-
土壤作为环境污染物的重要载体,正面临着日益严重的污染挑战。其中,重金属污染已经成为中国当前最突出的土壤污染问题之一[1]。土壤中的砷(As)、铅(Pb)等重金属污染具有持久性、不可逆性和隐蔽性,对土壤质量和土壤生产力造成极大的负面影响。此外,由于水稻Oryza sativa具有较强的重金属积累能力,As和Pb可以通过食物链对人体和其他生物体健康构成严重威胁[2]。
生物质炭是生物质在缺氧或低氧条件下热解的产物,具有发达的孔隙结构和丰富的表面官能团,能够通过物理吸附、离子交换和共沉淀等机制降低土壤中重金属的生物有效性[3]。然而,由于比表面积、成分组成和表面官能团等物理化学特性的限制,其对污染土壤中重金属的吸附能力有限,且选择性较差。YANG等[4]的研究发现,由于生物质炭表面带有负电荷,其对以阴离子形式存在的污染物(如As)的钝化能力相对较弱。为了提高生物质炭对重(类)金属复合污染土壤的修复能力,将生物质炭与其他材料进行功能化改性成为了新的研究方向。
铁基材料因其成本低、制备工艺简易、种类多样及较低的毒性,成为生物质炭改性中广泛应用的材料之一[5]。改性材料主要通过离子交换和沉淀作用钝化土壤中的重金属。WEN等[6]的研究表明,使用氯化铁改性后的园林废弃物生物质炭可以将As(Ⅲ)氧化为移动性较低的As(V),从而有效减少水稻对As的吸收,改善水稻的生长情况。聚合硫酸铁(polyferric sulfate,PFS)作为一种无机高分子混凝剂,相比其他铁基材料,具有成本低、水解速度快及絮凝体密度大等优点,在吸附去除污水废水中重金属离子方面表现出显著的功效[7]。有研究指出,将活化硅酸与PFS联合使用能够提高其修复效率[8]。目前,关于PFS改性生物质炭的研究主要集中在对水体污染物的去除作用,以及As单一污染土壤的修复应用,而在As和Pb复合污染土壤中的作用机制以及对作物吸收重金属的改善效应的研究相对较少。因此,深入研究PFS改性生物质炭与复合污染土壤中重金属的相互作用及其改善效应,对于提高土壤修复技术的有效性至关重要。同时,随着中国园林绿化面积的增加,园林废弃物的产量亦随之上升,探索更为环保的处理方法对实现园林废弃物的资源化及减少环境影响具有重要意义。
鉴于上述研究背景,本研究选用细叶榕Ficus microcarpa枝条为原材料制备生物质炭,并采用聚合硫酸铁{[Fe2(OH)n(SO4)3-n/2]m}进行改性,制得聚合硫酸铁基生物质炭(Fe-FMB),进行水稻盆栽试验,重点探讨了这2种生物质炭与土壤中As和Pb的相互作用关系,评估对土壤酶活性的影响,同时考察水稻各器官内As和Pb的富集情况。还研究了2种生物质炭对土壤理化性质及养分的影响,旨在为聚合硫酸铁基生物质炭在重(类)金属复合污染土壤修复中的应用提供理论支持和科学依据。
-
由表1可得:Fe-FMB的pH显著低于FMB。这可能是由于浸渍热解过程中生物质炭表面Fe3+的水解作用导致溶液中H+浓度的增加,从而增强了溶液的酸性。此外,Fe-FMB显示出更高的灰分和比表面积,这可能是热解过程中铁颗粒与碳质化合物之间碰撞的结果[12]。Fe-FMB的阳离子交换量也显著高于FMB,这可能与其表面含氧官能团的增加有关。
表 1 生物质炭的基本理化性质
Table 1. Selected physicochemical properties of the used biochars
生物质炭 pH 灰分/(g·kg−1) 碳/(g·kg−1) 氢/(g·kg−1) 氮/(g·kg−1) 硅/(g·kg−1) 铁/(g·kg−1) 比表面积/(m2·kg−1) 阳离子交换量/(cmol·kg−1) FMB 9.5 79.3 753 5.0 27.5 1.50 7.89 23.4 14.45 Fe-FMB 5.3 137.8 505 7.5 13.5 7.31 49.32 132.6 30.95 如图1A和B所示,2种生物质炭均展现出均匀排列的管式结构。这一特征可能源于相对较低的热解温度,导致生物质本身的导管结构被部分保留下来[13]。相比之下,Fe-FMB的表面更加粗糙,其微孔和管式结构中可见颗粒状物质。根据2种生物质炭的X射线能量色谱仪(EDS)元素分布结果(图1C和D),发现FMB具有更多的钾(K)元素,而在Fe-FMB表面则观察到更多的铁(Fe)、硫(S)和氧(O)元素,Fe-FMB微孔和管式结构颗粒状物质主要由Fe构成的细小颗粒组成。这一结果表明FPS已成功负载于生物质炭表面。
根据X射线衍射分析图谱(图2A),在Fe-FMB的图谱中,在30.15°、35.51°和43.17°处分别观察到了Fe3O4和Fe2O3的特征衍射峰,这些峰值表明Fe成功地负载于生物质炭上,且以Fe3O4为主要形态。同时在Fe-FMB上检测到SiO2特征衍射峰,说明其含有较高的硅(Si)。FTIR分析结果(图2B)显示,Fe-FMB在650~1 000 cm−1以及
1050 cm−1处的特征峰强度高于FMB。这一结果表明:铁改性生物质炭中含氧官能团的伸缩振动增强,含氧官能团数量增加。除此之外,860 cm−1附近的吸收峰可能是由于Si—O官能团的不对称伸缩振动所致[14]。这也证明了铁改性生物质炭中Si质量分数的增加(表1)。在593.3 cm−1处的吸收峰则表明了Fe—O官能团的存在,与Fe—O络合物或铁氧化物的存在相符[15]。 -
由图3A可见:在水稻生长的各时期,与对照相比,FMB土壤pH均不同程度地提高,提高了0.21~0.49,Fe-FMB土壤pH则显著降低(P<0.05)。与对照相比,2种生物质炭均显著提高了土壤中有机碳质量分数(P<0.05),其中FMB的增幅达43%~105%(图3B)。根据图3C,施用Fe-FMB显著(P<0.05)提升了土壤阳离子交换量(1.26~1.57 cmol·kg−1),在幼苗期增幅最大,与对照相比,增幅达18%。
-
如图4A所示:施用2种生物质炭后,土壤的速效钾质量分数均显著(P<0.05)提升。FMB对速效钾质量分数的提升效果更为显著,与对照相比提升了92%~227%。与对照相比,FMB和Fe-FMB在各个时期均明显提升了土壤中有效磷质量分数,增幅分别为8%~57%和12%~76%(图4B)。施用生物质炭后,土壤的碱解氮质量分数显著(P<0.05)下降(图4C)。
如图5A所示:与对照相比,Fe-FMB显著(P<0.05)提升了土壤中有效硅的质量分数,增幅为24%~49%。根据图5B的结果,与对照相比,施用Fe-FMB后,土壤中无定型硅的占比均显著(P<0.05)增加,增幅为3%~25%,也显著(P<0.05)提高了土壤中铁锰氧化态硅的占比(8%~11%)。
-
如图6A所示:在水稻生长的各时期,与对照和FMB相比, Fe-FMB显著(P<0.05)降低了土壤中有效砷的质量分数,降幅最高达37%,FMB与对照差异不显著。由图6B和C可见,Fe-FMB在水稻各生长时期都显著降低了水稻茎、稻谷中的砷质量分数,与对照相比,分别下降了71%~84%和70%;FMB仅在水稻灌浆期和成熟期显著降低了茎的砷质量分数。
图 6 生物质炭对土壤中砷和铅有效性及在稻谷中富集的影响
Figure 6. Effect of biochar application on the availability of As and Pb in soil and their accumulation in rice straw
据图6D可知:与对照相比,施用2种生物质炭均显著(P<0.05)降低了土壤中有效铅质量分数,其中FMB在成熟期对铅的固定效果最好,降幅达24%。使用FMB显著降低了水稻植株各部分的铅质量分数(图6E和6F),Fe-FMB处理的水稻植株各部分的铅质量分数升高。
-
由图7可见:与对照相比,FMB显著(P<0.05)提高了土壤中β-葡萄糖苷酶的活性,同时对酸性磷酸酶的活性也有一定抑制作用。Fe-FMB则在提升土壤中除β-葡萄糖苷酶外其他酶的活性方面表现出显著效果,与对照相比,最高增幅分别达到了121%、99%及33%。
-
由表2可知:与对照相比,2种生物质炭均显著(P<0.05)提高了水稻的生物量和稻谷产量,Fe-FMB处理的提升效果又显著高于FMB(P<0.05)。
表 2 生物质炭对水稻生物量(干质量)及稻谷产量的影响
Table 2. Impact of biochar on rice biomass (dry weight) and grain yield
处理组 水稻生物量(干质量)/g 稻谷产量/g 幼苗期 分蘖期 灌浆期 成熟期 对照 0.76±0.05 c 1.56±0.21 c 4.81±0.86 c 6.20±0.56 c 6.11±0.11 c FMB 1.68±0.15 b 2.93±0.29 b 6.54±0.42 b 7.54±0.22 b 8.42±0.47 b Fe-FMB 2.35±0.20 a 4.34±0.37 a 7.96±0.40 a 11.41±0.77 a 11.01±0.23 a 说明:不同小写字母表示同一时期内不同处理间差异显著(P<0.05)。 -
相关性分析(图8)表明:土壤有效砷的质量分数与土壤pH呈极显著正相关(P<0.01);而土壤中有效铅的质量分数则与土壤pH及有效磷质量分数呈极显著负相关(P<0.01);土壤pH与β-葡萄糖苷酶活性呈显著正相关(P<0.05);水稻植株生物量和稻谷产量与土壤有效硅及酶活性呈极显著正相关(P<0.01)。
Effect of iron-modified biochars on soil nutrients and bioavailability of As and Pb
-
摘要:
目的 探讨原始及铁改性生物质炭对复合污染农田土壤中养分及砷(As)、铅(Pb)生物有效性的影响。 方法 分别采用质量分数为2%的原始细叶榕Ficus microcarpa生物质炭(FMB)和聚合硫酸铁改性细叶榕生物质炭(Fe-FMB)与受砷铅复合污染土壤混合,以未施加生物质炭的土壤作为对照,进行水稻Oryza sativa盆栽试验,测定了不同生长阶段土壤养分、土壤酶活性以及水稻各器官和土壤中As和Pb的质量分数。 结果 与对照组相比,Fe-FMB显著提高了土壤中磷(P)、硅(Si)等养分的有效性(P<0.05),显著改变了土壤中硅(Si)的形态分布,主要增加了无定型硅(增加25.2%)和铁锰氧化态硅质量分数(增加11.1%)。Fe-FMB对于土壤和水稻稻谷中As的钝化效果更为显著;而FMB在钝化土壤Pb方面表现更佳,对Pb有效性最高降低了24.9%。此外,Fe-FMB还显著提升了土壤中亮氨酸氨基肽酶、酸性磷酸酶及过氧化氢酶的活性(P<0.05),增幅分别达121.1%、99.1%及33.2%。Pearson’s相关性分析结果表明,土壤酶活性与pH及土壤As有效性显著相关(P<0.05),说明施用生物质炭可通过调节土壤pH及As有效性来影响土壤酶活性。 结论 原始细叶榕生物质炭适用于修复单一Pb污染土壤。相比之下,铁改性生物质炭在修复砷铅复合污染土壤方面展现出更好的应用前景。图8表2参39 Abstract:Objective To investigate the effects of raw and iron-modified biochar on the nutrient content and bioavailability of arsenic (As) and lead (Pb) in con-contaminated agricultural soil. Method An experiment using rice potted in soil mixed with 2% raw Ficus microcarpa biochar (FMB) and Polyferric Sulfate (iron)-modified biochar (Fe-FMB) was conducted, no biochar soil as control. We measured soil nutrient availability, soil enzyme activity, rice biomass and As and Pb concentrations in various plant organs at different growth stages. The bioavailable As and Pb in the soil were determined using the NH4H2PO4 and DTPA extraction methods, respectively. Result The results indicated that, compared to the control, Fe-FMB significantly enhanced the availability of nutrients such as phosphorus (P) and silicon (Si) in the soil and significantly altered the distribution of Si forms in the soil, primarily increasing the content of amorphous silicon (by 25.2%) and iron-manganese oxidized silicon (by 11%). Fe-FMB was more effective in immobilizing soil As, reducing it by 37.9% compared to the control, while original biochar (FMB) was more effective for soil Pb immobilization, reducing it by 24.9%. Application of Fe-FMB led to a 67.2% reduction in As content in rice grains as compared to the control. Furthermore, Fe-FMB significantly increased the activities of leucine aminopeptidase, acid phosphatase, and catalase, with maximum increases of 121.1%, 99.1%, and 33.2%, respectively. Pearson’s correlation analysis showed that soil enzyme activity was significantly related to pH and As availability, indicating that biochar application can regulate soil enzyme activity by influencing soil pH and As bioavailability. Conclusion While F. microcarpa biochar is effective in remediating soils contaminated with Pb only, it is not suitable for the treatment of soils co-contaminated with As and Pb. On the other hand, iron-modified biochar shows a better prospect for remediating soils co-contaminated with As and Pb. [Ch, 8 fig. 2 tab. 39 ref.] -
Key words:
- biochar /
- heavy metal /
- soil remediation /
- silicon /
- soil enzyme
-
表 1 生物质炭的基本理化性质
Table 1. Selected physicochemical properties of the used biochars
生物质炭 pH 灰分/(g·kg−1) 碳/(g·kg−1) 氢/(g·kg−1) 氮/(g·kg−1) 硅/(g·kg−1) 铁/(g·kg−1) 比表面积/(m2·kg−1) 阳离子交换量/(cmol·kg−1) FMB 9.5 79.3 753 5.0 27.5 1.50 7.89 23.4 14.45 Fe-FMB 5.3 137.8 505 7.5 13.5 7.31 49.32 132.6 30.95 表 2 生物质炭对水稻生物量(干质量)及稻谷产量的影响
Table 2. Impact of biochar on rice biomass (dry weight) and grain yield
处理组 水稻生物量(干质量)/g 稻谷产量/g 幼苗期 分蘖期 灌浆期 成熟期 对照 0.76±0.05 c 1.56±0.21 c 4.81±0.86 c 6.20±0.56 c 6.11±0.11 c FMB 1.68±0.15 b 2.93±0.29 b 6.54±0.42 b 7.54±0.22 b 8.42±0.47 b Fe-FMB 2.35±0.20 a 4.34±0.37 a 7.96±0.40 a 11.41±0.77 a 11.01±0.23 a 说明:不同小写字母表示同一时期内不同处理间差异显著(P<0.05)。 -
[1] 余涛, 蒋天宇, 刘旭, 等. 土壤重金属污染现状及检测分析技术研究进展[J]. 中国地质, 2021, 48(2): 460 − 476. YU Tao, JIANG Tianyu, LIU Xu, et al. Research progress in current status of soil heavy metal pollution and analysis technology[J]. Geology in China, 2021, 48(2): 460 − 476. [2] LIU Lin, HAN Jialiang, XU Zhidong, et al. Dietary exposure assessment of cadmium, arsenic, and lead in market rice from Sri Lanka[J]. Environmental Science and Pollution Research, 2020, 27(34): 42704 − 42712. [3] 吴萍萍, 李录久, 李敏. 生物炭负载铁前后对复合污染土壤中Cd、Cu、As淋失和形态转化的影响研究[J]. 环境科学学报, 2017, 37 (10): 3959 − 3967. WU Pingping, LI Lujiu, LI Ming. Effects of biochar and Fe-loaded biochar on the leaching and fraction transformation of Cd, Cu and As in multi-contaminated soil[J]. Acta Scientiae Circumstantiae, 2017, 37 (10): 3959 − 3967. [4] YANG Xing, HINZMANN M, PAN He, et al. Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions[J/OL]. Journal of Hazardous Materials, 2022, 421 : 126647[2024-01-30]. doi: 10.1016/j.jhazmat.2021.126647. [5] 宋佩佩, 马文静, 王军, 等. 铁改性生物炭的制备及其在重金属污染土壤修复技术中的应用进展[J]. 环境工程学报, 2022, 16 (12): 4018 − 4036. SONG Peipei, MA Wenjing, WANG Jun, et al. Preparation of iron-modified biochar and its application in heavy metal contaminated soils[J]. Chinese Journal of Environmental Engineering, 2022, 16 (12): 4019 − 4036. [6] WEN Er, YANG Xing, CHEN Hanbo, et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil[J/OL]. Journal of Hazardous Materials, 2021, 407 : 124344[2024-01-30]. doi:/10.1016/j.jhazmat.2020.124344. [7] 秦怀婷, 曾小林, 刘程琳. 聚合硫酸铁的制备、改性及应用研究进展[J]. 工业水处理, 2023, 43(7): 53 − 61. QIN Huaiting, ZENG Xiaolin, LIU Chenglin. Research progress on preparation, modification, and application of polyferric sulfate[J]. Industrial Water Treatment, 2023, 43(7): 53 − 61. [8] 谢登科. 聚合硫酸铁和活化硅酸复配除浊效果对比[J]. 资源节约与环保, 2019(7): 71 − 72 XIE Dengke. The comparative effectiveness of composite coagulants containing polymeric ferric sulfate and activated silica sol for turbidity removal[J]. Resource Conservation and Environmental Protection, 2019(7): 71 − 72 [9] 戴志楠, 杨兴, 陈翰博, 等. 原始及铁改性生物质炭对污染土壤中As、Pb生物有效性和微生物群落结构的影响[J]. 环境科学学报, 2022, 42(7): 456 − 465. DAI Zhinan, YANG Xing, CHEN Hanbo, et al. Effect of raw and iron-modified biochars on the bioavailability of As and Pb and functional diversity of the microbial community in soils[J]. Acta Scientiae Circumstantiae, 2022, 42(7): 456 − 465. [10] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Rukun. Methods for Agrochemical Analysis of Soil[M]. Beijing: China Agricultural Science and Technology Press, 2000. [11] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721 − 729. BAO Jianping, YUAN Gensheng, DONG Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil[J]. Acta Pedologica Sinica, 2020, 57(3): 721 − 729 [12] TAN Guangcai, MAO Yi, WANG Hongyuan, et al. A comparative study of arsenic(Ⅴ), tetracycline and nitrate ions adsorption onto magnetic biochars and activated carbon[J]. Chemical Engineering Research and Design, 2020, 159: 582 − 591. [13] 顾绍茹, 杨兴, 陈翰博, 等. 小龙虾壳炭和细叶榕枝条炭对土壤养分及镉和铅生物有效性的影响[J]. 浙江农林大学学报, 2023, 40(1): 176 − 187. GU Shaoru, YANG Xing, CHEN Hanbo, et al. Effects of biochar from Procambarus clarkia shells and Ficus microcarpa branches on soil nutrients and bioavailability of Cd and Pb[J]. Journal of Zhejiang A&F University, 2023, 40(1): 176 − 187. [14] ZHANG Jingyi, ZHOU Hang, GU Jiacun, et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L. )[J/OL]. Environmental Pollution, 2020, 260 : 113970[2024-01-30]. doi: 10.1016/j.envpol.2020.113970. [15] HAO Bian, JIANG Wan, MUHAMMAD T, et al. Computational study and optimization experiment of nZVI modified by anionic and cationic polymer for Cr(VI) stabilization in soil: kinetics and response surface methodology (RSM)[J/OL]. Environmental Pollution, 2021, 276 : 116745[2024-01-30]. doi:10.1016/j.envpol.2021.116745. [16] GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions[J]. Agriculture, Ecosystems & Environment, 2015, 206 : 46 − 59. [17] 占亚楠, 王智, 孟亚利. 生物炭提高土壤磷素有效性的整合分析[J]. 应用生态学报, 2020, 31(4): 1185 − 1193. ZHAN Yanan, WANG Zhi, MENG Yali. Biochar addition improve soil phosphorus availability: a meta-analysis[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1185 − 1193. [18] 何绪生, 张树清, 佘雕, 等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报, 2011, 27(15): 16 − 25. HE Xusheng, ZHANG Shuqing, SHE Diao, et al. Effects of biochar on soil and fertilizer and future research[J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 16 − 25. [19] DEENIK J L, MCCLELLAN A T, UEHARA G. Biochar volatile matter content effects on plant growth and nitrogen transformations in a tropical soil[C]//[s.l.] Western Nutrient Management Conference, Salt Lake City, 2009, 8 : 26 − 31. [20] WANG Shuai, LI Bo, ZHU Hanhua, et al. Long-term effects of biochar on trace metals accumulation in rice grain: a 7-year field experiment[J/OL]. Agriculture, Ecosystems & Environment, 2021, 315: 107446[2024-01-30]. doi: 10.1016/j.agee.2021.107446. [21] WANG Yaofeng, XIAO Xin, Chen Baoliang. Biochar impacts on soil silicon dissolution kinetics and their interaction mechanisms[J/OL]. Scientific Reports, 2018, 8 (1): 8040[2024-01-30]. doi:10.1038/s41598-018-26396-3. [22] SCHALLER J, PUPPE D, BUSSE J, et al. Silicification patterns in wheat leaves related to ontogeny and soil silicon availability under field conditions[J]. Plant and Soil, 2022, 477(1/2): 9 − 23. [23] 胡祖武, 吴多基, 吴建富, 等. 富硅生物炭有效提高红壤性稻田土壤不同形态硅含量及水稻产量[J]. 植物营养与肥料学报, 2022, 28(8): 1421 − 1429. HU Zuwu, WU Duoji, WU Jianfu, et al. Silicon-rich biochar effectively increases the availability of soil silicon and rice yield in reddish paddy soil[J]. Journa of Plant Nutrition and Fertilizers, 2022, 28(8): 1421 − 1429. [24] YANG Xing, WEN Er, GE Chengjun, et al. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil [J/OL]. Journal of Hazardous Materials, 2023, 443 : 130203[2024-01-30]. doi:10.1016/j.jhazmat.2022.130203. [25] TANG Jiayi, ZHANG Lihua, ZHANG Jiachao, et al. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost[J/OL]. Science of the Total Environment, 2020, 701 : 134751[2024-01-30]. doi: 10.1016/j.scitotenv.2019.134751. [26] 王文慧, 蒋志慧, 张纪, 等. 生物炭对大豆根际土壤酶活性及产量的影响[J]. 中国土壤与肥料, 2023(6): 147 − 153. WANG Wenhui, JIANG Zhihui, ZHANG Ji, et al. The effect of biochar on soybean rhizosphere soil enzyme activity and yield[J]. Chinese Journal of Soil and Fertilizer, 2023(6): 147 − 153. [27] TRIPATHI P, TRIPATHI R D, SINGH R P, et al. Silicon mediates arsenic tolerance in rice (Oryza sativa L. ) through lowering of arsenic uptake and improved antioxidant defence system[J]. Ecological Engineering, 2013, 52: 96 − 103. [28] XUE Qin, RAN Ying, TAN Yunzhi, et al. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments[J]. Chemosphere, 2019, 224: 103 − 110. [29] LI Jianhong, WANG Shanli, ZHANG Jing, et al. Coconut-fiber biochar reduced the bioavailability of lead but increased its translocation rate in rice plants: elucidation of immobilization mechanisms and significance of iron plaque barrier on roots using spectroscopic techniques[J/OL]. Journal of Hazardous Materials, 2020, 389: 122117[2024-01-30]. doi: 10.1016/j.jhazmat.2020.122117. [30] PENG Dinghua, WU Bin, TAN Hang, et al. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil[J]. Chemosphere, 2019, 228: 44 − 53. [31] SEYFFERTH A L, AMARAL D, LIMMER M A, et al. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice[J]. Environment International, 2019, 128: 301 − 309. [32] YU Zhihong, QIU Weiwen, WANG Fei, et al. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L. ) cultivar[J]. Chemosphere, 2017, 168: 341 − 349. [33] 黄冬芬, 王志琴, 刘立军. 铅胁迫下不同品种水稻对铅与微量元素的吸收分配差异[J]. 热带作物学报, 2009, 30(12): 25 − 28. HUANG Dongfen, WANG Zhiqing, LIU Lijun. Differences in absorption and distribution of Pb and trace elements in different rice varieties under lead stress[J]. Chinese Journal of Tropical Crops, 2009, 30(12): 25 − 28. [34] 陈新红, 叶玉秀, 潘国庆, 等. 杂交水稻不同器官重金属铅浓度与累积量[J]. 中国水稻科学, 2014, 28(1): 57 − 64. CHEN Xinhong, YE Yuxiu, PAN Guoqing, et al. Concentration and accumulation of lead in different organs of hybrid rice[J]. Chinese Rice Science, 2014, 28(1): 57 − 64. [35] 刘松涛, 李茜, 王小玲. 硅素营养对水稻抗重金属毒害的研究进展[J]. 湖北农业科学, 2017, 56(3): 405 − 408, 417. LIU Songtao, LI Qian, WANG Xiaoling. Progress in research of the resistance to heavy metal toxicity in rice by silicon nutrient[J]. Hubei Agricultural Sciences, 2017, 56(3): 405 − 408, 417. [36] 阮麟乔, 梁美娜, 丁艳梅, 等. 施加Fe3O4/桑树杆生物炭对土壤砷形态和水稻砷含量的影响[J]. 环境科学, 2023, 44(8): 4468 − 4478. RUAN Lingqiao, LIANG Meina, DING Yanmei, et al. Application of Fe3O4/mulberry stem biochar effects on soil arsenic species and rice arsenic content[J]. Environmental Science, 2023, 44(8): 4468 − 4478. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240171