-
土壤酸化是中国土壤面临的主要问题之一,也是土壤退化的一个重要特征。据报道,中国南方经济作物土壤的pH值自20世纪80年代至今平均下降了0.3[1]。土壤酸化容易导致土壤结构差、肥力低且有毒重金属含量过度积累,影响作物生长发育,严重威胁粮食安全及生态系统可持续发展。集约经营模式被认为是导致土壤酸化的重要因素之一[2]。雷竹Phyllostachys violascens是一种优良笋用竹种,在浙江省境内广泛栽植。近年来,冬季以地表覆盖增温和大量施用肥料为核心技术的雷竹早产高效经营模式得到大面积推广和应用[3]。这种长期集约经营模式虽然给当地农户带来了显著的经济效益,但由于缺乏科学管理,也产生了一系列生态环境问题,如土壤酸化、养分流失、增加面源污染[4],干扰了土壤微环境,导致土壤微生态失衡、微生物多样性衰退[2]、土壤酶活性明显降低[5],从而直接或间接地引起雷竹林提前退化。大量化学氮肥施用易造成雷竹林土壤铵态氮硝化加速,硝酸盐淋溶;高温高湿过程促进覆盖物分解产生腐殖酸和有机酸使得盐基饱和度降低,交换性酸总量增加。酸化也促使土壤中重金属元素有效态含量明显提高,从而抑制土壤微生物繁殖和活性[2]。针对雷竹林土壤退化的主要成因,研究者们相继提出了施用石灰和石灰氮等手段[6]。然而,长期施用石灰易引起养分失衡、土壤板结,特别是导致土壤有机质含量下降[7]。石灰氮虽然可以短期内缓解雷竹林土壤酸化并控制土传病害,但是强烈地抑制了土壤微生物生物量和酶活性[6]。因此,寻找一种既能中和土壤酸度、提高土壤肥力,又能恢复土壤微生态平衡,促进土壤微生物繁殖及活性的理想改良剂,对提高酸化土壤的生产力和生态环境的保护具有双重意义。随着生物质炭技术的发展,将生物质废弃物热解成生物质炭进行土壤应用被认为是当前国际应对气候变化、增强土壤碳汇的新途径[8]。生物质炭因其较大的表面积和较高的孔隙度而具有良好的重金属和有机污染物吸附能力[9]。生物质炭较高的pH值可以中和土壤酸性;其表面带有负电荷,具有较高的阳离子交换量,可以提高土壤肥力,降低铝对作物的毒害作用[10]。不仅如此,生物质炭还能有效提高土壤微生物的生物量,提高细菌类群多样性[11]。然而,不同原料制备的生物质炭物理、化学性质差异较大[12],施入土壤后对土壤酸化改良效果和对微生物群落结构和活性影响也可能存在较大差异。中国农林废弃物资源庞大,但是利用率普遍较低。据估计,仅农业就产生超过7亿t·a-1作物秸秆生物量,其中有1/4的秸秆就地燃烧[13];竹材加工业对竹材的利用率仅约40%[14];仅杭州市临安区产生的山核桃Carya cathayensis蒲壳多达5万t·a-1[15],相当大一部分山核桃蒲壳被随意丢弃和焚烧,造成资源的浪费和环境污染。针对上述情况,将农林废弃物热解成生物质炭加以应用,是废弃物资源化有效手段,也是本研究的立足点。利用不同原料生物质炭对雷竹林酸化土壤进行改良的研究还未见报道。因此,本研究通过分析不同原料生物质炭对土壤养分、酸度、微生物丰度和酶活性影响,比较不同原料生物质炭对酸化雷竹林土壤的化学和生物学改良效果,为农林废弃物资源化利用和酸化土壤修复提供理论参考。
-
供试土壤采自浙江省杭州市临安区板桥镇(30°14′N,119°42′E)。该区属亚热带季风气候,年平均气温为15.9 ℃,年降水量为1 350~1 500 mm,年日照时数1 774 h,无霜期236 d。土壤类型属于粉砂岩母质上发育的红壤土类。选择集约经营超过10 a的雷竹林样地,与相邻区域未集约经营林地相比,该样地pH值下降了1.0~1.5个单位。于2015年4月设置10 m × 10 m样地,随机取样法采集0~20 cm土壤样品5份,混合均匀,自然风干后过2 mm筛备用。供试土壤基本性质见表 1。
表 1 供试土壤及不同材料生物质炭的基本性质
Table 1. Selected properties of soil and biochars pyrolyzed from different feedstocks
供试材料 pH(H2O) 有机碳/(g·kg-1) 全氮/(g·kg-1) 碳氮比 表面积/(m2·g-1) 灰分/% 产率/% 土壤(ck) 5.10 17.40 1.72 10.23 - - - 玉米秸秆炭(CB) 9.48 436.81 9.53 56.38 2.61 13.69 32 竹炭(BB) 9.32 135.62 4.31 191.05 0.89 8.65 59 山核桃蒲壳炭(PB) 10.26 337.10 5.24 106.46 2.58 11.22 45 收集玉米Zea mays秸秆、竹材边角料和山核桃蒲壳,自然风干后,剪成小块,置于特制的密闭容器中,放于马弗炉中350 ℃下限氧热裂解4 h制得不同原料生物质炭。制得的生物质炭通过1 mm筛,混合均匀后备用。供试玉米秸秆炭、竹炭和山核桃蒲壳炭的基本性质见表 1。
-
试验设4个处理:对照(不加生物质炭,ck),添加质量分数为2%玉米秸秆炭(CB),添加质量分数为2%竹炭(BB)和添加质量分数为2%山核桃蒲壳炭(PB),重复3次·处理-1。将生物质炭样品与土壤充分混合后装入塑料盆中,盆的位置随机摆放。播种大小均匀饱满的种子20粒·盆-1,等黑麦草Lolium perenne种子萌发1周后,间苗至10株·盆-1。用去离子水调节土壤湿度至约60%田间最大持水量。盆栽试验培养时间为90 d,培养期间不添加肥料,定期补充去离子水。盆栽90 d后剪取黑麦草地上部分,置于60 ℃烘箱中烘干至恒量,称量。
-
盆栽结束后采集土壤样品,过2 mm筛,混匀,分成3份。1份自然风干,用于土壤基本性质测定;1份放在4 ℃冰箱保存,用于土壤酶活性分析、铵态氮(NH4+-N)和硝态氮(NO3--N)测定;剩余的1份冷冻干燥后保存至-70 ℃冰箱。土壤pH值,有机碳(SOC),全氮(TN),铵态氮和硝态氮分析参照鲁如坤[16]的方法。土壤交换性酸采用1 mol·L-1氯化钾溶液淋洗,碱滴定法测定[16]。
-
土壤总DNA提取采用MOBIO公司生产的土壤DNA提取试剂盒(PowerSoil DNA Isolation Kit,美国),按试剂盒说明书进行。用质量浓度为1.0%的琼脂糖凝胶电泳检测提取后的DNA样品,采用微量分光光度计(ND-1000,NanoDrop Technologies,美国)测定其浓度和纯度。以土壤细菌16S rDNA和真菌18 S rDNA为目的基因,采用通用引物(细菌:338F/518R[17],真菌:NS1F/FungR[18])在荧光定量聚合酶链式反应(PCR)仪CFX96TM Real-Time System(Bio-Rad,美国)上进行基因扩增。反应体系、质粒及标准曲线的制作参照文献[11]进行。
-
土壤脱氢酶和β-葡萄糖苷酶活性分析分别采用氯化三苯基四唑还原法和硝基酚比色法测定,结果分别以三甲基甲臜(TPF,μg·g-1·h-1)和对硝基酚(PNP,μg·g-1·h-1)表示。土壤纤维二糖苷酶、亮氨酸氨基肽酶和酸性磷酸酶活性分析采用微孔板荧光法[19],重复3次·样品-1,同时设置不加标准物质的对照。用多功能酶标仪(SynergyTM H1, Biotek,美国)在荧光激发光365 nm和检测光波长450 nm下测定反应液荧光值,单位为nmol·g-1·h-1。
-
所得数据采用SPSS 18.0软件进行单因素方差分析(ANOVA),Duncan法多重比较检验各处理间的差异显著性,相关性分析采用皮尔逊(Pearson)相关分析法进行双尾检验确定显著性。
-
由表 2可知:培养结束后,玉米秸秆炭(CB)和山核桃蒲壳炭(PB)处理下黑麦草生物量显著高于对照(ck),增幅分别为43%和61%;而竹炭(BB)处理与对照无显著差异。与ck相比,CB,BB和PB处理均显著提高了土壤有机碳质量分数,增幅分别为35%,19%和50%。CB和PB显著提高了土壤全氮质量分数,BB处理未显著改变全氮质量分数,但显著提高了碳氮比。与ck相比,仅PB处理显著增加了硝态氮质量分数;3种生物质炭处理均显著降低了土壤铵态氮质量分数,其中PB降幅最大。
表 2 不同原料生物质炭添加下黑麦草生物量和土壤养分质量分数变化
Table 2. Changes in ryegrass biomass and soil nutrient contents with addition of biochars pyrolyzed from different feedstocks
处理 黑麦草生物量/g 有机碳/(g·kg-1) 全氮/(g·kg-1) 碳氮比 硝态氮/(mg·kg-1) 铵态氮/(mg·kg-1) 对照(ck) 2.08 ± 0.22 c 18.07 ± 1.26 c 1.72 ± 0.03 b 10.51 ± 0.70 b 9.74 ± 2.00 bc 13.69 ± 1.78 a 玉米秸秆炭(CB) 2.98 ± 0.62 ab 24.40 ± 0.39 ab 2.34 ± 0.15 a 10.46 ± 0.79 b 7.57 ± 1.12 c 8.13 ± 1.35 b 竹炭(BB) 2.63 ± 0.06 bc 21.58 ± 1.60 b 1.66 ± 0.03 b 13.02 ± 1.15 a 12.33 ± 1.77 ab 9.74 ± 1.37 b 山核桃蒲壳炭(PB) 3.35 ± 0.19 a 27.04 ± 2.40 a 2.26 ± 0.15 a 11.98 ± 0.72 ab 13.54 ± 1.10 a 3.46 ± 1.31 c 说明:表中数据为平均值±标准差(n=3),同列数据不同字母表示差异显著(P < 0.05)。 -
如表 3所示:与ck相比,CB和PB处理均显著提高了土壤pH值,增幅分别为18%和17%,而BB处理与ck无显著差异。3种生物质炭处理均显著降低了交换性氢质量摩尔浓度,其中降幅为CB>PB>BB,而仅CB和PB显著降低了交换性铝(降幅分别为81%和35%)和交换性酸总量(降幅分别为69%和36%)。
表 3 不同原料生物质炭添加下土壤pH值和交换性酸质量摩尔浓度变化
Table 3. Changes in soil pH and exchangeable acid content with addition of biochars pyrolyzed from different feedstocks
处理 pH(H2O) 交换性氢/(cmol·kg-1) 交换性铝/ (cmol·kg-1) 交换性酸总量/(cmol·kg-1) 对照(ck) 5.18 ± 0.18 b 1.02 ± 0.17 a 1.18 ± 0.26 a 2.20 ± 0.11 a 玉米秸秆炭(CB) 6.13 ± 0.10 a 0.46 ± 0.08 c 0.22 ± 0.07 c 0.68 ± 0.13 c 竹炭(BB) 5.53 ± 0.10 b 0.80 ± 0.06 b 1.33 ± 0.04 a 2.14 ± 0.06 a 山核桃蒲壳炭(PB) 6.05 ± 0.42 a 0.63 ± 0.05 bc 0.77 ± 0.08 b 1.40 ± 0.13 b 说明:表中数据为平均值±标准差(n=3),同列数据不同字母表示差异显著(P < 0.05)。 -
不同原料生物质炭处理下土壤真菌和细菌基因丰度如图 1所示。不同处理间真菌18S rRNA基因拷贝数为3.80×109~7.64×109,其中CB处理显著高于ck,提高幅度为53%,而其他处理与ck无显著差异。不同处理间细菌16S rRNA基因拷贝数比对应的真菌高1个数量级,为1.88×1010~4.66×1010,CB处理与ck无显著差异,而BB和PB处理均显著高于ck。不同处理对应的真菌细菌比与对照均无显著差异,而CB处理显著高于BB和PB处理。由表 4可知:真菌丰度与交换性酸、硝态氮分别呈极显著和显著负相关,而与全氮质量分数极显著正相关,与其他性质无显著相关性。细菌丰度仅与碳氮比呈显著正相关,真菌细菌比与碳氮比、硝态氮分别呈显著和极显著负相关。
图 1 不同原料生物质炭添加下真菌18S rRNA基因拷贝数、细菌16S rRNA基因拷贝数和真菌细菌比变化
Figure 1. Changes in fungal 18S rRNA gene copies, bacterial 16S rRNA gene copies and the ratio of fungi to bacteria with addition of biochars pyrolyzed from different feedstocks
表 4 土壤真菌丰度、细菌丰度和真菌细菌比与土壤酸度、养分质量分数的相关性
Table 4. Correlations between soil fungal, bacterial abundance and fungi to bacteria ratio and soil acidity as well as soil nutrients contents
项目 pH值 交换性酸总量 有机碳 全氮 碳氮比 硝态氮 铵态氮 真菌丰度 0.55(0.066) -0.84(0.001)** 0.43(0.166) 0.77(0.004)** -0.44(0.153) -0.59(0.045)* -0.18(0.582) 细菌丰度 0.23(0.480) 0.03(0.937) 0.54(0.067) 0.10(0.755) 0.70(0.011)* 0.54(0.072) -0.48(0.114) 真菌细菌比 0.21(0.511) -0.54(0.070) -0.06(0.865) 0.34(0.276) -0.59(0.044)* -0.74(0.006)** 0.20(0.550) 说明:括号中的数值表示P值。**表示极显著相关(P < 0.01),*表示显著相关(P < 0.05)。 -
如表 5所示:与ck相比,3种生物质炭处理均显著提高了β-葡萄糖苷酶活性和酸性磷酸酶活性;仅PB处理显著提高了土壤脱氢酶活性;BB和PB处理均显著提高了纤维二糖苷酶活性,提高幅度为PB>BB,CB处理与ck无显著差异;3种生物质炭处理对亮氨酸氨基肽酶活性无影响。
表 5 不同原料生物质炭添加下土壤碳、氮、磷转化相关酶活性变化
Table 5. Changes in soil enzyme activities involved in C, N, P cycling with addition of biochars pyrolyzed from different feedstocks
处理 脱氢酶/
(μg·g-1·h-1)β-葡萄糖苷酶/
(μg·g-1·h-1)纤维二糖苷酶/
(nmol·g-1·h-1)亮氨酸氨基肽酶/
(nmol·g-1·h-1)酸性磷酸酶/
(nmol·g-1·h-1)对照(ck) 0.20 ± 0.04 b 86.11 ± 10.49 b 5.04 ± 0.98 c 22.46 ± 1.91 a 201.01 ± 8.96 c 玉米秸秆炭(CB) 0.31 ± 0.05 ab 108.43 ± 6.25 a 6.57 ± 1.04 bc 24.62 ± 0.10 a 231.71 ± 11.39 ab 竹炭(BB) 0.21 ± 0.05 b 127.96 ± 6.15 a 7.63 ± 0.64 ab 25.55 ± 5.35 a 221.08 ± 9.63 b 山核桃蒲壳炭(PB) 0.40 ± 0.11 a 127.50 ± 15.96 a 9.16 ± 0.82 a 24.21 ± 3.04 a 244.63 ± 6.23 a 说明:表中数据为平均值±标准差(n=3),同列数据不同字母表示差异显著(P < 0.05)。
Soil amelioration with biochars pyrolyzed from different feedstocks of an acidic bamboo (Phyllostachys violascens) plantation
-
摘要: 以竹材边角料、玉米Zea mays秸秆和山核桃Carya cathayensis蒲壳制备的生物质炭为材料,采集浙江省杭州市临安区集约经营模式下雷竹Phyllostachys violascens林酸化土壤进行90 d的黑麦草Lolium perenne盆栽试验,探究不同原料生物质炭添加对黑麦草生长及土壤养分、酸度、微生物丰度和酶活性的影响。结果表明:玉米秸秆炭和山核桃蒲壳炭显著提高了黑麦草生物量、土壤有机碳质量分数、全氮质量分数和pH值,而显著降低了土壤交换性氢和交换性铝的质量摩尔浓度(P < 0.05);竹炭处理仅显著提高了土壤有机碳质量分数,降低了交换性氢质量摩尔浓度(P < 0.05)。相比对照,玉米秸秆炭可以显著提高真菌丰度,提高幅度为53%;而山核桃蒲壳炭和竹炭可以提高细菌丰度,提高幅度分别为71%和66%。相比玉米秸秆炭和竹炭,山核桃蒲壳炭可以更大程度地促进土壤脱氢酶、β-葡萄糖苷酶、纤维二糖苷酶和酸性磷酸酶活性。山核桃蒲壳炭和玉米秸秆炭处理下黑麦草生物量的提高主要归因于这2种生物质炭对土壤酸度、养分、微生物丰度和相关酶活性的改善作用。综合而言,山核桃蒲壳炭和玉米秸秆炭对雷竹林酸化土壤的化学性质和生物学性质具有较好的改良能力,而竹炭效果较差。Abstract: To evaluate the effects of biochars pyrolyzed from different feedstocks (bamboo, maize straw, and peels of Carya cathayensis) on the soil properties, acidity, microbial abundance, and soil enzyme activity in an acidic soil collected from a bamboo (Phyllostachys violascens) plantation in Lin'an, Zhejiang Province, a 90-day pot experiment was conducted in a completely randomized design with treatments of above three biochars and a non-amended control in three replicates. The biochars were added to the soil at a rate of 2% (weight of biochar to soil) with ryegrasses being planted during the experiment. Fungal 18S rRNA and bacterial 16S rRNA gene abundances were assessed via quantitative real-time (qRT) polymerase chain reaction (PCR). Significant differences between treatment means were tested with one-way analysis of variance (ANOVA) followed by Duncan's test at P < 0.05. Results indicated that biochars derived from maize and peels of C. cathayensis significantly (P < 0.05) increased the biomass of ryegrass, soil organic carbon, total nitrogen, and pH, but decreased (P < 0.05) exchangeable H+ and exchangeable Al3+. Also bamboo biochar significantly increased (P < 0.05) soil organic carbon and decreased (P < 0.05) exchangeable H+. The qRT-PCR showed that compared with the control only additions of maize biochar significantly increased (P < 0.05) fungal community abundance by 53%; whereas, peels of Carya cathayensis biochar and bamboo biochar significantly increased (P < 0.05) bacterial community abundance by 71% (C. cathayensis biochar) and 66% (bamboo biochar). In comparison with maize straw biochar and bamboo biochar, the addition of peels of C. cathayensis biochar resulted in higher (P < 0.05) enzymatic activities of dehydrogenase, β-glucosidase, β-D-cellobiosidase, and acid phosphatase. Enhancement of ryegrass growth was noted with peels of C. cathayensis biochar and maize straw biochar. In summary, results indicated that biochars pyrolyzed from maize straw and peels of C. cathayensis showed better amelioration effects in terms of chemical and biological ability than bamboo biochar.
-
表 1 供试土壤及不同材料生物质炭的基本性质
Table 1. Selected properties of soil and biochars pyrolyzed from different feedstocks
供试材料 pH(H2O) 有机碳/(g·kg-1) 全氮/(g·kg-1) 碳氮比 表面积/(m2·g-1) 灰分/% 产率/% 土壤(ck) 5.10 17.40 1.72 10.23 - - - 玉米秸秆炭(CB) 9.48 436.81 9.53 56.38 2.61 13.69 32 竹炭(BB) 9.32 135.62 4.31 191.05 0.89 8.65 59 山核桃蒲壳炭(PB) 10.26 337.10 5.24 106.46 2.58 11.22 45 表 2 不同原料生物质炭添加下黑麦草生物量和土壤养分质量分数变化
Table 2. Changes in ryegrass biomass and soil nutrient contents with addition of biochars pyrolyzed from different feedstocks
处理 黑麦草生物量/g 有机碳/(g·kg-1) 全氮/(g·kg-1) 碳氮比 硝态氮/(mg·kg-1) 铵态氮/(mg·kg-1) 对照(ck) 2.08 ± 0.22 c 18.07 ± 1.26 c 1.72 ± 0.03 b 10.51 ± 0.70 b 9.74 ± 2.00 bc 13.69 ± 1.78 a 玉米秸秆炭(CB) 2.98 ± 0.62 ab 24.40 ± 0.39 ab 2.34 ± 0.15 a 10.46 ± 0.79 b 7.57 ± 1.12 c 8.13 ± 1.35 b 竹炭(BB) 2.63 ± 0.06 bc 21.58 ± 1.60 b 1.66 ± 0.03 b 13.02 ± 1.15 a 12.33 ± 1.77 ab 9.74 ± 1.37 b 山核桃蒲壳炭(PB) 3.35 ± 0.19 a 27.04 ± 2.40 a 2.26 ± 0.15 a 11.98 ± 0.72 ab 13.54 ± 1.10 a 3.46 ± 1.31 c 说明:表中数据为平均值±标准差(n=3),同列数据不同字母表示差异显著(P < 0.05)。 表 3 不同原料生物质炭添加下土壤pH值和交换性酸质量摩尔浓度变化
Table 3. Changes in soil pH and exchangeable acid content with addition of biochars pyrolyzed from different feedstocks
处理 pH(H2O) 交换性氢/(cmol·kg-1) 交换性铝/ (cmol·kg-1) 交换性酸总量/(cmol·kg-1) 对照(ck) 5.18 ± 0.18 b 1.02 ± 0.17 a 1.18 ± 0.26 a 2.20 ± 0.11 a 玉米秸秆炭(CB) 6.13 ± 0.10 a 0.46 ± 0.08 c 0.22 ± 0.07 c 0.68 ± 0.13 c 竹炭(BB) 5.53 ± 0.10 b 0.80 ± 0.06 b 1.33 ± 0.04 a 2.14 ± 0.06 a 山核桃蒲壳炭(PB) 6.05 ± 0.42 a 0.63 ± 0.05 bc 0.77 ± 0.08 b 1.40 ± 0.13 b 说明:表中数据为平均值±标准差(n=3),同列数据不同字母表示差异显著(P < 0.05)。 表 4 土壤真菌丰度、细菌丰度和真菌细菌比与土壤酸度、养分质量分数的相关性
Table 4. Correlations between soil fungal, bacterial abundance and fungi to bacteria ratio and soil acidity as well as soil nutrients contents
项目 pH值 交换性酸总量 有机碳 全氮 碳氮比 硝态氮 铵态氮 真菌丰度 0.55(0.066) -0.84(0.001)** 0.43(0.166) 0.77(0.004)** -0.44(0.153) -0.59(0.045)* -0.18(0.582) 细菌丰度 0.23(0.480) 0.03(0.937) 0.54(0.067) 0.10(0.755) 0.70(0.011)* 0.54(0.072) -0.48(0.114) 真菌细菌比 0.21(0.511) -0.54(0.070) -0.06(0.865) 0.34(0.276) -0.59(0.044)* -0.74(0.006)** 0.20(0.550) 说明:括号中的数值表示P值。**表示极显著相关(P < 0.01),*表示显著相关(P < 0.05)。 表 5 不同原料生物质炭添加下土壤碳、氮、磷转化相关酶活性变化
Table 5. Changes in soil enzyme activities involved in C, N, P cycling with addition of biochars pyrolyzed from different feedstocks
处理 脱氢酶/
(μg·g-1·h-1)β-葡萄糖苷酶/
(μg·g-1·h-1)纤维二糖苷酶/
(nmol·g-1·h-1)亮氨酸氨基肽酶/
(nmol·g-1·h-1)酸性磷酸酶/
(nmol·g-1·h-1)对照(ck) 0.20 ± 0.04 b 86.11 ± 10.49 b 5.04 ± 0.98 c 22.46 ± 1.91 a 201.01 ± 8.96 c 玉米秸秆炭(CB) 0.31 ± 0.05 ab 108.43 ± 6.25 a 6.57 ± 1.04 bc 24.62 ± 0.10 a 231.71 ± 11.39 ab 竹炭(BB) 0.21 ± 0.05 b 127.96 ± 6.15 a 7.63 ± 0.64 ab 25.55 ± 5.35 a 221.08 ± 9.63 b 山核桃蒲壳炭(PB) 0.40 ± 0.11 a 127.50 ± 15.96 a 9.16 ± 0.82 a 24.21 ± 3.04 a 244.63 ± 6.23 a 说明:表中数据为平均值±标准差(n=3),同列数据不同字母表示差异显著(P < 0.05)。 -
[1] GUO Jingheng, LIU Xuejun, ZHANG Yong, et al. Significant acidification in major Chinese croplands [J]. Science, 2010, 327(5968): 1008-1010. [2] QIN Hua, WANG Hailong, STRONG P J, et al. Rapid soil fungal community response to intensive management in a bamboo forest developed from rice paddies [J]. Soil Biol Biochem, 2014, 68(1): 177-184. [3] ZHOU Guomo, ZHUANG Shunyao, JIANG Peikun, et al. Soil organic carbon accumulation in intensively managed Phyllostachys praecox stands [J]. Bot Rev, 2011, 77(3): 296-303. [4] 吴家森, 姜培坤, 谢秉楼, 等.不同施肥处理对雷竹林土壤氮、磷渗漏流失的影响[J].南京林业大学学报(自然科学版), 2009, 33(3):60-64. WU Jiasen, JIANG Peikun, XIE Binglou, et al. Study on nitrogen and phosphorus leaching at different fertilizer levels in Phyllostachys praecox stands [J]. J Nanjing For Univ Nat Sci Ed, 2009, 33(3): 60-64. [5] 郑仁红. 覆盖栽培对雷竹林衰退的化感效应研究[D]. 2006, 北京: 中国林业科学研究院. ZHENG Renhong. Allelopathy of Cover Planting on Decline of Phyllostachys praecox Stand [D]. Beijing: Chinese Academy of Forestry, 2006. [6] 邬奇峰, 徐巧凤, 秦华, 等.杀菌剂氰氨化钙对集约经营雷竹林土壤生物学性质的影响[J].浙江农林大学学报, 2014, 31(3):352-357. WU Qifeng, XU Qiaofeng, QIN Hua, et al. Effects of calcium cyanamide on soil microbial properties of intensively managed Phyllostachys violascens stands [J]. J Zhejiang A & F Univ, 2014, 31(3): 352-357. [7] HUTTL R F, SCHNEIDER B U. Forest ecosystem degradation and rehabilitation [J]. Ecol Eng, 1998, 10(1): 19-31. [8] LEHMANN J. A handful of carbon [J]. Nature, 2007, 447(7141): 143-144. [9] ZHANG Xiaokai, WANG Hailong, HE Lizhi, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants [J]. Environ Sci Pollut Res, 2013, 20(12): 8472-8483. [10] 袁金华, 徐仁扣.生物质炭对酸性土壤改良作用的研究进展[J].土壤, 2012, 44(4):541-547. YUAN Jinhua, XU Renkou. Research progress of amelioration effects of biochars on acid soils [J]. Soils, 2012, 44(4): 541-547. [11] CHEN Junhui, LIU Xiaoyu, LI Lianqing, et al. Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from south China [J]. Appl Soil Ecol, 2015, 91: 68-79. [12] DAI Zhongmin, MENG Jun, MUHAMMAD N, et al. The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks [J]. J Soil Sediment, 2013, 13(6): 989-1000. [13] 马骥, 秦富.秸秆禁烧政府监管模式及其效果比较:基于农户与政府博弈关系的分析[J].中国农业大学学报, 2009, 14(4):131-136. MA Ji, QIN Fu. Comparation of the effect of different patterns of the government supervisory on prohibiting straw burning: based on the static game model with the analysis of the relationship between farmers and the government[J]. J China Agric Univ, 2009, 14(4): 131-136. [14] 张建, 汪奎宏, 李琴, 等.我国竹材利用率现状分析与建议[J].林业机械与木工设备, 2006, 34(8):7-10. ZHANG Jian, WANG Kuihong, LI Qin, et al. Status analysis and suggestions for bamboo utilization rate in China[J]. For Mach Wood Work Equip, 2006, 34(8): 7-10. [15] 丁立忠, 黄海明, 黄兴召, 等.山核桃外果皮研究利用现状与展望[J].浙江农业科学, 2011(5):1162-1165. DING Lizhong, HUANG Haiming, HUANG Xingzhao, et al. Research and utilization of peel of Carya cathayensis Sarg: review and prospect [J]. J Zhejiang Agric Sci, 2011(5): 1162-1165. [16] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社. 2000. [17] FIERER N, JACKSON J A, VILGALYS R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays [J]. Appl Environ Microbiol, 2005, 71(7): 4117-4120. [18] MAY L A, SMILEY B, SCHMIDT M G. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage [J]. Can J Microbiol, 2001, 47(9): 829-841. [19] BELL C W, FRICKS B E, ROCCA J D, et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities [J]. J Vis Exp, 2013, 81: e50961. doi: 10.3791/50961. [20] 李九玉, 赵安珍, 袁金华, 等.农业废弃物制备的生物质炭对红壤酸度和油菜产量的影响[J].土壤, 2015, 47(2):334-339. LI Jiuyu, ZHAO Anzhen, YUAN Jinhua, et al. Amelioration effects of crop residue-derived biochars on soil acidity and canola yield in red soil [J]. Soils, 2015, 47(2): 334-339. [21] YUAN Jinhua, XU Renkou, QIAN Wei, et al. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars [J]. J Soil Sediment, 2011, 11(5): 741-750. [22] 章明奎, BAYOU W D, 唐红娟.生物质炭对土壤有机质活性的影响[J].水土保持学报, 2012, 26(2):127-131, 137. ZHANG Mingkui, BAYOU W D, TANG Hongjuan. Effects of biochar's application on active organic carbon fractions in soil [J]. J Soil Water Conserv, 2012, 26(2): 127-131, 137. [23] TAGHIZADEH-TOOSI A, CLOUGH T, SHERLOCK R, et al. Biochar adsorbed ammonia is bioavailable [J]. Plant Soil, 2012, 350(1/2): 57-69. [24] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota: a review [J]. Soil Biol Biochem, 2011, 43(9): 1812-1836. [25] KOLB S, FERMANICH K, DORNBUSH M. Effect of charcoal quantity on microbial biomass and activity in temperate soils [J]. Soil Sci Soc Am J, 2009, 73(4): 1173-1181. [26] 李明, 李忠佩, 刘明, 等.不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响[J].中国农业科学, 2015, 48(7): 1361-1369. LI Ming, LI Zhongpei, LIU Ming, et al. Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil [J]. Sci Agric Sin, 2015, 48(7): 1361-1369. [27] ROUSK J, BÅÅTH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 2010, 4(10): 1340-1351. [28] QUILLIAM R S, GLANVILLE H C, WADE S C, et al. Life in the 'charosphere'-does biochar in agricultural soil provide a significant habitat for microorganisms? [J]. Soil Biol Biochem, 2013, 65(6): 287-293. [29] CHEN Junhui, LI Songhao, LIANG Chenfei, et al. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate [J]. Sci Total Environ, 2017, 574(1): 24-33. [30] FARRELL M, KUHN T K, MACDONALD L M, et al. Microbial utilisation of biochar-derived carbon [J]. Sci Total Environ, 2013, 465(6): 288-297. [31] SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale [J]. Ecol Lett, 2008, 11(11): 1252-1264. [32] BAILEY V L, FANSLER S J, SMITH J L, et al. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization [J]. Soil Biol Biochem, 2011, 43(2): 296-301. [33] SERRA-WITTLING C, HOUOT S, BARRIUSO E. Soil enzymatic response to addition of municipal solid-waste compost [J]. Biol Fert Soil, 1995, 20(4): 226-236. [34] EDMEADES D C. The long-term effects of manures and fertilisers on soil productivity and quality: a review [J]. Nutr Cycl Agroec, 2003, 66(2): 165-180. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.01.006