留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响

钱钱 杨兴 郭明 秦鹏 徐颂 王海龙

钱钱, 杨兴, 郭明, 秦鹏, 徐颂, 王海龙. 生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响[J]. 浙江农林大学学报, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001
引用本文: 钱钱, 杨兴, 郭明, 秦鹏, 徐颂, 王海龙. 生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响[J]. 浙江农林大学学报, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001
QIAN Qian, YANG Xing, GUO Ming, QIN Peng, XU Song, WANG Hailong. Adsorption of Zn2+ from a Zn2+-DEP (diethyl phthalate)composite solution using biochars in soil[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001
Citation: QIAN Qian, YANG Xing, GUO Ming, QIN Peng, XU Song, WANG Hailong. Adsorption of Zn2+ from a Zn2+-DEP (diethyl phthalate)composite solution using biochars in soil[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001

生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响

doi: 10.11833/j.issn.2095-0756.2019.06.001
基金项目: 

国家自然科学基金面上项目 21577131

国家自然科学基金面上项目 21876027

广东省自然科学基金重点项目 2017A030311019

浙江省自然科学基金重点项目 LZ15D010001

详细信息
    作者简介: 钱钱, 从事土壤资源与生态环境研究。E-mail:1015373782@qq.com
    通信作者: 王海龙, 教授, 博士, 博士生导师, 从事生物质炭的环境功能和土壤修复研究。E-mail:hailongwang@fosu.edu.cn
  • 中图分类号: S714

Adsorption of Zn2+ from a Zn2+-DEP (diethyl phthalate)composite solution using biochars in soil

  • 摘要: 为研究施用生物质炭后土壤对重金属-邻苯二甲酸酯(PAEs)复合污染物的吸附效果,选取猪炭和法国梧桐Platanus orientalis炭,采用批量吸附试验,并初步探究其动力学和热力学吸附机理。结果表明:猪炭(PB)和法国梧桐炭(POB)均可促进土壤对重金属-PAEs复合污染溶液中锌离子(Zn2+)的吸附,且随生物质炭施加量的增加更加明显,其中相较不加生物质炭的处理,施加质量分数为2% PB可使饱和吸附量提高31.61%,是施加质量分数为2% POB的5.90倍。动力学吸附行为可采用准二级动力模型较好描述,主要吸附过程包括液膜扩散和颗粒内扩散。热力学吸附过程为自发的吸热反应,并以氢键作用力为主。此外,DEP为典型的PAEs,其添加可促进土壤对溶液中Zn2+的吸附。
  • 图  1  猪炭(A,C)和法国梧桐炭(B,D)的扫描电镜(SEM)和X射线能谱(EDS)图

    Figure  1  Scanning electron microsope (SEM) and energy dispersive X-ray spectrometry(EDS) results of biochars derived from dead pigs (A, C) and Platanus orientalis branches (B, D)

    图  2  猪炭和法国梧桐炭傅里叶变换红外光谱图

    Figure  2  Fourier transform infrared spectra of biochars derived from dead pigs and Platanus orientalis branches

    图  3  不同处理土壤对Zn2+的饱和吸附量

    Figure  3  Saturated adsorption quantity of Zn2+ in different treated soils

    图  4  不同时间各处理土壤对Zn2+的吸附量

    Figure  4  Adsorption quantity of Zn2+ in soil at different time

    图  5  不同处理土壤吸附Zn2+的动力学曲线

    Figure  5  Kinetics plots for the adsorption of Zn2+ on different treated soils

    表  1  供试生物质炭的基本理化性质

    Table  1.   Physicochemical properties of biochars used in the experiment

    生物质炭PH电导率/(dS·m-1)碳/(mg·g-1)氢/(mg·g-1)氧/(mg·g-1)氮/(mg·g-1)磷/(mg·g-1)灰分/(mg·g-1)比表面积/(m2·g-1)
    猪炭(PB)10.042.1737.521.7455.894.747.8560023.10
    法国梧桐炭(POB)9.470.2281.322.2415.740.450.05662.80
    下载: 导出CSV

    表  2  不同处理土壤吸附Zn2+的4种动力学模型参数

    Table  2.   Parameters of four kinetic models for the adsorption of Zn2+ on different treated soils

    处理DEP/(mg·L-1准一级线性方程准二级线性方程Elovich方程颗粒内扩散方程
    K1/h-1R2Qe/(mg·g-1K2/(mg·g-1·h-1R2βR2颗粒内扩散速率常数/(mg·g-1·h-0.5
    Kt1Kt1Kt1
    ck00.479 10.819 60.570 81.846 70.998 816.345 20.983 40.066 20.042 20.011 6
    POB100.486 10.791 40.589 71.774 80.998 915.515 90.972 70.072 30.039 20.011 2
    POB200.599 10.909 20.613 21.583 10.998 813.798 80.991 40.088 40.028 30.010 8
    PB100.489 80.833 20.624 91.738 30.999 114.819 20.980 80.077 50.037 70.013 9
    PB200.667 20.890 40.716 41.193 90.998 810.924 20.991 60.106 80.049 50.024 8
    ck250.558 80.797 70.616 11.700 30.999 013.715 50.940 60.096 20.016 60.017 1
    POB1250.552 10.743 40.637 71.479 20.998 713.066 80.941 90.093 70.028 10.018 1
    POB2250.544 30.842 20.644 51.617 30.998 913.575 90.969 00.094 60.018 10.032 4
    PB1250.514 20.885 10.719 11.479 10.999 012.794 30.982 90.090 30.040 70.026 7
    PB2250.482 70.780 00.808 41.244 30.999 811.350 70.976 40.097 20.052 70.026 9
    下载: 导出CSV

    表  3  各处理土壤吸附Zn2+的热力学参数

    Table  3.   Thermodynamic parameters for the adsorption of Zn2+ on different treated soils

    DEP处理TKΔGΔHΔS
    155.809 6-4.213 014.506 40.065 3
    257.608 9-5.027 814.506 40.065 3
    ck359.311 7-5.713 614.506 40.065 3
    4510.278 7-6.160 414.506 40.065 3
    5512.545 8-6.897 614.506 40.065 3
    156.606 2-4.520 713.267 80.062 2
    258.669 7-5.351 113.267 80.062 2
    POB13510.324 2-5.977 913.267 80.062 2
    4511.7930-6.523 713.267 80.062 2
    5513.1110-7.017 813.267 80.062 2
    157.0794-4.686 414.326 20.066 4
    259.333 6-5.534 014.326 20.066 4
    0POB23511.138 2-6.172 314.326 20.066 4
    4513.243 3-6.830 414.326 20.066 4
    5514.724 0-7.334 214.326 20.066 4
    157.955 1-4.965 613.868 00.065 7
    2510.387 2-5.798 913.868 00.065 7
    PB13512.335 3-6.433 713.868 00.065 7
    4514.512 3-7.072 313.868 00.065 7
    5516.199 1-7.594 613.868 00.065 7
    159.398 1-5.364 712.453 20.062 1
    2511.885 7-6.132 812.453 20.062 1
    PB23513.774 1-6.716 212.453 20.062 1
    4516.046 5-7.338 012.453 20.062 1
    5517.809 7-7.853 012.453 20.062 1
    156.415 4-4.450 512.729 70.059 8
    257.937 2-5.132 412.729 70.059 8
    ck359.570 0-5.783 712.729 70.059 8
    4510.602 2-6.242 312.729 70.059 8
    5512.452 8-6.877 312.729 70.059 8
    156.865 5-4.612 912.566 50.060 1
    258.981 1-5.438 612.566 50.060 1
    POB13510.934 0-6.124 912.566 50.060 1
    4512.031 2-6.576 612.566 50.060 1
    5513.110 5-7.017 712.566 50.060 1
    158.031 3-4.988 411.491 30.057 6
    2510.159 9-5.744 111.491 30.057 6
    25POB23511.667 8-6.291 211.491 30.057 6
    4513.631 4-6.906 711.491 30.057 6
    5514.337 3-7.261 611.491 30.057 6
    158.676 4-5.173 411.521 10.058 4
    2511.261 7-5.999 211.521 10.058 4
    PB13512.808 6-6.530 111.521 10.058 4
    4514.851 5-7.133 411.521 10.058 4
    5515.640 3-7.498 811.521 10.058 4
    159.587 1-5.412 412.588 70.062 9
    2512.632 2-6.283 712.588 70.062 9
    PB23514.602 3-6.865 712.588 70.062 9
    4516.832 9-7.464 512.588 70.062 9
    5518.409 1-7.943 312.588 70.062 9
    说明:单位DEP为mg·L-1T为℃;ΔG为kJ·mol-1ΔH为kJ·mol-1ΔS为kJ·mol-1·K-1
    下载: 导出CSV
  • [1] 汲广云, 郭明, 杨兴, 等.巯基硅烷改性多壁碳纳米管的合成及其对Cd2+的吸附性能研究[J].环境科学学报, 2017, 37(6):2171-2180.

    JI Guangyun, GUO Ming, YANG Xing, et al. Synthesis of mercaptosilane-modified multi-walled carbon nanotubes and their adsorption properties for Cd2+[J]. Chin J Environ Sci, 2017, 37(6):2171-2180.
    [2] 殷小林, 孙志忠, 袁定阳, 等.水稻体内镉离子代谢机制研究进展[J].分子植物育种, 2018, 16(3):972-978.

    YIN Xiaolin, SUN Zhizhong, YUAN Dingyang, et al. Research progress on the mechanism of cadmium ion metabolism in rice[J]. Mol Plant Breed, 2018, 16(3):972-978.
    [3] 孙涛, 陆扣萍, 王海龙.不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J].浙江农林大学学报, 2015, 32(1):140-149.

    SUN Tao, LU Kouping, WANG Hailong. Research progress on leaching and repair of heavy metal contaminated soil under different eluents and leaching conditions[J]. J Zhejiang A & F Univ, 2015, 32(1):140-149.
    [4] 张云霞, 宋波, 杨子杰, 等.广西某铅锌矿影响区农田土壤重金属污染特征及修复策略[J].农业环境科学学报, 2018, 37(2):239-249.

    ZHANG Yunxia, SONG Bo, YANG Zijie, et al. Characteristics of heavy metal pollution and remediation strategies in farmland soil of a lead-zinc mine-affected area in Guangxi[J]. J Agric Environ Sci, 2018, 37(2):239-249.
    [5] 张小凯.生物质炭对土壤中邻苯二甲酸酯(PAEs)吸附解吸附行为的影响[D].杭州: 浙江农林大学, 2014.

    ZHANG Xiaokai. Effects of Biochar on the Adsorption and Desorption Behavior of Phthalates (PAEs) in Soil[D]. Hangzhou: Zhejiang A & F University, 2014.
    [6] 吴琼, 张晓峰, 任伟, 等.邻苯二甲酸酯的污染现状及微生物降解研究进展[J].微生物学杂志, 2018, 38(2):122-128.

    WU Qiong, ZHANG Xiaofeng, REN Wei, et al. Research progress on pollution status and microbial degradation of phthalates[J]. J Microbiol, 2018, 38(2):122-128.
    [7] 朱光耀, 何丽芝, 秦鹏, 等.施用猪炭对土壤吸附Pb2+的影响[J].浙江农林大学学报, 2019, 36(3):573-580.

    ZHU Guangyao, HE Lizhi, QIN Peng, et al. Dead pig-derived biochar treatments and soil adsorption of Pb2+[J]. J Zhejiang A & F Univ, 2019, 36(3):573-580.
    [8] 郭明, 谭贤, 孙立苹, 等.邻苯二甲酸酯核-壳结构型分子印迹微球的制备及分子识别性能[J].高分子材料科学与工程, 2016, 32(10):41-48.

    GUO Ming, TAN Xian, SUN Liping, et al. Preparation and molecular recognition properties of phthalate core-shell structure molecularly imprinted microspheres[J]. Polym Sci Eng, 2016, 32(10):41-48.
    [9] 陆扣萍, 郭茜, 胡国涛, 等.猪炭和竹炭的理化特性差异及其对菜地土壤氨挥发的影响[J].浙江农林大学学报, 2017, 34(4):647-655.

    LU Kouping, GUO Xi, HU Guotao, et al. Differences in physical and chemical properties of pig charcoal and bamboo charcoal and their effects on ammonia volatilization in vegetable soils[J]. J Zhejiang A & F Univ, 2017, 34(4):647-655.
    [10] ZHANG Xiaokai, WANG Hailong, HE Lizhi, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environ Sci Pollut Res, 2013, 20(12):8472-8483.
    [11] 郭茜, 陆扣萍, 胡国涛, 等.死猪炭和竹炭对菜地土壤理化性质和蔬菜产量的影响[J].浙江农林大学学报, 2017, 34(2):244-252.

    GUO Xi, LU Kouping, HU Guotao, et al. Effects of dead pig charcoal and bamboo charcoal on soil physical and chemical properties and vegetable yield in vegetable fields[J]. J Zhejiang A & F Univ, 2017, 34(2):244-252.
    [12] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere, 2014, 99(3):19-33.
    [13] 张小凯, 何丽芝, 陆扣萍, 等.生物质炭修复重金属及有机物污染土壤的研究进展[J].土壤, 2013, 45(6):970-977.

    ZHANG Xiaokai, HE Lizhi, LU Kouping, et al. Research progress in biomass carbon for remediation of heavy metals and organic pollutants:a review[J]. Soils, 2013, 45(6):970-977.
    [14] 王棋, 王斌伟, 谈广才, 等.生物炭对Cu(Ⅱ)、Pb(Ⅱ)、Ni(Ⅱ)和Cd(Ⅱ)的单一及竞争吸附研究[J].北京大学学报(自然科学版), 2017, 53(6):1122-1132.

    WANG Qi, WANG Binwei, TAN Guangcai, et al. Single and competitive adsorption of Cu(Ⅱ), Pb(Ⅱ), Ni(Ⅱ) and Cd(Ⅱ) by biochar[J]. J Peking Univ Nat Sci Ed, 2017, 53(6):1122-1132.
    [15] 王秋月, 杨兴, 何丽芝, 等.酸化猪炭对土壤中不同形态磷质量分数及相互转化的影响[J].浙江农林大学学报, 2018, 35(3):387-397.

    WANG Qiuyue, YANG Xing, HE Lizhi, et al. Effects of acidified pig charcoal on the mass fraction and mutual transformation of different forms of phosphorus in soil[J]. J Zhejiang A & F Univ, 2018, 35(3):387-397.
    [16] 杨兴, 黄化刚, 王玲, 等.烟秆生物质炭热解温度优化及理化性质分析[J].浙江大学学报(农业与生命科学版), 2016, 42(2):245-255.

    YANG Xing, HUANG Huagang, WANG Ling, et al. Optimization of pyrolysis temperature and physical and chemical properties of tobacco stalk biomass[J]. J Zhejiang Univ Agric Life Sci, 2016, 42(2):245-255.
    [17] 张朴, 李仁英, 吴洪生, 等.水稻秸秆生物质炭对土壤磷吸附影响的研究[J].土壤, 2018, 50(2):264-269.

    ZHANG Pu, LI Renying, WU Hongsheng, et al. Effect of rice straw biomass carbon on soil phosphorus adsorption[J]. Soil, 2018, 50(2):264-269.
    [18] KONG Jiaojiao, YUE Qinyan, SUN Shenglei, et al. Adsorption of Pb(Ⅱ) from aqueous solution using keratin waste-hide waste:equilibrium, kinetic and thermodynamic modeling studies[J]. Chem Eng J, 2014, 241(4):393-400.
    [19] 冯杰, 李文英, 谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报, 2002, 31(5):362-366.

    FENG Jie, LI Wenying, XIE Kechang. Study on coal structure by Fourier transform infrared spectroscopy[J]. J China Univ Min Technol, 2002, 31(5):362-366.
    [20] HOSSAIN M K, STREZOV V, CHAN K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. J Environ Manage, 2011, 92(1):223-228.
    [21] 王月瑛, 吕贻忠.酸洗处理对生物质炭表面吸附特性及光谱特性的影响[J].光谱学与光谱分析, 2016, 36(10):3292-3296.

    WANG Yuexi, LÜ Yizhong. Effects of pickling on adsorption and spectral properties of biomass carbon surface[J]. Spectrosc Spectral Anal, 2016, 36(10):3292-3296.
    [22] 赵青青, 王海波, 史静.生物质炭对Cd污染土壤根际微团聚体Cd形态转化的影响[J].环境科学研究, 2018, 31(3):255-261.

    ZHAO Qingqing, WANG Haibo, SHI Jing. Effects of biochar on the transformation of Cd forms in rhizosphere microaggregates of Cd contaminated soil[J]. Environ Sci Res, 2018, 31(3):255-261.
    [23] 孙康, 缪存标, 何跃.生物质炭在重金属污染土壤修复中的应用研究现状[J].生物质化学工程, 2017, 51(4):66-74.

    SUN Kang, MIAO Cunbiao, HE Yue. Current status of application of biomass carbon in heavy metal contaminated soil remediation[J]. Biomass Chem Eng, 2017, 51(4):66-74.
    [24] 徐楠楠, 林大松, 徐应明, 等.玉米秸秆生物炭对Cd2+的吸附特性及影响因素[J].农业环境科学学报, 2014, 33(5):958-964.

    XU Nannan, LIN Dasong, XU Yingming, et al. Adsorption characteristics and influencing factors of corn straw biochar on Cd2+[J]. J Agro-Environ Sci, 2014, 33(5):958-964.
    [25] 刘晶晶, 杨兴, 陆扣萍, 等.生物质炭对土壤重金属形态转化及其有效性的影响[J].环境科学学报, 2015, 35(11):3679-3687.

    LIU Jingjing, YANG Xing, LU Kouping, et al. Effects of biochar on the transformation and availability of heavy metals in soil[J]. Chin J Environ Sci, 2015, 35(11):3679-3687.
    [26] 刘静.水溶性有机物(DOM)对土壤中Cd、Zn吸附的影响[D].武汉: 华中农业大学, 2006.

    LIU Jing. Effect of Water-Soluble Organic Matter (DOM) on the Adsorption of Cd and Zn in Soil[D]. Wuhan: Huazhong Agricultural University, 2006.
    [27] 邹献中, 徐建民, 赵安珍, 等.可变电荷土壤中铜离子的解吸[J].土壤学报, 2004, 41(1):68-73.

    ZOU Xianzhong, XU Jianmin, ZHAO Anzhen, et al. Desorption of copper ions in variable charge soils[J]. J Soil Sci, 2004, 41(1):68-73.
    [28] 周东美, 王慎强, 陈怀满.土壤中有机污染物-重金属复合污染的交互作用[J].生态环境学报, 2000, 9(2):143-145.

    ZHOU Dongmei, WANG Shenqiang, CHEN Huaiman. Interaction of organic pollutants-heavy metal complex pollution in soil[J]. J Eco-Environ, 2000, 9(2):143-145.
    [29] 王璐.生物炭的制备、表征及其对黄土吸附Cd (Ⅱ)/Zn(Ⅱ)的影响及机制[D].兰州: 兰州交通大学, 2016.

    WANG Lu. Preparation and Characterization of Biochar and Its Effect on Adsorption of Cd(Ⅱ)/Zn(Ⅱ) on Loess and Its Mechanism[D]. Lanzhou: Lanzhou Jiaotong University, 2016.
    [30] 李坤权, 郑正, 蒋剑春, 等.铅在棉秆基活性炭上的吸附动力学与热力学[J].环境科学, 2010, 31(5):1402-1408.

    LI Kunquan, ZHENG Zheng, JIANG Jianchun, et al. Adsorption kinetics and thermodynamics of lead on cotton stalk-based activated carbon[J]. Environ Sci, 2010, 31(5):1402-1408.
    [31] 李银, 刘瑜, 李昌乐.含水层介质对Cr(Ⅵ)的吸附特征[J].环境工程学报, 2016, 10(4):2071-2076.

    LI Yin, LIU Yu, LI Changle. Adsorption characteristics of Cr(Ⅵ) in aquifer medium[J]. J Environ Eng, 2016, 10(4):2071-2076.
    [32] VIMONSES V, LEI S, JIN B, et al. Adsorption of congo red by three Australian kaolins[J]. Appl Clay Sci, 2009, 43(3/4):465-472.
    [33] 汲广云.巯基硅烷改性多壁碳纳米管的合成及其对镉和铅的吸附性能研究[D].杭州: 浙江农林大学, 2017.

    JI Guangyun. Synthesis of Mercaptosilane-modified Multi-walled Carbon Nanotubes and Their Adsorption Properties for Cadmium and Lead[D]. Hangzhou: Zhejiang A & F University, 2017.
    [34] 王彤彤, 马江波, 曲东, 等.两种木材生物炭对铜离子的吸附特性及其机制[J].环境科学, 2017, 38(5):2161-2171.

    WANG Tongtong, MA Jiangbo, QU Dong, et al. Adsorption characteristics and mechanism of copper bio-charcoal on copper ions[J]. Environ Sci, 2017, 38(5):2161-2171.
    [35] 郭文娟, 梁学峰, 林大松, 等.土壤重金属钝化修复剂生物炭对镉的吸附特性研究[J].环境科学, 2013, 34(9):3716-3721.

    GUO Wenjuan, LIANG Xuefeng, LIN Dasong, et al. Adsorption characteristics of cadmium by biochar with heavy metal passivation and repair agent[J]. Environ Sci, 2013, 34(9):3716-3721.
    [36] 柏静儒, 王擎, 秦宏, 等.油页岩飞灰对重金属离子的吸附动力学及热力学[J].燃料化学学报, 2011, 39(5):378-384.

    BAI Jingru, WANG Qing, QIN Hong, et al. Adsorption kinetics and thermodynamics of heavy shale fly ash on heavy metal ions[J]. J Fuel Chem Technol, 2011, 39(5):378-384.
    [37] 王金贵, 吕家珑, 曹莹菲.镉和铅在2种典型土壤中的吸附及其与温度的关系[J].水土保持学报, 2011, 25(6):254-259.

    WANG Jingui, LÜ Jialong, CAO Yingfei. Adsorption of cadmium and lead in two typical soils and its relationship with temperature[J]. J Soil Water Conserv, 2011, 25(6):254-259.
    [38] DIVINCENZO J P, SPARKS D L. Slow sorption kinetics of pentachlorophenol on soil:concentration effects[J]. Environ Science Technol, 1997, 31(4):977-983.
    [39] 范世锁, 李雪, 胡凯, 等.污泥基生物炭吸附重金属Cd的动力学和热力学[J].环境工程学报, 2016, 10(10):5971-5977.

    FAN Shisuo, LI Xue, HU Kai, et al. Kinetics and thermodynamics of adsorption of heavy metal Cd by sludge-based biochar[J]. J Environ Eng, 2016, 10(10):5971-5977.
  • [1] 潘丽霞, 姜振辉, 张雯怡, 周家树, 刘娟, 蔡延江, 李永夫.  秸秆及其生物质炭输入对毛竹林土壤氨氧化微生物与氮循环相关酶活性的影响 . 浙江农林大学学报, 2024, 41(1): 1-11. doi: 10.11833/j.issn.2095-0756.20230388
    [2] 闫芳彬, 郑景明, 宫殷婷, 赵一臣, 张家琦.  园林废弃物资源化处理对人工林土壤养分及微生物碳源利用的影响 . 浙江农林大学学报, 2023, 40(5): 1045-1053. doi: 10.11833/j.issn.2095-0756.20220620
    [3] 顾绍茹, 杨兴, 陈翰博, 杨冰霜, 戴志楠, 陈俊辉, 方铮, 王海龙.  小龙虾壳炭和细叶榕枝条炭对土壤养分及镉和铅生物有效性的影响 . 浙江农林大学学报, 2023, 40(1): 176-187. doi: 10.11833/j.issn.2095-0756.20220182
    [4] 屈田华, 李永夫, 张少博, 郦琳琳, 李永春, 刘娟.  生物质炭输入影响土壤氮素转化与氧化亚氮排放的研究进展 . 浙江农林大学学报, 2021, 38(5): 926-936. doi: 10.11833/j.issn.2095-0756.20200549
    [5] 徐传红, 卢明星, 范弟武, 程虎, 韩建刚.  湿地围垦对土壤碱性磷酸酶动力学特征的影响 . 浙江农林大学学报, 2020, 37(3): 522-530. doi: 10.11833/j.issn.2095-0756.20190388
    [6] 胡蝶, 李文奇, 张利萍, 关莹, 高慧.  废报纸生物质炭的制备及对铜离子的吸附性能 . 浙江农林大学学报, 2020, 37(2): 325-334. doi: 10.11833/j.issn.2095-0756.2020.02.018
    [7] 韩晓亮, 王秀茹, 侯琨, 贾芳芳, 孙妍, 赵森, 王铭浩, 阎世煜, 马景行.  黑土夏玉米施用生物质炭最佳施用时期和最佳用量 . 浙江农林大学学报, 2019, 36(1): 96-106. doi: 10.11833/j.issn.2095-0756.2019.01.013
    [8] 朱光耀, 何丽芝, 秦鹏, 杨兴, 陆扣萍, 刘兴元, 王海龙.  施用猪炭对土壤吸附Pb2+的影响 . 浙江农林大学学报, 2019, 36(3): 573-580. doi: 10.11833/j.issn.2095-0756.2019.03.019
    [9] 包骏瑶, 赵颖志, 严淑娴, 白珊, 李松昊, 徐秋芳, 叶正钱, 沈颖, 陈俊辉.  不同农林废弃物生物质炭对雷竹林酸化土壤的改良效果 . 浙江农林大学学报, 2018, 35(1): 43-50. doi: 10.11833/j.issn.2095-0756.2018.01.006
    [10] 赵伟宁, 杨兴, 何丽芝, 郭佳, 王海龙.  热解温度对典型南方木本园林废弃物生物质炭理化特性的影响 . 浙江农林大学学报, 2018, 35(6): 1007-1016. doi: 10.11833/j.issn.2095-0756.2018.06.003
    [11] 张建云, 吴胜春, 王敏艳, 单胜道, 曹志洪, 张进.  烟秆炭修复重金属污染土壤的效应及对烟草生长的影响 . 浙江农林大学学报, 2018, 35(4): 674-683. doi: 10.11833/j.issn.2095-0756.2018.04.013
    [12] 陆扣萍, 郭茜, 胡国涛, 杨兴, 许晓丽, 王海龙.  猪炭和竹炭的理化特性差异及其对菜地土壤氨挥发的影响 . 浙江农林大学学报, 2017, 34(4): 647-655. doi: 10.11833/j.issn.2095-0756.2017.04.010
    [13] 张建云, 高才慧, 朱晖, 钟水根, 杨纹砚, 郑均泷, 吴胜春, 单胜道, 王志荣, 张进, 曹志洪, Peter CHRISTIE.  生物质炭对土壤中重金属形态和迁移性的影响及作用机制 . 浙江农林大学学报, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
    [14] 陈红贤, 于笑笑, 王晨阳, 张敏, 刘忠华.  国槐槐角种胚细胞悬浮培养的动力学研究 . 浙江农林大学学报, 2016, 33(2): 272-279. doi: 10.11833/j.issn.2095-0756.2016.02.012
    [15] 孙涛, 陆扣萍, 王海龙.  不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展 . 浙江农林大学学报, 2015, 32(1): 140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021
    [16] TONGThiPhuong, 马中青, 陈登宇, 张齐生.  基于热重红外联用技术的竹综纤维素热解过程及动力学特性 . 浙江农林大学学报, 2014, 31(4): 495-501. doi: 10.11833/j.issn.2095-0756.2014.04.001
    [17] 欧阳赣, 单胜道, 罗锡平, 杨亮, 宋成芳.  毛竹催化热解动力学研究 . 浙江农林大学学报, 2012, 29(5): 680-685. doi: 10.11833/j.issn.2095-0756.2012.05.007
    [18] 修树东, 倪忠进, 姚文斌, 应华香.  基于动力学的钢丝绳断丝数检测方法初探 . 浙江农林大学学报, 2009, 26(4): 461-466.
    [19] 姜培坤, 徐秋芳, 邬奇峰, 吴家森.  施肥对板栗林土壤养分和生物学性质的影响 . 浙江农林大学学报, 2007, 24(4): 445-449.
    [20] 夏经国, 夏亿谦.  热力学第二定律一个间接的实验证据 . 浙江农林大学学报, 1995, 12(4): 446-448.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.06.001

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2019/6/1051

图(5) / 表(3)
计量
  • 文章访问数:  14178
  • HTML全文浏览量:  10439
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 修回日期:  2019-04-03
  • 刊出日期:  2019-12-20

生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响

doi: 10.11833/j.issn.2095-0756.2019.06.001
    基金项目:

    国家自然科学基金面上项目 21577131

    国家自然科学基金面上项目 21876027

    广东省自然科学基金重点项目 2017A030311019

    浙江省自然科学基金重点项目 LZ15D010001

    作者简介:

    钱钱, 从事土壤资源与生态环境研究。E-mail:1015373782@qq.com

    通信作者: 王海龙, 教授, 博士, 博士生导师, 从事生物质炭的环境功能和土壤修复研究。E-mail:hailongwang@fosu.edu.cn
  • 中图分类号: S714

摘要: 为研究施用生物质炭后土壤对重金属-邻苯二甲酸酯(PAEs)复合污染物的吸附效果,选取猪炭和法国梧桐Platanus orientalis炭,采用批量吸附试验,并初步探究其动力学和热力学吸附机理。结果表明:猪炭(PB)和法国梧桐炭(POB)均可促进土壤对重金属-PAEs复合污染溶液中锌离子(Zn2+)的吸附,且随生物质炭施加量的增加更加明显,其中相较不加生物质炭的处理,施加质量分数为2% PB可使饱和吸附量提高31.61%,是施加质量分数为2% POB的5.90倍。动力学吸附行为可采用准二级动力模型较好描述,主要吸附过程包括液膜扩散和颗粒内扩散。热力学吸附过程为自发的吸热反应,并以氢键作用力为主。此外,DEP为典型的PAEs,其添加可促进土壤对溶液中Zn2+的吸附。

English Abstract

钱钱, 杨兴, 郭明, 秦鹏, 徐颂, 王海龙. 生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响[J]. 浙江农林大学学报, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001
引用本文: 钱钱, 杨兴, 郭明, 秦鹏, 徐颂, 王海龙. 生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响[J]. 浙江农林大学学报, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001
QIAN Qian, YANG Xing, GUO Ming, QIN Peng, XU Song, WANG Hailong. Adsorption of Zn2+ from a Zn2+-DEP (diethyl phthalate)composite solution using biochars in soil[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001
Citation: QIAN Qian, YANG Xing, GUO Ming, QIN Peng, XU Song, WANG Hailong. Adsorption of Zn2+ from a Zn2+-DEP (diethyl phthalate)composite solution using biochars in soil[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001
  • 目前,土壤污染问题日益突出,且污染逐渐趋于多元化和复杂化[1],其中重金属和有机污染比较常见。在土壤重金属污染中,锌属于微量元素,但锌矿的采选活动,冶炼废气的沉降和废水的排放以及道路交通活动,均易造成土壤中锌含量的超标。过量锌会降低酶活性甚至使酶失活,易毒害作物甚至直接致死[2-4],且易通过食物链,危及人类健康。此外,农药与化肥的滥用,以及塑料薄膜与橡胶的广泛使用,土壤有机物污染问题也日趋严峻,其中邻苯二甲酸酯(PAEs)的污染问题尤为突出[5]。PAEs为常用的塑化剂,具生殖毒性与致癌性。邻苯二甲酸二乙酯(DEP)为典型的PAEs,可严重影响人体内分泌,具亲脂性和易富集的特点,易与土壤环境中的重金属形成重金属-PAEs复合污染,目前已被检测出普遍存在于土壤、水、大气等环境介质中[6-8]。近年来,生物质炭作为新型土壤污染修复材料受到广泛关注[9-11],对土壤中重金属和有机物污染具有较好的吸附效果[12],在土壤污染修复中具有较好的应用前景和推广价值。然而,目前有关生物质炭修复土壤污染的研究大多集中于单一种类的污染物污染土壤修复的研究上[13-14],关于重金属-有机污染物复合污染土壤,尤其是重金属-PAEs复合污染土壤修复的研究仍鲜见报道。基于此,本研究选取动物源的猪炭和植物源的法国梧桐Platanus orientalis炭为研究材料,以DEP为代表性PAEs,以锌为代表性重金属,采用批量吸附试验,研究其吸附动力学和吸附热力学行为,探究不同因子对施炭土壤吸附重金属-PAEs复合污染溶液中重金属的影响,以期揭示其吸附机理和污染物之间的交互作用,为生物质炭修复土壤重金属和有机物复合污染提供科学依据。

    • 以采自浙江省杭州市临安区竹林村的农业种植土壤作为供试土壤,按照《土壤农业化学分析方法》测定土壤的基本理化性质。土壤pH值为4.89,有机质为7.5 mg·g-1,土壤砂粒、粉粒和黏粒质量分数占比分别为55.00%,26.10%和18.90%。土壤锌全量为48.21 mg·kg-1,远低于国家污染标准,因此,土壤本身所含重金属对试验的影响可忽略。

      采用在650 ℃缺氧条件下热解2 h所得的猪炭与法国梧桐炭作为供试生物质炭,利用元素分析仪(Flash EA1112,Thermo Finnigan,意大利)测定生物质炭的碳、氢、氮元素质量分数,运用差减法得到氧元素质量分数,利用比表面仪(TristarⅡ3020,Micromeritica Instument Corporation,美国),采用BET法测定生物质炭的比表面积,用干烧法测定灰分。猪炭和法国梧桐炭的基本理化性质如表 1所示。猪炭相较法国梧桐炭具有较高的灰分含量和比表面积,而法国梧桐炭的碳质量分数远高于猪炭,这些性质差异可能影响其对重金属离子的吸附能力[15]

      表 1  供试生物质炭的基本理化性质

      Table 1.  Physicochemical properties of biochars used in the experiment

      生物质炭PH电导率/(dS·m-1)碳/(mg·g-1)氢/(mg·g-1)氧/(mg·g-1)氮/(mg·g-1)磷/(mg·g-1)灰分/(mg·g-1)比表面积/(m2·g-1)
      猪炭(PB)10.042.1737.521.7455.894.747.8560023.10
      法国梧桐炭(POB)9.470.2281.322.2415.740.450.05662.80

      此外,利用发射扫描电镜(SU-8010,日立公司,日本)观察猪炭和法国梧桐炭的孔隙结构和表观形貌特征;利用能谱仪(Aztec X-MaxN,牛津仪器公司,美国)测定表面某点位的元素组成;利用傅里叶变换红外光谱仪(FT-IR)(NICOLET iS10,Thermo Fisher Scientific公司,美国)测定猪炭与法国梧桐炭的表面官能团结构特征[16]

    • 采用批处理振荡平衡法,将猪炭(PB)与土壤按质量分数1%(PB1)、2%(PB2)混合;法国梧桐炭(POB)与土壤按质量分数1%(POB1)、2%(POB2)混合,分别制成含炭量不同的土壤样品,以不施炭处理为对照(ck)。配制0.01 mol·L-1硝酸钠溶液作为背景溶液,添加250 mg·L-1的叠氮化钠作为微生物抑制剂。设置锌离子(Zn2+)溶液初始质量浓度为100 mg·L-1,DEP初始质量浓度分别为0和25 mg·L-1。称取1.00 g土壤样品置于聚四氟乙烯离心管中,加入20 mL含有不同初始质量浓度污染物的溶液,以180 r·min-1的转速在25 ℃条件下振荡24 h,之后采用3 500 r·min-1的转速离心10 min,上清液过滤后用电感耦合等离子体发射光谱(ICP-OES)(Leman Prodigy 7,PE公司,美国)测定溶液中剩余Zn2+质量浓度,计算吸附量。

    • 设置吸附试验时间分别为1,2,4,8,16和24 h,获得不同吸附时间的吸附量曲线,利用4种动力学方程进行公式解析,获得吸附动力学曲线和各模型动力学参数。

      吸附动力学可描述吸附剂吸附溶质速率的动态变化[17],可推断其吸附机理。本研究采用的吸附动力学方程有准一级线性方程、准二级线性方程、Elovich线性方程、颗粒内扩散线性方程:

      $$ \frac{1}{{{Q}_{t}}}=\frac{{{K}_{1}}}{{{Q}_{\text{e}}}t}+\frac{1}{{{Q}_{\text{e}}}}; $$ (1)
      $$ \frac{t}{{{Q}_{t}}}=\frac{1}{{{K}_{2}}Q_{\text{e}}^{2}}+\frac{t}{{{Q}_{t}}}; $$ (2)
      $$ {{Q}_{t}}=\frac{1}{\beta }\ln (1+\alpha \beta t); $$ (3)
      $$ {{Q}_{t}}={{K}_{ti}}{{t}^{0.5}}+C; $$ (4)

      其中:

      $$ {{Q}_{t}}=\frac{\left( {{C}_{0}}-{{C}_{t}} \right)V}{m}; $$ (5)
      $$ {{Q}_{\text{e}}}=\frac{\left( {{C}_{0}}-{{C}_{\text{e}}} \right)V}{m}。 $$ (6)

      式(1)~(6)中:Qtt时刻土壤对溶液中重金属的吸附量(mg·g-1);Qe为平衡时土壤对溶液中重金属的吸附量(mg·g-1);t为吸附时间(h);Ctt时刻溶液中重金属的质量浓度(mg·L-1);C0为溶液中重金属的初始质量浓度(mg·L-1);Ce为溶液中重金属的平衡质量浓度(mg·L-1);V为添加溶液的体积(L);m为加入土壤的质量(g);K1为准一级反应速率常数(h-1);K2为准二级反应速率常数(mg·g-1·h-1);Kti为颗粒内扩散速率常数(mg·g-1·h-0.5);α为初始吸附速率(g·mg·h-1);β是与表面覆盖度和活化能有关的常数(g·mg-1);C为常数。

    • 设置吸附实验温度分别为15,25,35,45和55 ℃,恒温振荡24 h,进行吸附热力学实验。利用Gibbs方程获得各吸附热力学参数:平衡吸附系数K,吉布斯自由能变ΔG(kJ·mol-1),焓变ΔH(kJ·mol-1)和熵变ΔS(kJ·mol-1·K-1)。运用Gibbs方程计算热力学参数,研究不同温度对各处理土壤吸附溶液中重金属行为的影响。

      $$ K=\frac{{{Q}_{\text{e}}}}{{{C}_{\text{e}}}}; $$ (7)
      $$ \Delta G=-RT\ln K; $$ (8)
      $$ \Delta G=\Delta H-T\Delta S。 $$ (9)

      由式(8)和式(9)可推导得:

      $$ \ln K=-\frac{\Delta H}{RT}+\frac{\Delta S}{R}。 $$ (10)

      式(7)~(10)中:K为吸附平衡常数;T为绝对温度(K);R为气体常数,R=8.314×10-3(kJ·mol-1·K-1)。

    • 数据采用Excel 2013和SPSS 19.0统计处理,不同处理之间差异分析采用单因素方差分析(one-way ANOVA,最小显著差法LSD),利用Origin 8.5作图。

    • 图 1A图 1B可知:猪炭表面孔隙致密,而法国梧桐炭表面孔隙较为稀疏,猪炭相较法国梧桐炭具有更加致密的孔隙结构和更大的比表面积(表 1)。由图 1C图 1D可知:法国梧桐炭的元素组成种类较少,碳元素是构成物质的最主要元素,猪炭表面的矿质元素组成较法国梧桐炭更为复杂,其氧、磷、钾、钙远高于法国梧桐炭。同时,与法国梧桐炭相比,猪炭还有钠、硅、氯等元素检出。此外,猪炭比法国梧桐炭具有较高的矿质元素,这也是造成其较高灰分的原因(表 1)。这些灰分溶于水可使溶液pH值上升,也是猪炭pH值高于法国梧桐炭的主要原因[16]

      图  1  猪炭(A,C)和法国梧桐炭(B,D)的扫描电镜(SEM)和X射线能谱(EDS)图

      Figure 1.  Scanning electron microsope (SEM) and energy dispersive X-ray spectrometry(EDS) results of biochars derived from dead pigs (A, C) and Platanus orientalis branches (B, D)

    • 图 2可见:法国梧桐炭有3个较明显的峰,1 576~1 448 cm-1的峰可能为芳香性中的C=C振动峰[18],650~1 000 cm-1的峰为不饱和烃中C—H的伸缩振动峰[19],1 300 cm-1的峰可能为C=O伸缩振动吸收峰,说明法国梧桐炭表面具有以上3种官能团,而猪炭相较法国梧桐炭吸收峰数量更多,且特征峰振动强度明显大于法国梧桐炭,说明猪炭表面具有更加丰富的官能团。猪炭在3 056~2 924 cm-1的吸收峰表示饱和C—H振动峰,2 850 cm-1附近的吸收峰为C—H2[20],在3 447~3 400 cm-1为—OH基伸缩区,1 271~1 098 cm-1的吸收峰表示C—O—C的伸缩振动[21]。与法国梧桐炭相比,猪炭不仅含有更为丰富的官能团类型,还含有带负电荷的官能团(如羟基和亚甲基等),理论上更有利于吸附重金属。

      图  2  猪炭和法国梧桐炭傅里叶变换红外光谱图

      Figure 2.  Fourier transform infrared spectra of biochars derived from dead pigs and Platanus orientalis branches

    • 图 3可知:在DEP添加量为0或25 mg·L-1时,施加猪炭和法国梧桐炭的土壤对Zn2+的饱和吸附量均显著(P<0.05)高于对照,且随施用量的增加效果更明显,说明生物质炭的施加可促进土壤对Zn2+的吸附。这可能是由于2种生物质炭均含有丰富的孔隙结构,其比表面积较大,可为Zn2+提供较多的吸附位点。2种生物质炭pH值均呈碱性(表 1),施用生物质炭可使溶液中氢离子(H+)减少,降低其与Zn2+之间的竞争吸附,且其较高的阳离子交换量,可增加土壤对Zn2+的交换作用,从而达到较好的表面吸附作用[22]。此外,根据2种炭的红外光谱分析(图 2),两者表面均有较丰富的含氧官能团,这些官能团可与重金属离子形成特定的金属配合物[23]。施加生物质炭后土壤对Zn2+较好的吸附作用也可能是炭表面的官能团与Zn2+形成络合物,发生专性吸附。徐楠楠等[24]在其秸秆生物质炭对镉离子(Cd2+)的吸附研究中发现:秸秆炭对Cd2+的吸附其化学机制主要为生物质炭表面羟基和羰基与Cd2+发生络合作用。

      图  3  不同处理土壤对Zn2+的饱和吸附量

      Figure 3.  Saturated adsorption quantity of Zn2+ in different treated soils

      本研究发现:施加猪炭的土壤对溶液中Zn2+的吸附能力显著(P<0.05)高于施加等量法国梧桐炭的土壤。相较不加炭的土壤,施加PB1和PB2的土壤对DEP添加量为25 mg·L-1的复合污染溶液中Zn2+的吸附量分别提高了17.43%和31.61%,是施加等量POB的5.51倍和5.90倍。生物质炭对土壤中重金属的作用主要包括以静电吸附为主的物理作用和以离子交换与官能团络合反应为主的分配作用[25-26],而生物质炭理化性质的差异可直接影响其吸附效果[27]。猪炭和法国梧桐炭对土壤吸附溶液中的Zn2+能力存在显著差异,其主要原因可能是猪炭的比表面积远高于法国梧桐炭,可提供更多的吸附点位,且其电导率、阳离子交换量(CEC)以及其钙、镁、钾等矿质元素含量均高于法国梧桐炭,导致其静电吸附和阳离子交换能力均高于法国梧桐炭处理的土壤。此外,猪炭表面含有更丰富的官能团,如法国梧桐炭不具有的—OH,—CH2—,可与Zn2+发生络合作用,且官能团表面带有负电荷,可增加土壤对Zn2+的静电吸附能力。

      此外,DEP的添加可显著(P<0.05)提高各处理土壤对溶液中Zn2+的饱和吸附量,与不加DEP对照相比,添加25 mg·L-1DEP分别使ck,POB1,POB2,PB1,PB2的土壤对溶液中Zn2+的饱和吸附量提高了7.75%,7.73%,5.32%,15.18%,13.71%,且猪炭处理下DEP对土壤吸附溶液中Zn2+的影响更明显,施加PB1和PB2处理的土壤添加25 mg·L-1DEP时吸附量分别提高了26.53%和40.52%。结果表明:DEP可促进不同处理土壤对溶液中Zn2+的吸附,其原因可能为DEP与Zn2+发生络合作用,形成带正电荷的金属配合物后,通过离子交换而被吸附,也可能是由于DEP在土壤表面被吸附后,DEP所带的官能团与Zn2+发生络合作用,改变了Zn2+存在形态。周东美等[28]在对土壤中有机污染物-重金属复合污染交互作用的研究中发现:汞、铜、镍和镉等具有比较强的络合能力,其络合点位主要为羧基、羟基以及胺基等。

    • 图 4可知:在吸附反应时间相同时,施加生物质炭均可增加土壤对溶液中Zn2+的吸附量,且施加猪炭比施加等量法国梧桐炭效果更显著,但施加法国梧桐炭处理的土壤达到饱和吸附量的时间更短。DEP为25 mg·L-1的各处理相较未添加DEP的处理在各吸附时间对Zn2+的吸附量均有增加。表明DEP的添加可促进不同吸附反应时间时各处理对Zn2+的吸附。此外,不同处理土壤对溶液中Zn2+的吸附量均随着吸附时间的增加而增加,且主要可分为2个阶段:1~8 h为快速吸附阶段,施炭土壤对溶液中的Zn2+表现出较强的吸附能力,这是因为在吸附初始阶段,不同处理土壤表面均具较多可被利用的吸附位点,Zn2+通过氢键作用被快速吸附到吸附点位上,此过程以物理吸附为主。吸附时间为8 h时,各处理的吸附量均已达到其饱和吸附量的80.00%以上。8~24 h为慢速吸附阶段,吸附速率减慢,逐渐趋于平衡,该过程主要因吸附位点被Zn2+大量占据,剩余可被利用的吸附位点逐渐减少,吸附速率减慢,直至吸附位点均被占据,吸附达到平衡,吸附量不再增加。王璐[29]研究发现:决定吸附速率的主要因素为剩余吸附位点数量。

      图  4  不同时间各处理土壤对Zn2+的吸附量

      Figure 4.  Adsorption quantity of Zn2+ in soil at different time

    • 准一级吸附动力学模型多用于描述单一物理吸附影响下的吸附过程,准二级吸附动力学模型则可描述多种吸附作用叠加的吸附过程[30],Elovich方程适合于非均相的扩散过程[31]。本研究用以上3种模型初步探究不同处理土壤对溶液中Zn2+的吸附过程,用颗粒内扩散模型进一步探讨其吸附机理。由图 5表 2可知:不同处理土壤对溶液中Zn2+的吸附动力学行为可与准二级线性方程较好拟合,其准二级线性方程相关系数R2均达0.99以上,拟合度较高,且远大于其准一级线性方程和Elovich线性方程的相关系数。准二级线性方程拟合所得的饱和吸附量与实际吸附量较接近,且添加DEP的处理均大于不加DEP的处理,进一步验证添加DEP可以提高土壤对溶液中Zn2+的吸附能力。此外,施炭处理的土壤其准二级反应速率常数K2均小于对照,且施加猪炭处理的K2小于施加等量法国梧桐炭的处理,准二级线性方程能较好反映各处理土壤对溶液中Zn2+的吸附过程。为进一步探究具体吸附过程,采用颗粒内扩散模型对数据进行拟合,吸附曲线均为不过原点的直线,说明该吸附过程并非单一颗粒内扩散过程,而是由液膜扩散和颗粒内扩散联合控制[32]。其吸附过程分为3个阶段:1~8 h为快速吸附过程,为表面扩散,Zn2+较快扩散到土壤黏粒矿物及生物质炭表面;8~16 h为慢速吸附过程,为颗粒内扩散的过程,Zn2+逐渐由外部向内部层间扩散,扩散阻力增大,扩散速度减慢;16~24 h为平衡吸附过程,随着吸附位点被逐渐占据,吸附逐渐达到平衡。3个过程中吸附速率常数Kt1Kt2Kt3。汲广云[33]在巯基硅烷改性多壁碳纳米管对Cd2+吸附性能的研究,以及王彤彤等[34]关于2种木材生物质炭对铜离子(Cu2+)吸附行为的研究均得到类似结果。

      图  5  不同处理土壤吸附Zn2+的动力学曲线

      Figure 5.  Kinetics plots for the adsorption of Zn2+ on different treated soils

      表 2  不同处理土壤吸附Zn2+的4种动力学模型参数

      Table 2.  Parameters of four kinetic models for the adsorption of Zn2+ on different treated soils

      处理DEP/(mg·L-1准一级线性方程准二级线性方程Elovich方程颗粒内扩散方程
      K1/h-1R2Qe/(mg·g-1K2/(mg·g-1·h-1R2βR2颗粒内扩散速率常数/(mg·g-1·h-0.5
      Kt1Kt1Kt1
      ck00.479 10.819 60.570 81.846 70.998 816.345 20.983 40.066 20.042 20.011 6
      POB100.486 10.791 40.589 71.774 80.998 915.515 90.972 70.072 30.039 20.011 2
      POB200.599 10.909 20.613 21.583 10.998 813.798 80.991 40.088 40.028 30.010 8
      PB100.489 80.833 20.624 91.738 30.999 114.819 20.980 80.077 50.037 70.013 9
      PB200.667 20.890 40.716 41.193 90.998 810.924 20.991 60.106 80.049 50.024 8
      ck250.558 80.797 70.616 11.700 30.999 013.715 50.940 60.096 20.016 60.017 1
      POB1250.552 10.743 40.637 71.479 20.998 713.066 80.941 90.093 70.028 10.018 1
      POB2250.544 30.842 20.644 51.617 30.998 913.575 90.969 00.094 60.018 10.032 4
      PB1250.514 20.885 10.719 11.479 10.999 012.794 30.982 90.090 30.040 70.026 7
      PB2250.482 70.780 00.808 41.244 30.999 811.350 70.976 40.097 20.052 70.026 9
    • 通过吸附热力学试验,根据吉布斯方程计算所得各热力学参数如表 3所示。自由能变ΔG可衡量各处理土壤对溶液中Zn2+的吸附量。从表 3可见:ΔG均为负值,说明吸附过程为自发过程,随温度的升高,ΔG负值的绝对值增大,说明升温有利于吸附的进行[35]。平衡吸附系数K均随温度的上升而增大,根据热力学原理,说明此过程为吸热反应,且温度升高利于吸附过程的自发进行[36]。此外,DEP初始质量浓度为0和25 mg·L-1时,施炭土壤均比对照ΔG绝对值大,且随着施加量的增加,ΔG绝对值增大,而DEP初始质量浓度为25 mg·L-1时,各处理ΔG绝对值均大于不加DEP的处理,其中猪炭处理下的土壤ΔG相较法国梧桐炭绝对值更大,此结果与上述动力学研究结论一致。

      表 3  各处理土壤吸附Zn2+的热力学参数

      Table 3.  Thermodynamic parameters for the adsorption of Zn2+ on different treated soils

      DEP处理TKΔGΔHΔS
      155.809 6-4.213 014.506 40.065 3
      257.608 9-5.027 814.506 40.065 3
      ck359.311 7-5.713 614.506 40.065 3
      4510.278 7-6.160 414.506 40.065 3
      5512.545 8-6.897 614.506 40.065 3
      156.606 2-4.520 713.267 80.062 2
      258.669 7-5.351 113.267 80.062 2
      POB13510.324 2-5.977 913.267 80.062 2
      4511.7930-6.523 713.267 80.062 2
      5513.1110-7.017 813.267 80.062 2
      157.0794-4.686 414.326 20.066 4
      259.333 6-5.534 014.326 20.066 4
      0POB23511.138 2-6.172 314.326 20.066 4
      4513.243 3-6.830 414.326 20.066 4
      5514.724 0-7.334 214.326 20.066 4
      157.955 1-4.965 613.868 00.065 7
      2510.387 2-5.798 913.868 00.065 7
      PB13512.335 3-6.433 713.868 00.065 7
      4514.512 3-7.072 313.868 00.065 7
      5516.199 1-7.594 613.868 00.065 7
      159.398 1-5.364 712.453 20.062 1
      2511.885 7-6.132 812.453 20.062 1
      PB23513.774 1-6.716 212.453 20.062 1
      4516.046 5-7.338 012.453 20.062 1
      5517.809 7-7.853 012.453 20.062 1
      156.415 4-4.450 512.729 70.059 8
      257.937 2-5.132 412.729 70.059 8
      ck359.570 0-5.783 712.729 70.059 8
      4510.602 2-6.242 312.729 70.059 8
      5512.452 8-6.877 312.729 70.059 8
      156.865 5-4.612 912.566 50.060 1
      258.981 1-5.438 612.566 50.060 1
      POB13510.934 0-6.124 912.566 50.060 1
      4512.031 2-6.576 612.566 50.060 1
      5513.110 5-7.017 712.566 50.060 1
      158.031 3-4.988 411.491 30.057 6
      2510.159 9-5.744 111.491 30.057 6
      25POB23511.667 8-6.291 211.491 30.057 6
      4513.631 4-6.906 711.491 30.057 6
      5514.337 3-7.261 611.491 30.057 6
      158.676 4-5.173 411.521 10.058 4
      2511.261 7-5.999 211.521 10.058 4
      PB13512.808 6-6.530 111.521 10.058 4
      4514.851 5-7.133 411.521 10.058 4
      5515.640 3-7.498 811.521 10.058 4
      159.587 1-5.412 412.588 70.062 9
      2512.632 2-6.283 712.588 70.062 9
      PB23514.602 3-6.865 712.588 70.062 9
      4516.832 9-7.464 512.588 70.062 9
      5518.409 1-7.943 312.588 70.062 9
      说明:单位DEP为mg·L-1T为℃;ΔG为kJ·mol-1ΔH为kJ·mol-1ΔS为kJ·mol-1·K-1

      焓变ΔH值可揭示不同处理土壤对溶液中锌吸附的机理类型。结果中,各处理ΔH为8~40 kJ·mol-1ΔH的大小可用于描述土壤对重金属离子吸附固定的机理[37],说明该吸附过程以氢键作用力为主[38]ΔH<40 kJ·mol-1,属物理吸附[39]。熵变ΔS均为正值,说明吸附过程离子混乱度增加,其原因为Zn2+与活性位点结合的过程中,可能存在其他种类的离子释放到液相中,从而导致熵增。

    • 施加猪炭和法国梧桐炭均可提高土壤对溶液中重金属的吸附效果,且随生物质炭施加量的增加吸附效果增强。DEP存在条件下,猪炭和法国梧桐炭对溶液中的重金属的吸附效果增强,且猪炭处理相较法国梧桐炭处理效果更显著。准二级动力模型可较好地描述不同处理土壤对重金属的吸附过程,添加DEP可提高各吸附时间土壤对重金属的吸附量,其吸附机制为液膜扩散和颗粒内扩散的共同作用。不同处理土壤对溶液中Zn2+的吸附为物理吸附,其相互作用力以氢键作用力为主,该吸附过程是自发的吸热反应,且高温条件更利于吸附反应的自发进行。

参考文献 (39)

目录

    /

    返回文章
    返回