子库研究[D]. 武汉:中国科学院武汉植物园,2005.

    LIU Guihua. Wetland Seed Banks in the Middle to Lower Reaches of the Changjiang River[D]. Wuhan:CAS Wuhan Botanical Garden,2005.
    [20] 李伟,刘贵华,周进,等. 淡水湿地种子库研究综述[J]. 生态学报,2002,22(3):395-402.

    LI Wei,LIU Guihua,ZHOU Jin,et al. Studies on the seed bank of freshwater wetland:a review[J]. Acta Ecol Sin,2002,22(3):395-402.
    [21] SMITH S M,CROMICS M C,LEEDS P V,et al. Constraints of seed bank species composition and water depth for restoring vegetation in the Florida everglades[J]. USA Restoration Ecol,2002,10:138-145.
    [22] HARWELL M C,HAVENS K E. Experimental studies on recovery potential of submerger aquatic vegetation after flooding and desiccation in a large subtropical lake[J]. Aquat Bot,2003,77:135-151.
    [23] MIDDLETON B,WU X B. Landscape pattern of seed banks and anthropogenic impact in forested wetlands in the northern Mississippi River Alluvial Valley[J]. Eco Sci,2008,15:231-240.
    [24] MIDDLETON B A. Soil seed banks and the potential restoration of forested wetlands after farming[J]. J Appl Ecol, 2003,40:1025-1034.
    [25] MULHOUSE J M,GALATOWITSCH S M. Revegetation of prairie pothole wetlands in the mid-continental US:twelve years post reflooding[J]. Plant Ecol,2003,169:143-159.
    [26] KETTENRING K M,GALATOWITSCH S M. Carex seedling emergence in restored and Natural Prairie Wetlands[J]. Wetlands,2011,31(2):273-281.
    [27] STROH P A,HUGHES F M R,SPARKS T H,et al. The influence of time on the soil seed bank and vegetation across a landscape scale wetland restoration project[J]. Restoration Ecol,2012,20:103-112.
    [28] CASANOVA M T,BROCK M A. How do depth,duration and frequency of flooding influence the establishment of wet land plant communities[J]. Plant Ecol,2000,147(2):237-250.
    [29] 刘贵华,肖蒇,陈漱飞,等. 土壤种子库在长江中下游湿地恢复与生物多样性保护中的作用[J]. 自然科学进展, 2007,17(6):741-747.

    LIU Guihua,XIAO Chan,CHEN Shufei,et al. The effect of seed bank on wetland restoration and biodiversity conservation in the middle to lower reaches of the changjiang river[J]. Nat Sci Prog,2007,17(6):741-747.
    [30] 侯志勇,谢永宏,于晓英,等. 淡水湿地种子库的研究方法、内容与展望[J]. 生态学杂志, 2008,27(8):1400-1405.

    HOU Zhiyong,XIE Yonghong,YU Xiaoying,et al. Research method,content,and prospect on seed bank of fresh water wetland[J]. Chin J Ecol,2008,27(8):1400-1405.
    [31] CAPERS R S. Macrophyte colonization in a freshwater tidal wetland[J]. Aquat Bot, 2003,77:325-338.
    [32] CAPON S J. Effects of flooding on seedling emergence from the soil seed bank of a large desert floodplain[J]. Wetlands,2007,27:904-914.
    [33] GRANDIN U. Short term and long term variation in seedbank/vegetation relations along an environmental and successional gradient[J]. Ecography,2001,24:731-741.
    [34] GRELSSON G,NILSSON C. Vegetation and seed bank relationships on a lake shore[J]. Freshwater Biol,1991,26:199-207.
    [35] KRISTINE N H. A review of similarity between seed bank and standing vegetation across ecosystems[J]. Oikos,2007,116(9):1438-1448.
    [36] 于顺利,蒋高明. 土壤种子库的研究进展及若干研究热点[J]. 植物生态学报,2003,27(4):551-560.

    YU Shunli,JIANG Gaoming. The research development of soil seed bank and several hot topics[J]. Chin J Plant Ecol, 2003,27(4):551-560.
    [37] LECK M A,GRAVELINE K J. The seed bank of a fresh water tidal marsh[J]. Am J Bot,1979,66:1006-1015.
    [38] JUTILA B E,HELI M. Seed bank of grazed and ungrazed baltic seashone meadows[J]. J Veget Sci,1998,9:395-408.
    [39] CAPON S J,BROCK M A. Flooding soil seed bank dynamics and vegetation resilience of a hydrological variable desert flood plain[J]. Fresh Water Biol,2006,51:206-223.
    [40] THOMPSON K. small scale heterogeneity in the seed bank of an acid grassland[J]. J Ecol,1986,74:733-738.
    [41] WILSON S D,MOORE D R J,KEDDY P A. Relationships of marsh seed banks to vegetation patterns a long environmental gradients[J]. Fresh Water Biol,1993,9:361-370.
    [42] BALDWIN A H,EGNOTOVICH M S,CLARKE E. Hydrologic change and vegetation of tidal freshwater marshes:field,greenhouse,and seed bank experiments[J]. Wetlands,2001,21(4):519-531.
    [43] 党丽霞. 野鸭湖湿地不同退水时间条件下土壤种子库分布格局研究[D]. 北京:首都师范大学,2009.

    DANG Lixia. The Studies on Distribution Pattern of Seed Bank on Different Water Back Time of the Yeyahu Wetland[D]. Beijing:Capital Normal University,2009.
    [44] 史国鹏,洪剑月,谭月臣,等. 北京野鸭湖湿地不同植被退化区的土壤种子库特征[J]. 湿地科学,2011,9(2):163-172.

    SHI Guopeng,HONG Jianming,TAN Yuechen,et al. Characteristics of soil seed banks in different areas of degraded vegetation of the Yeyahu wetland of Beijing[J]. Wetland Sci, 2011,9(2):163-172.
    [45] 王相磊,周进,李伟,等. 洪湖湿地退耕初期种子库的季节动态[J]. 植物生态学报,2003, 27(3):352-359.

    WANG Xianglei,ZHOU Jin,LI Wei,et al. Seasonal dynamics of soil seed bank in honghu wetland withdrawn from long term rice culture[J]. Chin J Plant Ecol,2003,27(3):352-359.
  • [1] 李鹏, 刘晓君, 刘苑秋, 陶凌剑, 付小斌, 毛梦蕾, 李文琴, 汪晨.  红壤侵蚀区不同植被恢复模式土壤碳储量特征及其影响因素 . 浙江农林大学学报, 2024, 41(1): 12-21. doi: 10.11833/j.issn.2095-0756.20230408
    [2] 张鸽, 王琦枝, 何媛, 曾倩婷, 何静, 王勇, 杨杰, 郑江坤.  北川滑坡迹地植物群落多样性变化及环境解释 . 浙江农林大学学报, 2022, 39(1): 50-59. doi: 10.11833/j.issn.2095-0756.20210188
    [3] 赵晶, 郝孟婕, 王清宇, 刘美英.  不同植被恢复模式下光伏电站土壤有机碳储量分布特征 . 浙江农林大学学报, 2021, 38(5): 1033-1039. doi: 10.11833/j.issn.2095-0756.20210500
    [4] 张震, 刘伸伸, 胡宏祥, 何金铃, 马友华, 王一帆, 代宇雨, 徐微.  3种湿地植物对农田沟渠水体氮、磷的消减作用 . 浙江农林大学学报, 2019, 36(1): 88-95. doi: 10.11833/j.issn.2095-0756.2019.01.012
    [5] 崔艳红, 史常青, 孙丽文, 彭贤锋, 张艳, 赵廷宁.  5·12地震后北川次生灾害迹地植被的自然恢复与更新 . 浙江农林大学学报, 2018, 35(2): 219-226. doi: 10.11833/j.issn.2095-0756.2018.02.004
    [6] 张洁, 尹德洁, 关海燕, 屈琦琦, 董丽.  景天属植物研究综述 . 浙江农林大学学报, 2018, 35(6): 1166-1176. doi: 10.11833/j.issn.2095-0756.2018.06.022
    [7] 吴昊.  入侵植物空心莲子草春季沿纬度变化的群落特征 . 浙江农林大学学报, 2017, 34(5): 816-824. doi: 10.11833/j.issn.2095-0756.2017.05.007
    [8] 雷相科, 张雪彪, 杨启红, 欧阳前超, 张超波.  植物根系抗拉力学性能研究进展 . 浙江农林大学学报, 2016, 33(4): 703-711. doi: 10.11833/j.issn.2095-0756.2016.04.021
    [9] 吴雪, 杜长霞, 杨冰冰, 樊怀福.  植物水通道蛋白研究综述 . 浙江农林大学学报, 2015, 32(5): 789-796. doi: 10.11833/j.issn.2095-0756.2015.05.020
    [10] 王颖, 李为花, 李丹, 张震.  喜旱莲子草入侵机制及防治策略研究进展 . 浙江农林大学学报, 2015, 32(4): 625-634. doi: 10.11833/j.issn.2095-0756.2015.04.020
    [11] 李自民, 宋照亮, 李蓓蕾, 蔡彦彬.  杭州西溪湿地植物植硅体产生及其影响因素 . 浙江农林大学学报, 2013, 30(4): 470-476. doi: 10.11833/j.issn.2095-0756.2013.04.002
    [12] 程建中, 杨萍, 桂仁意.  植物硒形态分析的研究综述 . 浙江农林大学学报, 2012, 29(2): 288-395. doi: 10.11833/j.issn.2095-0756.2012.02.020
    [13] 王妍, 卢琦, 王玉华, 敖文明, 乔殿学.  呼伦贝尔沙地樟子松落种与种子库特征 . 浙江农林大学学报, 2012, 29(6): 883-888. doi: 10.11833/j.issn.2095-0756.2012.06.012
    [14] 李小俊, 张明如, 张利阳, 吴刚.  太行山低山丘陵区5种木本植物光合特性的比较 . 浙江农林大学学报, 2011, 28(2): 180-186. doi: 10.11833/j.issn.2095-0756.2011.02.002
    [15] 刘蔚漪, 范少辉, 苏文会, 刘广路, 余林.  竹林不同界面水文效应研究 . 浙江农林大学学报, 2011, 28(3): 486-493. doi: 10.11833/j.issn.2095-0756.2011.03.022
    [16] 石强, 廖科, 钟林生.  旅游活动对植被的影响研究综述 . 浙江农林大学学报, 2006, 23(2): 217-223.
    [17] 戴建兵, 俞益武, 曹群.  湿地保护与管理研究综述 . 浙江农林大学学报, 2006, 23(3): 328-333.
    [18] 李翠环, 余树全, 周国模.  亚热带常绿阔叶林植被恢复研究进展 . 浙江农林大学学报, 2002, 19(3): 325-329.
    [19] 余树全, 李翠环, 姜礼元, 谢吉全.  千岛湖天然次生林群落生态学研究 . 浙江农林大学学报, 2002, 19(2): 138-142.
    [20] 李根有, 陈征海, 刘安兴, 孙孟军, 应顺东.  浙江省湿地植被分类系统及主要植被类型与分布特点 . 浙江农林大学学报, 2002, 19(4): 356-362.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.01.022

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2014/1/145

计量
  • 文章访问数:  4044
  • HTML全文浏览量:  826
  • PDF下载量:  650
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-02
  • 修回日期:  2013-04-22
  • 刊出日期:  2014-02-20

湿地种子库研究中的几个问题探讨

doi: 10.11833/j.issn.2095-0756.2014.01.022
    基金项目:

    浙江省自然科学基金资助项目 Y5110226

    浙江农林大学科研发展基金资助项目 2008FR101

    作者简介:

    俞飞,从事种群生态学研究。E-mail:205yufei@163.com

    通信作者: 刘美华,博士,从事种群生态学研究。E-mail:liumeihua@163.com
  • 中图分类号: Q948.1;S718.5

摘要: 湿地种子库研究对于生物多样性保护、湿地恢复和管理具有重要意义。国内外开展了大量湿地种子库以及利用种子库进行湿地植被恢复的研究,但是也存在一些问题。在分析了国内外湿地种子库研究的基础上,指出无性繁殖在湿地生态系统中广泛存在,而且很多优势物种以无性繁殖为主要的繁殖方式,因此,在湿地种子库研究中,采用广义种子库的概念更为科学。此外,干扰因素,尤其是水文条件变化对湿地种子库的影响非常大。水位的高低,洪水的强度、持续时间和频率都会显著影响种子库的物种组成和种子萌发格局,进而对地表植物群落产生影响。研究事实证明,在利用种子库进行湿地恢复时,也必须考虑干扰等因素的影响,否则很难实现群落结构和物种多样性的恢复。

English Abstract

俞飞, 宋琦, 刘美华. 湿地种子库研究中的几个问题探讨[J]. 浙江农林大学学报, 2014, 31(1): 145-150. doi: 10.11833/j.issn.2095-0756.2014.01.022
引用本文: 俞飞, 宋琦, 刘美华. 湿地种子库研究中的几个问题探讨[J]. 浙江农林大学学报, 2014, 31(1): 145-150. doi: 10.11833/j.issn.2095-0756.2014.01.022
YU Fei, SONG Qi, LIU Meihua. Several topics on wetland seeds bank research[J]. Journal of Zhejiang A&F University, 2014, 31(1): 145-150. doi: 10.11833/j.issn.2095-0756.2014.01.022
Citation: YU Fei, SONG Qi, LIU Meihua. Several topics on wetland seeds bank research[J]. Journal of Zhejiang A&F University, 2014, 31(1): 145-150. doi: 10.11833/j.issn.2095-0756.2014.01.022
  • 20世纪80年代以来,随着湿地破坏的日益加重和湿地生态系统重要性的不断显现,在世界范围内开展了大规模的湿地自然恢复工作。由于湿地种子库保存着不同演替阶段种子,不仅是植被天然更新的物质基础,也是种群基因的潜在提供者[1-2],因此,关于湿地种子库的研究也相应展开,研究内容涉及种子库的大小和物种组成,种子库的分布格局、与地上植被的关系,干扰对湿地种子库的影响,种子库在湿地恢复中的作用等方面。在国内,中国科学院武汉植物园对长江中下游湿地土壤种子库[3-5],中国科学院东北地理与农业生态研究所对三江平原湿地土壤种子库都开展了大量研究[6-7],高原湿地[8]、滨海湿地[9]等种子库研究也陆续有一些展开。综述前人研究结果发现:当前的湿地土壤种子库研究存在一些问题,例如采样时大都选择狭义种子库的概念,而湿地植物有很大一部分采用无性繁殖的方式,这对研究结果造成一定影响;在利用种子库进行植被恢复时,缺少对生境条件的恢复,直接影响了恢复结果。因此,在本研究中对湿地种子库研究中几个常见问题进行了探讨。

    • 土壤种子库的概念有狭义和广义之分。狭义的土壤种子库概念为存在于土壤上层凋落物以及土壤中存活种子的总和[10]。广义的土壤种子库既包括植物形态解剖学上严格意义的种子,也包括无性繁殖体(根茎、鳞茎、根蘖等)和其他能再生的植物结构[11]。在陆地土壤种子库的研究中,多以狭义种子库为主。而湿地种子库由于水文条件的影响,采用广义种子库更为科学。这是因为很大一部分的湿地植物具有利用根茎进行无性繁殖的特点。侯志勇等[12]对洞庭湖湿地土壤种子库特征进行研究后发现,荻Miscanthus sacchariflorus,薹草Carex spp.等湿地植物群落建群种在土壤中的种子密度非常低,因为这些均为多年生植物,主要通过无性繁殖产生后代来维持和更新种群。李守淳等[13]对鄱阳湖湿地种子库进行研究后发现,秋季退水后,鄱阳湖湖滨湿地植被的恢复与建立主要依赖于根茎等无性繁殖体,土壤种子库的贡献较少。王国栋等[14]发现三江平原湿地中共有25种物种通过根茎分蘖,其中12种在植被中出现,小叶章Calamagrostis angustifolia作为优势种,通过根茎大量繁殖。 Liu等[15]也指出土壤中的种子和无性繁殖体共同决定着植被群落的结构,根茎等无性繁殖体对于薹草Carex unisexualis等优势物种的建立起着决定性的作用。

      此外,一些湿地多年生植物虽然能够产生种子,但能有效进入土壤种子库并能萌发的种子数量有限。例如在洞庭湖湿地,薹草5月刚完成生活史就进入洪水期,由于种子轻盈,水流淹没处薹草种子会在水面形成漂浮层,随洪水流失[12]。很多植物的种子萌发需要特定的条件,例如芦苇Phragmites communis种子萌发适宜温度较窄,为 20.0~35.0 ℃,否则不萌发[16]。 Vander等[17]的研究中发现,尽管藨草属的荆三棱Scirpus fluviatilis 在种子库中存在大量种子,但是必须在低温状态与水中储存1 a以上后再置于高温(30.0~32.0 ℃)和强光下才能萌发。

    • 大部分研究表明: 种子库比现存植被具有更高的物种数。持续性种子库具有重要的遗传学意义,它含有所有群落地上部分在不同时期产生的等位基因,因此,在植被演替更新和受损湿地恢复中起着重要作用[18-19]。在湿地的保护和恢复实践中,充分利用原湿地保留的种子库,以及通过种子库移植等方法恢复湿地植被,将有利于湿地的物种多样性和遗传多样性的恢复[20]。目前,国内外已开展了大量有关种子库在湿地植被恢复中潜力的研究,主要集中在2个方面:一个是通过研究种子库的组成确定受损湿地的物种资源储备并评判它的自我恢复能力,同时为植被恢复提供管理策略。另一个是采用种子库进行湿地植被恢复时的技术手段研究[21-22]

      种子库恢复湿地植被取决于种子寿命、干扰时间、种子扩散和水文条件等诸多因素[23]。事实证明,在利用种子库进行植被恢复时还必须考虑环境因素的影响。20世纪80年代以来,随着湿地重要性的不断显现,美国、欧洲等国家和地区开展了大规模的湿地恢复工作[24-26]。结果发现:经过多年恢复,湿地仍然难以达到开垦前的状态。Mulhouse 等[25]对经过12 a天然恢复的美国中部某湿地进行研究后发现,许多天然湿地中的物种并没有出现,而部分入侵物种却大量繁殖。Kettenring 等[26]对恢复湿地的研究也发现,先前群落优势物种和其他湿地物种难以出现,而入侵种却大量繁殖,恢复的景观不能反映原来湿地的结构和物种多样性。王国栋等[14]对三江平原恢复7 a和14 a的湿地进行研究后发现,毛薹草Carex lasiocarpa等莎草科Cyperaceae物种在种子库和植被中数量很少,恢复趋势较差。这是因为湿地植被恢复不仅与种子库状况有关,还和水文干扰等环境因子的影响有关。

    • 水文变化是湿地生境最主要的干扰因子,水位的高低、洪水的强度、持续时间和频率都会显著影响种子库的物种组成和种子萌发格局,进而对地表植物群落产生影响[27-28]。由于湿地水文存在变化,研究人员专门将沉水和湿润处理对种子萌发的影响作了对比。结果表明:2个处理仅有25%的种类是共同的,而且湿润处理时萌发的植物种类更多[17]。王国栋等[14]发现:淹水10 cm处理条件下萌发物种仅有菹草Potamogeton crispus,灯芯草Juncus effuses和宽叶香蒲Typha latifolia 等3种,其中以菹草占绝对优势;而湿润条件下物种萌发数在20种以上,萌发物种数及种子密度显著高于淹水条件,而且2种水分条件下萌发物种的生活型不同。刘贵华等[29]对亚热带淡水沼泽种子库的研究表明,随着水位的增加,萌发的物种数和种子数呈明显减少的趋势,植被群落类型也截然不同。Yuan等[5]对具有丰水期和枯水期变化的湖滨沼泽种子库和地上植被进行研究,发现种子库与植被均沿水位梯度呈现明显的带状分布格局,浅水区以挺水植物和湿生植物为主,而深水区则以沉水植物和浮叶植物为主,在浅水和深水交错区,物种多样性最高。徐凌翔等[18]对青藏高原湖泊尕海湖滨湿地的研究也发现,随着水位的升高,种子库中的优势种逐渐由以露蕊乌头Aconitum gymnandrum为指示种的中生植物向以水毛茛Batrachium bungei为指示种的沉水植物过渡。此外,干扰频繁的湿地中,底泥的不断悬浮和沉淀也会导致种子所处的微生境发生变化,从而影响种子的萌发。

      水文条件同时也是影响湿地种子扩散的一个重要因素[30-31]。洪水高频区比低频区的湿地种子库物种丰富度高,物种组成复杂,表明洪水频率直接影响着种子库的大小和组成[32]。弱的水文波动有利于种子的沉淀,强的水文波动不利于持久性种子库的建立[33]。Grelsson等[34]在对河岸植被的研究证实了这一点,被水传播种子的种类丰富度随着屏蔽程度的上升而增大,种子库的多样性也较高。因此,Middleton[24]指出从景观尺度上恢复洪水波动来重新连接种子传播的途径是成功进行湿地恢复的重要条件。

    • 种子库与地表植被的关系是种子库研究中的一个重要内容,对群落恢复和生态系统管理都具有重要意义[35]。土壤种子库与地表植被的关系大致有相似或不相似2种情况。这主要是由于群落类型差异、环境因子和所处演替阶段等因素造成的[36]。湿地种子库与地表植被的关系也符合这2种情况[20]。环境因子对土壤种子库与地上植被关系的影响主要表现为:在水文条件变化大的生境中,湿地种子库与地表植被的关系非常密切。如Leck等[37]对淡水潮汐沼泽的研究、Jutila等[38]对海岸滩涂湿地的研究、Capon等[39]和Thompson[40]对河滩湿地的研究以及Vander等[17]对干旱时期经历水位下降影响的普列利冰川沼泽的研究等都发现这些种子库与地表植被具有密切的相似性,而这些群落植物种都以1年生植物为主。于顺利等[36]认为这与系统经常受不可预测的干扰有关。

      而演替阶段对种子库与地表植被的影响是:随着演替的进行,群落中多年生植被占优势种子库与地表植被在种类组成上的差异不断增大,湿地种子库亦是如此[10, 41]。有人认为这种不相似是由于优势种对土壤种子库形成的贡献较小导致的,这些物种一般具有较低的种子产量或种子在土壤中具有短寿命。研究发现:沼泽湿地、湖滨湿地以及一些退耕湿地和临时性湿地,其种子库与地表植被的物种组成差异很大[42]。党丽霞[43]在春、夏、秋3个季节对北京野鸭湖地表植被进行调查,发现土壤种子库和地表植被之间存在显著差异。 Wilson等[41]在对加拿大安大略某沼泽的种子库研究中发现:在 29 种植物中,仅有 9种为种子库和植被共有。此外,由于很多湿地植物具有无性繁殖的特点,而目前很大一部分的湿地种子库研究采用狭义种子库概念,这也导致了调查结果为种子库与地表植被在种类组成上存在显著差异。

      研究表明,在演替进程中,湿地种子库比地上植被具有更高的稳定性,对外界干扰破坏具有更强的缓冲能力[44]。王国栋等[14]和王相磊等[45]对处于不同演替恢复时期的湿地种子库研究都证实了这一点。

    • 目前,湿地种子库研究的理论和方法与陆地种子库研究基本一致,但是由于湿地存在水文变化这一特殊干扰,种子库特征具有其特殊性,因此,在概念和研究方法等的选择上需有针对性。对受损湿地种子库以及与地上植被关系进行研究,是利用种子库开展湿地恢复的基础。对不同恢复阶段湿地种子库进行研究,有助于对湿地恢复状况进行科学评价,并能对恢复所需时间和恢复后植被状况进行预测。目前的研究结果表明,湿地种子库的存在对于迅速形成新的稳定的湿地群落具有重要的作用,但是因为湿地植被恢复还和其他生态因子密切相关,利用种子库可能并不能完全恢复到原有天然湿地水平或者需要上百年的时间才能恢复[20]。因此,在开展湿地种子库研究的同时,还应加强影响种子萌发、格局分布、植被类型等环境因素尤其是水文干扰的研究。

参考文献 (45)

目录

    /

    返回文章
    返回