-
氧化亚氮(N2O)是仅次于二氧化碳(CO2)和甲烷(CH4)的第三大强效温室气体,百年尺度下的全球变暖潜能值(GWP)是CO2的300倍[1]。据估计,大气N2O每年约增加0.2%~0.3%,不仅加剧全球气候变暖,也对生态系统功能产生显著负面影响[2]。作为平流层臭氧消耗的因素之一,N2O在臭氧层破坏的过程中起着重要的催化作用,严重威胁大气环境和人类生存安全[3-4]。因此,如何缓解N2O持续增加是目前国内外研究关注的重点和难点问题[5]。生物质炭(biochar)是指生物质在完全或部分缺氧的情况下经高温热裂解产生的芳香类化学物质[6-7],具有多孔、强吸附力、高化学稳定性、高酸碱度和较大阳离子交换量等特性[7-8]。作为土壤改良剂,高孔隙度的生物质炭可以吸附持留氮素[铵根(
${\rm{NH}}_4^{+} $ )和硝酸根(${\rm{NO}}_3^{-} $ ) ]并显著改变土壤的理化性质,从而直接或间接影响参与土壤氮循环相关的微生物群(如硝化菌、反硝化菌和固氮菌)的丰度和多样性,最终影响土壤氮循环[9-11]。因此,对近年来国内外关于生物质炭对土壤无机氮动态、硝化和反硝化作用以及N2O排放影响及其机制等研究现状进行综述,可为生物质炭的资源化利用、土壤生态系统增汇减排技术的开发提供参考。
Effects of biochar application on soil nitrogen transformation and N2O emissions: a review
-
摘要: 全球气候变暖的持续性和不确定性显著影响人类社会的可持续发展。大气氧化亚氮(N2O)的持续增加是导致全球气候变暖的主要原因之一。土壤是氮素转化的重要场所和氮循环生物化学反应库,也是N2O的重要排放源,土壤N2O排放速率的变化会显著影响大气N2O含量。生物质炭是指生物质在完全或部分缺氧的情况下经热裂解制备而成的芳香类化学物质,具有多孔性、强吸附性、化学稳定性、高pH和较大阳离子交换量等特性。生物质炭施入土壤后,会直接或间接影响土壤氮素的转化,并对土壤N2O排放产生显著影响。本研究综述了生物质炭输入对土壤生态系统氮素转化与N2O排放的研究进展,分别阐述了生物质炭输入对土壤无机氮动态变化、硝化作用、反硝化作用以及N2O排放的影响,并从生物质炭吸附和减少氮素淋滤、影响土壤理化性质、土壤氨氧化菌的丰度和多样性以及反硝化菌功能基因等方面具体分析了影响上述过程的作用机制。在此基础上,对今后生物质炭在土壤增汇减排以及缓解温室效应方面的进一步理论研究和相关技术推广进行了展望。参109Abstract: The sustainability and uncertainty of global climate warming have a profound impact on the sustainable development of human society. The continuous increase of atmospheric N2O concentration is one of the major contributions to the global climate warming. Soil is an important site of nitrogen transformation and a biochemical reaction reservoir of the nitrogen cycle, and also an important source of N2O emissions. Therefore, changes in soil N2O emission rate will significantly affect atmospheric N2O concentration. Biochar refers to the aromatic chemicals prepared by pyrolysis of biomass under the condition of complete or partial hypoxia. Biochar has the characteristics of porosity, strong adsorption, chemical stability, high pH and large cation exchange capacity. After it is applied to soils, biochar will directly or indirectly affect the transformation process of soil nitrogen and significantly affect the soil N2O emissions. This article reviewed the research progress of biochar effects on nitrogen transformation and N2O emission in the soil ecosystem, elaborated the effects of biochar input on the dynamic changes of soil inorganic nitrogen, nitrification, denitrification and N2O emission. Futher, in terms of biochar’s absorption and reduction of nitrogen leaching, effects on soil physicochemical properties, abundance and diversity of soil ammonia oxidizing bacterial, along with functional genes of denitrifying bacteria, the machamnisms influencing the processes above-mentioned are specifically elucidated in details. The future research of biochar in increasing soil sinks, reducing emissions and mitigating the greenhouse effect, as well as the related technology promotion, have been prospected. [Ch, 109 ref.]
-
Key words:
- soil sciences /
- biochar /
- soil nitrogen /
- nitrification /
- denitrification /
- N2O emissions
-
[1] SHCHERBAK I, MILLAR N, ROBERTSON G P. Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen [J]. Proc Natl Acad Sci USA, 2014, 111(25): 9199 − 9204. [2] IPCC. Climate Change 2013: The Physical Science Basis[C]. Cambridge: Cambridge University Press, 2013. [3] CRUTZEN P J, EHHALT D H. Effects of nitrogen fertilizers and combustion on stratospheric ozone layer [J]. AMBIO, 1977, 6(2/3): 112 − 117. [4] WANYAMA I, PELSTER D E, ARIAS-NAVARRO C, et al. Management intensity controls soil N2O fluxes in an Afromontane ecosystem [J]. Sci Total Environ, 2018, 624: 769 − 780. [5] World Meteorological Organization. Greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on observations through 2016[R/OL]. (2017-10-30)[2020-09-25]. http://www.indiaenvironmentportal.org.in/content/448680/greenhouse-gas-bulletin-the-state-of-greenhouse-gases-in-the-atmosphere-based-on-global-observations-through-2016/. [6] LEHMANN J. A handful of carbon [J]. Nature, 2007, 447: 142 − 144. [7] GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions [J]. Agric Ecosyst Environ, 2015, 206: 46 − 59. [8] LUO Yu, YU Zhuyun, ZHANG Kaile, et al. The properties and functions of biochars in forest ecosystems [J]. J Soils Sediments, 2016, 16: 2005 − 2020. [9] 潘逸凡, 杨敏, 董达, 等. 生物质炭对土壤氮素循环的影响及其机理研究进展[J]. 应用生态学报, 2013, 24(9): 2666 − 2673. PAN Yifan, YANG Min, DONG Da, et al. Effects of biochar on soil nitrogen cycle and related mechanisms: a review [J]. Chin J Appl Ecol, 2013, 24(9): 2666 − 2673. [10] HARTER J, WEIGOLD P, EL-HADIDI M, et al. Soil biochar amendment shapes the composition of N2O-reducing microbial communities [J]. Sci Total Environ, 2016, 562: 379 − 390. [11] LI Yongfu, HU Shuaidong, CHEN Junhui, et al. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review [J]. J Soils Sediments, 2018, 18: 546 − 563. [12] NGUYEN T T N, XU Chengyuan, TAHMASBIAN I, et al. Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis [J]. Geoderma, 2017, 288: 79 − 96. [13] DOYDORA S A, CABRERA M L, DAS K C, et al. Release of nitrogen and phosphorus from poultry litter amended with acidified biochar [J]. Int J Environ Res Public Health, 2011, 8(5): 1491 − 1502. [14] 董玉兵, 吴震, 李博, 等. 追施生物炭对稻麦轮作中麦季氨挥发和氮肥利用率的影响[J]. 植物营养与肥料学报, 2017, 23(5): 1258 − 1267. DONG Yubing, WU Zhen, LI Bo, et al. Effects of biochar reapplication on ammonia volatilization and nitrogen use efficiency during wheat season in a rice-wheat annual rotation system [J]. J Plant Nutr Fert, 2017, 23(5): 1258 − 1267. [15] 王峰, 陈玉真, 吴志丹, 等. 施用生物质炭对酸性茶园土壤氨挥发的影响[J]. 茶叶科学, 2017, 37(1): 60 − 70. WANG Feng, CHEN Yuzhen, WU Zhidan, et al. Effect of biochar addition on ammonia volatilization in acid tea garden [J]. J Tea Sci, 2017, 37(1): 60 − 70. [16] KASTNER J R, MILLER J, DAS K C. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars [J]. J Hazard Mater, 2009, 164(2/3): 1420 − 1427. [17] SARKHOT D V, BERHE A A, GHEZZEHEI T A. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics [J]. J Environ Qual, 2012, 41(4): 1107 − 1114. [18] KAMEYAMA K, MIYAMOTO T, SHIONO T, et al. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil [J]. J Environ Qual, 2012, 41(4): 1131 − 1137. [19] 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响[J]. 环境化学, 2016, 35(8): 1663 − 1669. GAO Kaifang, JIAN Minfei, YU Houping, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk [J]. Environ Chem, 2016, 35(8): 1663 − 1669. [20] 肖永恒, 李永夫, 王战磊, 等. 竹叶及其生物质炭输入对板栗林土壤N2O通量的影响[J]. 植物营养与肥料学报, 2016, 22(3): 697 − 706. XIAO Yongheng, LI Yongfu, WANG Zhanlei, et al. Effects of bamboo leaves and their biochar additions on soil N2O flux in a Chinese chestnut forest [J]. J Plant Nutr Fert, 2016, 22(3): 697 − 706. [21] 孙贇, 何志龙, 林杉, 等. 不同生物质炭对酸化茶园土壤N2O和CO2排放的影响[J]. 农业环境科学学报, 2017, 36(12): 2544 − 2552. SUN Yun, HE Zhilong, LIN Shan, et al. Effects of different biochars on N2O and CO2 emission from acidified tea field soil [J]. J Agro-Environ Sci, 2017, 36(12): 2544 − 2552. [22] RONDON M A, LEHMANN J, RAMÍREZ J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions [J]. Biol Fertil Soils, 2007, 43(6): 699 − 708. [23] 王静. 不同原料生物质炭与铁基生物质炭对土壤无机氮磷淋失影响的研究[D]. 泰安: 山东农业大学, 2018. WANG Jing. Influence of Different Raw Material Derived and Iron-based Biochar on Inorganic Nitrogen and Phosphorus Leaching Loss[D]. Tai’an: Shandong Agricultural University, 2018. [24] SAHA B, BAINS R, GREENWOOD F. Physicochemical characterization of granular ferric hydroxide (GFH) for arsenic (Ⅴ) sorption from water [J]. Sep Sci Technol, 2005, 40(14): 2909 − 2932. [25] BOUWMAN A F, BOUMANS L J M, BATJES N H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands[J]. Global Biogeochem Cycles, 2002, 16: 8. doi: 10.1029/2000GB001389. [26] DEMPSTER D N, JONES D L, MURPHY D V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil [J]. Soil Res, 2012, 50(3): 216 − 221. [27] SIKA M P, HARDIE A G. Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil [J]. Eur J Soil Sci, 2014, 65(1): 113 − 119. [28] 周志红, 李心清, 邢英, 等. 生物炭对土壤氮素淋失的抑制作用[J]. 地球与环境, 2011, 39(2): 278 − 284. ZHOU Zhihong, LI Xinqing, XING Ying, et al. Effect of biochar amendment on nitrogen leaching in soil [J]. Earth Environ, 2011, 39(2): 278 − 284. [29] LAIRD D, FLEMING P, WANG Baiqun, et al. Biochar impact on nutrient leaching from a Midwestern agricultural soil [J]. Geoderma, 2010, 158(3/4): 436 − 442. [30] 张千丰, 王光华. 生物炭理化性质及对土壤改良效果的研究进展[J]. 土壤与作物, 2012, 1(4): 219 − 226. ZHANG Qianfeng, WANG Guanghua. Research progress of physiochemical properties of biochar and its effects as soil amendments [J]. Soil Crop, 2012, 1(4): 219 − 226. [31] 邢英, 李心清, 王兵, 等. 生物炭对黄壤中氮淋溶影响: 室内土柱模拟[J]. 生态学杂志, 2011, 30(11): 2483 − 2488. XING Ying, LI Xinqing, WANG Bing, et al. Effects of biochar on soil nitrogen leaching: a laboratory simulation test with yellow soil column [J]. Chin J Ecol, 2011, 30(11): 2483 − 2488. [32] LEHMANN J, da SILVA J P, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments [J]. Plant Soil, 2003, 249(2): 343 − 357. [33] 张珂彬, 王毅, 刘新亮, 等. 茶园氧化亚氮排放机制及减排措施研究进展[J]. 生态与农村环境学报, 2020, 36(4): 413 − 424. ZHANG Kebin, WANG Yi, LIU Xinliang, et al. Nitrous oxide eemission mechanism and emission mitigation measures of tea plantation: a review [J]. J Ecol Rural Environt, 2020, 36(4): 413 − 424. [34] TORTOSO A C, HUTCHINSON G L. Contributions of autotrophic and heterotrophic nitrifiers to soil NO and N2O emissions [J]. Appl Environ Microbiol, 1990, 56(6): 1799 − 1805. [35] FALCONE A B, SHUG A L, NICHOLAS D J D. Oxidation of hydroxylamine by particles from Nitrosomonas [J]. Biochem Biophys Res Commun, 1962, 9(1/2): 126 − 131. [36] ANDERSON J H. The metabolism of hydroxylamine to nitrite by Nitrosomonas [J]. Biochem J, 1964, 91(1): 8 − 17. [37] RITCHIE G A, NICHOLAS D J. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea [J]. Biochem J, 1972, 126(5): 1181 − 1191. [38] POUGHON L, DUSSAP C G, GROS J B. Energy model and metabolic flux analysis for autotrophic nitrifiers [J]. Biotechnol Bioeng, 2001, 72(4): 416 − 433. [39] FRAME C H, CASCIOTTI K L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium [J]. Biogeosciences, 2010, 7(9): 2695 − 2709. [40] WRAGE N, van GROENIGEN J W, OENEMA O, et al. A novel dual-isotope labelling method for distinguishing between soil sources of N2O [J]. Rapid Commun Mass Spectrom, 2005, 19(22): 3298 − 3306. [41] LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006, 442(7104): 806 − 809. [42] REIGSTAD L J, RICHTER A, DAIMS H, et al. Nitrification in terrestrial hot springs of Iceland and Kamchatka [J]. FEMS Microbiol Ecol, 2008, 64(2): 167 − 174. [43] WEIDLER G, GERBL F W, STANLOTTER H, et al. Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps [J]. Appl Environ Microbiol, 2008, 74(19): 5934 − 5942. [44] OISHI R, TADA C, ASANO R, et al. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations [J]. Microb Ecol, 2012, 63(4): 787 − 793. [45] MORIMOTO S, HAYATSU M, HOSHINO Y T, et al. Quantitative analyses of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types [J]. Microbes Environ, 2011, 26(3): 248 − 253. [46] BALL P N, MacKENZIE M D, DELUCA T H, et al. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils [J]. J Environ Qual, 2010, 39(4): 1243 − 1253. [47] TAKETANI R G, TSAI S M. The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes [J]. Microb Ecol, 2010, 59(4): 734 − 743. [48] SONG Yanjing, ZHANG Xiaoli, MA Bin, et al. Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil [J]. Biol Fertil Soils, 2014, 50(2): 321 − 332. [49] DEMPSTER D N, GLEESON D, SOLAIMAN Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil [J]. Plant Soil, 2012, 354(1): 311 − 324. [50] McCLELLAN T, DEENIK J L, HOCKADAY W C, et al. Effect of charcoal volatile matter content an feedstock on soil microbe-carbon-nitrogen dynamics [J]. Am Geophys Union, 2010, 74(4): 1259 − 1270. [51] CLOUGH T J, BERTRAM J E, RAY J L, et al. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil [J]. Soil Sci Soc Am J, 2010, 74(3): 852 − 860. [52] WARD B B, COURTNEY K J, LANGENHEIM J H. Inhibition of Nitrosomonas europaea by monoterpenes from coastal redwood (Sequoia sempervirens) in whole-cell studies [J]. J Chem Ecol, 1997, 23(11): 2583 − 2598. [53] DELUCA T H, MACKENZIE M D, GUNDALE M J, et al. Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests [J]. Soil Sci Soc Am J, 2006, 70(2): 448 − 453. [54] 王湛, 李银坤, 徐志刚, 等. 生物质炭对土壤理化性状及氮素转化影响的研究进展[J]. 土壤, 2019, 51(5): 835 − 842. WANG Zhan, LI Yinkun, XU Zhigang, et al. Research progresses in effects of biochar on soil physiochemical properties and nitrogen transformation [J]. Soils, 2019, 51(5): 835 − 842. [55] 夏文斌, 林海燕, 李明扬. 生物质炭对南方典型农业生态系统土壤氮素利用率的影响[J]. 现代农业科技, 2019(13): 167 − 170. XIA Wenbin, LIN Haiyan, LI Mingyang. Effects of biochar on soil nitrogen use efficiency in typical agricultural ecosystems in southern China [J]. Xiandai Nongye Keji, 2019(13): 167 − 170. [56] LIU Hongyuan, LI Hongbo, ZHANG Aiping, et al. Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China[J]. Sci Total Environ, 2020, 721: 137626. doi: 10.1016/j.scitotenv.2020.137636. [57] HE Lili, SHAN Jun, ZHAO Xu, et al. Variable responses of nitrification and denitrification in a paddy soil to long-term biochar amendment and short-term biochar addition [J]. Chemosphere, 2019, 234: 558 − 567. [58] KUROSE K, OKAMURA D, YATAGAI M. Composition of the essential oils from the leaves of nine Pinus species and the cones of three of Pinus species [J]. Flavour Fragrance J, 2007, 22(1): 10 − 20. [59] DUAN Pengpeng, ZHANG Qianqian, ZHANG Xi, et al. Mechanisms of mitigating nitrous oxide emissions from vegetable soil varied with manure, biochar and nitrification inhibitors[J]. Agric For Meteorol, 2019, 278: 107672. doi: 10.1016/j.agrformet.2019.107672. [60] FUERTES-MENDIZÁBAL T, HUÉRFANO X, VEGA-MAS I, et al. Biochar reduces the efficiency of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) mitigating N2O emissions[J]. Sci Rep, 2019, 9(1): 2346. doi: 10.1038/s41598-019-38697-2. [61] CHEN Hao, YIN Chang, FAN Xiaoping, et al. Reduction of N2O emission by biochar and/or 3,4-dimethylpyrazole phosphate (DMPP) is closely linked to soil ammonia oxidizing bacteria and nosZI-N2O reducer populations[J]. Sci Total Environ, 2019, 694: 133658. doi: 10.1016/j.scitotenv.2019.133658. [62] 吴震, 陈安枫, 朱爽阁, 等. 集约化菜地N2O排放及减排: 基于文献整合分析[J]. 农业环境科学学报, 2020, 39(4): 707 − 714. WU Zhen, CHEN Anfeng, ZHU Shuangge, et al. Assessing nitrous oxide emissions and mitigation potentials from intensive vegetable ecosystems in China: meta-analysis [J]. J Agro-Environ Sci, 2020, 39(4): 707 − 714. [63] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤N2O产生的关键微生物过程及减排措施[J]. 环境科学, 2014, 35(2): 792 − 800. ZHU Yongguan, WANG Xiaohui, YANG Xiaoru, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies [J]. Environ Sci, 2014, 35(2): 792 − 800. [64] 王小纯, 李高飞, 安帅, 等. 氮素形态对中后期小麦根际土壤氮转化微生物及酶活性的影响[J]. 水土保持学报, 2010, 24(6): 204 − 207. WANG Xiaochun, LI Gaofei, AN Shuai, et al. Effects of nitrogen forms on rhizosphere microorganisms and soil enzyme activity for nitrogen transform of wheat cultivar during elongation and grain filling stage [J]. J Soil Water Conserv, 2010, 24(6): 204 − 207. [65] YAO Huaiying, GAO Yangmei, NICOL G W, et al. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils [J]. Appl Environ Microbiol, 2011, 77(13): 4618 − 4625. [66] NELSON N O, AGUDELO S C, YUAN Wenqiao, et al. Nitrogen and phosphorus availability in biochar-amended soils [J]. Soil Sci, 2011, 176(5): 218 − 226. [67] ROUX-MICHOLLET D, CZARNES S, ADAM B, et al. Effects of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil [J]. Soil Biol Biochem, 2008, 40(7): 1836 − 1845. [68] GELFAND I, YAKIR D. Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest [J]. Soil Biol Biochem, 2008, 40(2): 415 − 424. [69] ZHANG Qiuying, LI Fadong, TANG Changyuan. Quantifying of soil denitrification potential in a wetland ecosystem, Ochi experiment site, Japan [J]. J Resour Ecol, 2012, 3(1): 93 − 96. [70] PRENDERGAST-MILLER M T, BAGGS E M, JOHNSON D. Ectomycorrhizal fungi and N2O production[C]//International Union of Soil Sciences (IUSS). Soil Solution for a Changing World. Brisbane: International Union of Soil Sciences, 2010: 44 − 47. [71] BRAKER G, ZHOU Jizhong, WU Liyou, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities [J]. Appl Environ Microbiol, 2000, 66(5): 2096 − 2104. [72] HARTER J, KRAUSE H M, SCHUETTLER S, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community [J]. ISME J, 2014, 8(3): 660 − 674. [73] WANG Cheng, LU Haohao, DONG Da, et al. Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emission and denitrifying community [J]. Environ Sci Technol, 2013, 47(13): 7341 − 7349. [74] NELISSEN V, SAHA B K, RUYSSCHAERT G, et al. Effect of different biochar and fertilizer types on N2O and NO emissions [J]. Soil Biol Biochem, 2014, 70: 244 − 255. [75] SINGH B P, HATTON B J, BALWANT S, et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils [J]. J Environ Qual, 2010, 39(4): 1224 − 1235. [76] 胡帅栋. 不同用量生物质炭输入对毛竹林土壤N2O排放的影响及其机理[D]. 杭州: 浙江农林大学, 2018. HU Shuaidong. Effects of Different Application Rates of Biochar on the Soil N2O Emission in Moso Bamboo Plantations and Associated Mechanisms[D]. Hangzhou: Zhejiang A&F University, 2018. [77] SONG Yuze, LI Yongfu, CAI Yanjiang, et al. Biochar decreases soil N2O emissions in Moso bamboo plantations through decreasing labile N concentrations, N-cycling enzyme activities and nitrification/denitrification rates [J]. Geoderma, 2019, 348: 135 − 145. [78] HYODO A, MALGHANI S, ZHOU Yong, et al. Biochar amendment suppresses N2O emissions but has no impact on 15N site preference in an anaerobic soil [J]. Rapid Commun Mass Spectrom, 2019, 33(2): 165 − 175. [79] 贺超卉, 董文旭, 胡春胜, 等. 生物质炭对土壤N2O消耗的影响及其微生物影响机理[J]. 中国生态农业学报, 2019, 27(9): 1301 − 1308. HE Chaohui, DONG Wenxu, HU Chunsheng, et al. Biochar’s effect on soil N2O consumption and the microbial mechanism [J]. Chin J Eco-Agric, 2019, 27(9): 1301 − 1308. [80] EDWARDS J D, PITTELKOW C M, KENT A D, et al. Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season [J]. Soil Biol Biochem, 2018, 122: 81 − 90. [81] CAYUELA M L, van ZWIETEN L, SINGH B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis [J]. Agric Ecosyst Environ, 2014, 191: 5 − 16. [82] 谢祖彬, 刘琦. 生物质炭的固碳减排与合理施用[J]. 农业环境科学学报, 2020, 39(4): 901 − 907. XIE Zubin, LIU Qi. Rational application of biochar to sequester carbon and mitigate soil GHGs emissions: a review [J]. J Agro-Environ Sci, 2020, 39(4): 901 − 907. [83] 刘成, 刘晓雨, 张旭辉, 等. 基于整合分析方法评价我国生物质炭施用的增产与固碳减排效果[J]. 农业环境科学学报, 2019, 38(3): 696 − 706. LIU Cheng, LIU Xiaoyu, ZHANG Xuhui, et al. Evaluating the effects of biochar amendment on crop yield and soil carbon sequestration and greenhouse gas emission using meta-analysis [J]. J Agro-Environ Sci, 2019, 38(3): 696 − 706. [84] 冯练, 周俊, 董玉兵, 等. 生物质炭对集约化菜地N2O排放和蔬菜产量的影响[J]. 植物营养与肥料学报, 2019, 25(7): 1115 − 1124. FENG Lian, ZHOU Jun, DONG Yubing, et al. Effects of biochar on mitigating nitrous oxide emission from an intensive vegetable field and crop yields [J]. J Plant Nutr Fert, 2019, 25(7): 1115 − 1124. [85] NELISSEN V, RÜTTING T, HUYGENS D, et al. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil [J]. Soil Biol Biochem, 2012, 55: 20 − 27. [86] OBIA A, CORNELISSEN G, MULDER J, et al. Effect of soil pH increase by biochar on NO, N2O and N2 production during denitrification in acid soils[J]. PLoS One, 2015, 10(9): e0138781. doi: 10.1371/journal.pone.0138781. [87] HE Lizhi, FAN Shiliang, MÜLLER K, et al. Biochar reduces the bioavailability of di-2-ethylhexyl phthalate in soil [J]. Chemosphere, 2016, 142: 24 − 27. [88] TAGHIZADEH-TOOSI A, CLOUGH T J, CONDRON L M, et al. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches [J]. J Environ Qual, 2011, 40(2): 468 − 476. [89] ZHANG Afeng, LIU Yuming, PAN Genxing, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain [J]. Plant Soil, 2012, 351(1): 263 − 275. [90] MALGHANI S, GLEIXNER G, TRUMBORE S E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions [J]. Soil Biol Biochem, 2013, 62: 137 − 146. [91] SUN Liying, LI Lu, CHEN Zhaozhi, et al. Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils [J]. Soil Sci Plant Nutr, 2014, 60(2): 254 − 265. [92] JI Cheng, LI Shuqing, GENG Yajun, et al. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations[J]. Geoderma, 2020, 365: 114223. doi: 10.1016/j.geoderma.2020.114223. [93] 潘凤娥, 胡俊鹏, 索龙, 等. 添加玉米秸秆及其生物质炭对砖红壤N2O排放的影响[J]. 农业环境科学学报, 2016, 35(2): 396 − 402. PAN Feng’e, HU Junpeng, SUO Long, et al. Effect of corn stalk and its biochar on N2O emissions from latosol soil [J]. J Agro-Environ Sci, 2016, 35(2): 396 − 402. [94] 刘杰云, 邱虎森, 王聪, 等. 生物质炭对双季稻田土壤反硝化功能微生物的影响[J]. 环境科学, 2019, 40(5): 2394 − 2403. LIU Jieyun, QIU Husen, WANG Cong, et al. Influence of biochar amendment on soil denitrifying microorganisms in double rice cropping system [J]. Environ Sci, 2019, 40(5): 2394 − 2403. [95] YANAI Y, TOYOTA K, OKAZAKI M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments [J]. Soil Sci Plant Nutr, 2007, 53(2): 181 − 188. [96] van ZWIETEN L, SINGH B P, KIMBER S W L, et al. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application [J]. Agric Ecosyst Environ, 2014, 191: 53 − 62. [97] AAMER M, SHAABAN M, HASSAN M U, et al. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH[J]. J Environ Manage, 2020, 255(1): 109891. doi: 10.1016/j.jenvman.2019.109891. [98] DONG Wenxu, WALKIEWICZ A, BIEGANOWSKI A, et al. Biochar promotes the reduction of N2O to N2 and concurrently suppresses the production of N2O in calcareous soil[J]. Geoderma, 2020, 362: 114091. doi: 10.1016/j.geoderma.2019.114091. [99] 张秀玲, 孙贇, 张水清, 等. 生物质炭对华北平原4种典型土壤N2O排放的影响[J]. 环境科学, 2019, 40(11): 5173 − 5181. ZHANG Xiuling, SUN Yun, ZHANG Shuiqing, et al. Effects of biochar on N2O emission from four typical soils in the north China plain [J]. Environ Sci, 2019, 40(11): 5173 − 5181. [100] 袁颖红, 刘贵军, 李丽, 等. 生物质炭与过氧化钙对旱地红壤氮素转化及N2O排放的影响[J]. 南昌工程学院学报, 2018, 37(4): 16 − 21. YUAN Yinghong, LIU Guijun, LI Li, et al. Effect of biochar and calcium peroxide on nitrogen transformation and emissions of N2O in upland red soil [J]. J Nanchang Inst Technol, 2018, 37(4): 16 − 21. [101] 李双双, 陈晨, 段鹏鹏, 等. 生物质炭对酸性菜地土壤N2O排放及相关功能基因丰度的影响[J]. 植物营养与肥料学 报, 2018, 24(2): 414 − 423. LI Shuangshuang, CHEN Chen, DUAN Pengpeng, et al. Effects of biochar application on N2O emissions and abundance of nitrogen related functional genes in an acidic vegetable soil [J]. J Plant Nutr Fert, 2018, 24(2): 414 − 423. [102] MAO Hui, LÜ Zhiyuan, SUN Hongda, et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost [J]. Bioresour Technol, 2018, 258: 195 − 202. [103] HAWTHORNE I, JOHNSON M S, JASSAL R S, et al. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil [J]. J Environ Manage, 2017, 192: 203 − 214. [104] SACKETT T E, BASILIKO N, NOYCE G L, et al. Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest [J]. GCB Bioenergy, 2015, 7(5): 1062 − 1074. [105] CAYUELA M L, SANCHEZMONEDERO M A, ROIG A, et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?[J]. Sci Rep, 2013, 3: 1732. doi: 10.1038/srep01732. [106] MITCHELL P J, SIMPSON A J, SOONG R, et al. Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil [J]. Soil Biol Biochem, 2015, 81: 244 − 254. [107] SPOKAS K A, KOSKINEN W C, BAKER J M, et al. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil [J]. Chemosphere, 2009, 77(4): 574 − 581. [108] CHAN K Y, van ZWIETEN L, MESZAROS I, et al. Agronomic values of greenwaste biochar as a soil amendment [J]. Aus J Soil Res, 2007, 45(8): 629 − 634. [109] 王泳斌, 武均, 吕锦慧, 等. 不同氮素水平下有机物料添加对陇中黄土高原旱作农田N2O排放特征的影响[J]. 干旱 地区农业研究, 2019, 37(1): 108 − 115. WANG Yongbin, WU Jun, LÜ Jinhui, et al. Effects of organic materials on N2O emissions under different N-fertilizer levels in dryland of the Loess Plateau of central Gansu Province [J]. Agric Res Arid Areas, 2019, 37(1): 108 − 115. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200549
计量
- 文章访问数: 2216
- HTML全文浏览量: 647
- PDF下载量: 123
- 被引次数: 0