[1] KOU Liang, JIANG Lei, FU Xiaoli, et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations [J]. New Phytologist, 2018, 218(4): 1450−1461.
[2] 夏允, 徐玲琳, 杨柳明, 等. 模拟氮沉降对中亚热带米槠天然林土壤解磷微生物群落和功能潜力的影响[J]. 生态学报, 2024, 44(4): 1727−1736.

XIA Yun, XU Linglin, YANG Liuming, et al. Effects of simulated nitrogen deposition on soil microbial community and functional potential of phosphate-solubilizing microorganisms in a subtropical Castanopsis carlesii forest [J]. Acta Ecologica Sinica, 2024, 44(4): 1727−1736.
[3] LYNCH J P. Root Phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops [J]. Plant Physiology, 2011, 156(3): 1041−1049.
[4] HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients [J]. New Phytologist, 2004, 162(1): 9−24.
[5] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New Phytologist, 2015, 207(3): 505−518.
[6] MONTAGNOLI A, BARONTI S, ALBERTO D, et al. Pioneer and fibrous root seasonal dynamics of Vitis vinifera L. are affected by biochar application to a low fertility soil: a rhizobox approach [J/OL]. Science of the Total Environment, 2021, 751: 141455[2025-02-10] . DOI: 10.1016/j.scitotenv.2020.141455.
[7] WEN Zhihui, WHITE P J, SHEN Jianbo, et al. Linking root exudation to belowground economic traits for resource acquisition [J]. New Phytologist, 2022, 233(4): 1620−1635.
[8] ZHU Liqin, YAO Xiaodong, CHEN Weile, et al. Plastic responses of below-ground foraging traits to soil phosphorus-rich patches across 17 coexisting AM tree species in a subtropical forest [J]. Journal of Ecology, 2023, 111(4): 830−844.
[9] EISSENSTAT D M, KUCHARSKI J M, ZADWORNY M, et al. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest [J]. New Phytologist, 2015, 208(1): 114−124.
[10] XIA Zhichao, HE Yue, YU Lei, et al. Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution [J]. New Phytologist, 2020, 225(2): 782−792.
[11] RHODES L H, GERDEMANN J W. Phosphate uptake zones of mycorrhizal and non-mycorrhizal Onions [J]. New Phytologist, 1975, 75(3): 555−561.
[12] MCCORMACK M L, IVERSEN C M. Physical and functional constraints on viable belowground acquisition strategies [J]. [J/OL]. Frontiers in Plant Science, 2019, 10: 1215[2025-02-11].DOI: 10.3389/fpls.2019.01215.
[13] RAVEN J A, LAMBERS H, SMITH S E, et al. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence [J]. New Phytologist, 2018, 217(4): 1420−1427.
[14] TRESEDER K K, ALLEN M F. Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition [J]. New Phytologist, 2000, 147(1): 189−200.
[15] ROBINSON D. The responses of plants to non-uniform supplies of nutrients [J]. New Phytologist, 1994, 127(4): 635−674.
[16] WANG Peng, DIAO Fengwei, YIN Liming, et al. Absorptive roots trait plasticity explains the variation of root foraging strategies in Cunninghamia lanceolata [J]. Environmental and Experimental Botany, 2016, 129: 127−135.
[17] BERNTSON G M. Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? [J]. New Phytologist, 1994, 127(3): 483−493.
[18] CAPLAN J S, STONE B W G, FAILLACE C A, et al. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs [J]. Annals of Botany, 2017, 119(6): 977−988.
[19] BAUHUS J, KHANNA P K, MENDEN N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii [J]. Canadian Journal of Forest Research, 2000, 30(12): 1886−1894.
[20] OSTONEN I, PÜTTSEPP Ü, BIEL C, et al. Specific root length as an indicator of environmental change [J]. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology, 2007, 141(3): 426−442.
[21] LYNCH J. Root architecture and plant productivity [J]. Plant Physiology, 1995, 109(1): 7−13.
[22] 郭顺美, 刘景辉, 刘瑞芳, 等. 刈割次数对不同紫花苜蓿品种再生特性的影响[J]. 耕作与栽培, 2008, 28(1): 15−17, 51.

GUO Shunmei, LIU Jinghui, LIU Ruifang, et al. Effects of cutting times on regeneration characteristics of different alfalfa varieties [J]. Tillage and Cultivation, 2008, 28(1): 15−17, 51.
[23] 杨丽君. 杨树幼龄林细根构型对施肥的响应[D]. 雅安: 四川农业大学, 2014.

YANG Lijun. Effect of Fertilization on Fine Root Architecture of the Plantation of Populus ×seuramericana cv. ‘74/76’[D]. Ya’an: Sichuan Agricultural University, 2014.
[24] LIU Bitao, LI Hongbo, ZHU Biao, et al. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species [J]. New Phytologist, 2015, 208(1): 125−136.
[25] CHEN Weile, KOIDE R T, ADAMS T S, et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(31): 8741−8746.
[26] CHENG Lei, CHEN Weile, ADAMS T S, et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches [J]. Ecology, 2016, 97(10): 2815−2823.
[27] SHELDRAKE M, ROSENSTOCK N P, MANGAN S, et al. Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest [J]. The ISME Journal, 2018, 12(10): 2433−2445.
[28] CUSACK D F, ADDO-DANSO S D, AGEE E A, et al. Tradeoffs and synergies in tropical forest root traits and dynamics for nutrient and water acquisition: field and modeling advances [J/OL]. Frontiers in Forests and Global Change, 2021, 4: 704469[2025-02-10]. DOI: 10.3389/ffgc.2021.704469.
[29] SUN Lijuan, ATAKA M, HAN Mengguang, et al. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest [J]. New Phytologist, 2021, 229(1): 259−271.
[30] HAN Mengguang, CHEN Ying, LI Rui, et al. Root phosphatase activity aligns with the collaboration gradient of the root economics space [J]. New Phytologist, 2022, 234(3): 837−849.
[31] BI Boyuan, YIN Qiulong, HAO Zhanqing. Root phosphatase activity is a competitive trait affiliated with the conservation gradient in root economic space [J/OL]. Forest Ecosystems, 2023, 10: 100111[2025-02-10]. DOI: 10.1016/j.fecs.2023.100111.
[32] 张进如. 短期和长期模拟氮沉降对亚热带常绿阔叶林细根生物量及功能性状的影响[D]. 福州: 福建师范大学, 2024.

ZHANG Jinru. Effects of Short-term and Long-term Simulated Nitrogen Deposition on Fine Root Biomass and Functional Traits in a Subtropical Evergreen Broad-leaved Forest[D]. Fuzhou: Fujian Normal University, 2024.
[33] 邹显花. 杉木对异质磷斑块胁迫适应机制的研究[D]. 福州: 福建农林大学, 2012.

ZHOU Xianhua. Study on Adaptation Mechanism of Chinese fir to Heterogeneous Supply of Phosphorus[J]. Fuzhou: Fujian Agriculture and Forestry University, 2012.
[34] XU B, GAO Z, WANG J, et al. Morphological changes in roots of Bothriochloa ischaemum intercropped with Lespedeza davurica following phosphorus application and water stress [J]. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology, 2015, 149(2): 298−306.
[35] RAZAQ M, ZHANG Peng, SHEN Hailong, et al. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono [J/OL]. PLoS One, 2017, 12(2): e0171321[2025-02-10]. DOI: 10.1371/journal.pone.0171321.
[36] RYSER P, LAMBERS H. Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply [J]. Plant and Soil, 1995, 170(2): 251−265.
[37] LINKOHR B I, WILLIAMSON L C, FITTER A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis [J]. The Plant Journal, 2002, 29(6): 751−760.
[38] COMAS L H, BECKER S R, CRUZ V M V, et al. Root traits contributing to plant productivity under drought [J/OL]. Frontiers in Plant Science, 2013, 4: 442[2025-02-10]. DOI: 10.3389/fpls.2013.00442.
[39] NACRY P, BOUGUYON E, GOJON A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource [J]. Plant and Soil, 2013, 370(1): 1−29.
[40] 韩长栋. 小麦TaSPX家族鉴定及耐低磷相关基因TaPHO1; H2的功能分析[D]. 郑州: 河南农业大学, 2024.

HAN Changdong. Identification of Ta SPX Family in Wheat and Functional Analysis of Ta PHO1; H2 Gene Related to Low Phosphorus Tolerance[D]. Zhengzhou: Hannan Agricultural University, 2024.
[41] WILLIAMSON L C, RIBRIOUX S P, FITTER A H, et al. Phosphate availability regulates root system architecture in Arabidopsis [J]. Plant Physiology, 2001, 126(2): 875−882.
[42] TAYLOR B N, STRAND A E, COOPER E R, et al. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest [J]. Tree Physiology, 2014, 34(9): 955−965.
[43] 周诚. 长期氮添加对阔叶红松林三个树种细根形态、解剖结构和化学组分的影响[D]. 哈尔滨: 东北林业大学, 2023.

ZHOU Cheng. Effects of Long-term Nitrogen Addition on the Morphology, Anatomical Structure and Stoichiometry of Fine Roots of Three Tree Species in Broad-leaved Korean Pine Forest[D]. Harbin: Northeast Forestry University, 2023.
[44] WANG Guoliang, FAHEY T J, XUE Sha, et al. Root morphology and architecture respond to N addition in Pinus tabuliformis, West China [J]. Oecologia, 2013, 171(2): 583−590.
[45] NOGUCHI K, NAGAKURA J, KANEKO S. Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization [J/OL]. Frontiers in Plant Science, 2013, 4: 347[2025-02-10]. DOI: 10.3389/fpls.2013.00347.
[46] LIU Ruiqiang, HUANG Zhiqun, LUKE MCCORMACK M, et al. Plasticity of fine-root functional traits in the litter layer in response to nitrogen addition in a subtropical forest plantation [J]. Plant and Soil, 2017, 415(1): 317−330.
[47] CHEN Guantao, TU Lihua, PENG Yong, et al. Effect of nitrogen additions on root morphology and chemistry in a subtropical bamboo forest [J]. Plant and Soil, 2017, 412(1): 441−451.
[48] WANG Wenna, WANG Yan, HOCH G, et al. Linkage of root morphology to anatomy with increasing nitrogen availability in six temperate tree species [J]. Plant and Soil, 2018, 425(1): 189−200.
[49] 史顺增, 熊德成, 冯建新, 等. 模拟氮沉降对杉木幼苗细根的生理生态影响[J]. 生态学报, 2017, 37(1): 74−83.

SHI Shunzeng, XIONG Decheng, FENG Jianxin, et al. Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir (Cunninghamia lanceolata) seedlings [J]. Acta Ecologica Sinica, 2017, 37(1): 74−83.
[50] GONG Lu, ZHAO Jingjing. The response of fine root morphological and physiological traits to added nitrogen in Schrenk’s spruce (Picea schrenkiana) of the Tianshan mountains, China [J/OL]. PeerJ, 2019, 7: e8194[2025-02-10]. DOI: 10.7717/peerj.8194.
[51] 刘金梁, 梅莉, 谷加存, 等. 内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J]. 生态学杂志, 2009, 28(1): 1–6.

LIU Jinliang, MEI Li, GU Jiacun, et al. Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshurica and Larix gmelinii: a study with in-growth core approach. Chinese Journal of Ecology, 2009, 28(1): 1–6.
[52] LIU Guancheng, XING Yajuan, WANG Qinggui, et al. Long-term nitrogen addition regulates root nutrient capture and leaf nutrient resorption in Larix gmelinii in a boreal forest [J]. European Journal of Forest Research, 2021, 140(4): 763−776.
[53] PREGITZER K S, ZAK D R, MAZIASZ J, et al. Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides [J]. Ecological Applications, 2000, 10(1): 18−33.
[54] KOU Liang, GUO Dali, YANG Hao, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China [J]. Plant and Soil, 2015, 391(1): 207−218.
[55] 赵晶晶. 氮添加对新疆天山雪岭云杉细根生理生态特征的影响[D]. 乌鲁木齐: 新疆大学, 2019.

ZHAO Jingjing. The Effects of Fine Root Physiological and Ecological Traits to Added Nitrogen in Schrenk’s Spruce (Picea schrenkiana) of the Tianshan mountains, China[D]. Urumqi: Xinjiang University, 2019.
[56] 郑子艺, 姜琦, 贾林巧, 等. 杉木和米槠人工林细根形态对短期氮和磷添加的可塑性响应[J]. 热带亚热带植物学报, 2024, 32(5): 620−628.

ZHENG Ziyi, JIANG Qi, JIA Linqiao, et al. Plasticity response of fine root morphological traits to short-term nitrogen and phosphorus addition in subtropical Cunninghamia lanceolata and Castanopsis carleisii plantations [J]. Journal of Tropical and Subtropical Botany, 2024, 32(5): 620−628.
[57] MAKITA N, HIRANO Y, SUGIMOTO T, et al. Intraspecific variation in fine root respiration and morphology in response to in situ soil nitrogen fertility in a 100-year-old Chamaecyparis obtusa forest [J]. Oecologia, 2015, 179(4): 959−967.
[58] 谢瑶. 氮沉降对木荷幼苗细根形态及化学计量特征的影响[D]. 福州: 福建师范大学, 2019.

XIE Yao. Morphological and Chemometrics of Schima superb Seeding Fine Root in Response of Nitrogen[D]. Fuzhou: Fujian Normal University, 2019.
[59] van der HEIJDEN M G A, MARTIN F M, SELOSSE M A, et al. Mycorrhizal ecology and evolution: the past, the present, and the future [J]. New Phytologist, 2015, 205(4): 1406−1423.
[60] DUDINSZKY N, CABELLO M N, GRIMOLDI A A, et al. Role of grazing intensity on shaping arbuscular mycorrhizal fungi communities in Patagonian semiarid steppes [J]. Rangeland Ecology & Management, 2019, 72(4): 692−699.
[61] 张志铭, 周芮宸, 宋桃李, 等. 植物根系觅食行为的功能生态学研究进展[J]. 河南农业大学学报, 2021, 55(6): 994−1001.

ZHANG Zhiming, ZHOU Ruichen, SONG Taoli, et al. Research progress in the functional ecology of plant root foraging behavior [J]. Journal of Henan Agricultural University, 2021, 55(6): 994−1001.
[62] FERNANDEZ C W, KENNEDY P G. Revisiting the ‘gadgil effect’: Do interguild fungal interactions control carbon cycling in forest soils? [J]. New Phytologist, 2016, 209(4): 1382−1394.
[63] HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material [J]. Nature, 2001, 413(6853): 297−299.
[64] KONG Deliang, MA Chengen, ZHANG Qian, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species [J]. New Phytologist, 2014, 203(3): 863−872.
[65] CHEN Weile, KOIDE R T, EISSENSTAT D M. Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes [J]. Functional Ecology, 2018, 32(4): 858−869.
[66] MA Xiaomin, ZHU Biao, NIE Yanxia, et al. Root and mycorrhizal strategies for nutrient acquisition in forests under nitrogen deposition: a meta-analysis [J/OL]. Soil Biology and Biochemistry, 2021, 163: 108418[2025-02-10]. DOI: 10.1016/j.soilbio.2021.108418.
[67] 耿鹏飞. 氮添加对红松人工林细根功能性状及生长动态的影响[D]. 哈尔滨: 东北林业大学, 2023.

GENG Pengfei. Effects of N Addition on Functional Traits and Growth Dynamics of Fine Roots in Korean Pine Plantation[D]. Harbin: Northeast Forestry University, 2023.
[68] 林子然, 张英俊. 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响[J]. 草业科学, 2018, 35(1): 115−122.

LIN Ziran, ZHANG Yingjun. Effect of arbuscular mycorrhizal fungi and phosphorus on growth and physiological properties of alfalfa seedlings under drought stress [J]. Pratacultural Science, 2018, 35(1): 115−122.
[69] 王婷, 沈益康, 汪鹞雄, 等. 氮磷添加对杉木根际土壤丛枝菌根真菌和易提取球囊霉素的影响[J]. 陆地生态系统与保护学报, 2021, 1(2): 1−10.

WANG Ting, SHEN Yikang, WANG Yaoxiong, et al. Effects of nitrogen and phosphorus addition on arbuscular mycorrhizal fungi and easily extracted glomalin-related soil protein in the Chinese fir plantation [J]. Terrestrial Ecosystem and Conservation, 2021, 1(2): 1−10.
[70] RYAN M H, KIDD D R, SANDRAL G A, et al. High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum) [J]. Applied Soil Ecology, 2016, 98: 221−232.
[71] SAWERS R J H, SVANE S F, QUAN C, et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters [J]. New Phytologist, 2017, 214(2): 632−643.
[72] PHILLIPS R P, ERLITZ Y, BIER R, et al. New approach for capturing soluble root exudates in forest soils [J]. Functional Ecology, 2008, 22(6): 990−999.
[73] VIVES-PERIS V, de OLLAS C, GÓMEZ-CADENAS A, et al. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Reports, 2020, 39(1): 3−17.
[74] ZHALNINA K, LOUIE K B, HAO Zhao, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. Nature Microbiology, 2018, 3(4): 470−480.
[75] 李彭丽. 甜瓜对低磷胁迫适应性响应的生理基础研究[D]. 上海: 上海交通大学, 2022.

LI Pengli. The Physiological Basis Study for Adaptability Responses of Melon to Low Phosphate Stress[D]. Shanghai: Shanghai Jiao Tong University, 2022.
[76] KITAYAMA K. The activities of soil and root acid phosphatase in the nine tropical rain forests that differ in phosphorus availability on Mount Kinabalu, Borneo [J]. Plant and Soil, 2013, 367(1): 215−224.
[77] 宋豪威, 洪慧滨, 陈思路, 等. 磷添加对米槠和杉木及其混合细根分解的影响[J]. 森林与环境学报, 2021, 41(1): 1−9.

SONG Haowei, HONG Huibin, CHEN Silu, et al. Effects of phosphorus addition on fine root decomposition of Castanopsis carlesii, Cunninghamia lanceolata and mixed [J]. Journal of Forest and Environment, 2021, 41(1): 1−9.
[78] MARKLEIN A R, HOULTON B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems [J]. New Phytologist, 2012, 193(3): 696−704.
[79] 吴淑华, 王佳新, 张世柯, 等. 模拟氮沉降对常绿阔叶林6种植物氮同化的影响[J]. 生态环境学报, 2019, 28(2): 262−269.

WU Shuhua, WANG Jiaxin, ZHANG Shike, et al. Effects of simulated nitrogen deposition on nitrogen assimilation of six plants in evergreen broad-leaved forest [J]. Ecology and Environmental Sciences, 2019, 28(2): 262−269.
[80] COLMER T D, BLOOM A J. A comparison of \begin{document}${\mathrm{NH}}_4^+ $\end{document} and \begin{document}${\mathrm{NO}}_3^- $\end{document} net fluxes along roots of rice and maize [J]. Plant, Cell Environment, 1998, 21(2): 240−246.
[81] KRONZUCKER H, KIRK G, YAEESH S M, et al. Effects of hypoxia on \begin{document}${}^{13}{\mathrm{NH}}_4^+ $\end{document} fluxes in rice roots. kinetics and compartmental analysis kinetics and compartmental analysis [J]. Plant Physiology, 1998, 116(2): 581−587.
[82] 马祥庆, 刘爱琴, 黄宝龙, 等. 氮素高效基因型杉木无性系的选择研究[J]. 林业科学, 2002, 38(6): 53−57.

MA Xiangqing, LIU Aiqin, HUANG Baolong, et al. Study on selection of high-nitrogen-efficiency-genotypes of Chinese fir clones [J]. Scientia Silvae Sinicae, 2002, 38(6): 53−57.
[83] WEN Zhihui, LI Hongbo, SHEN Qi, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species [J]. New Phytologist, 2019, 223(2): 882−895.
[84] HONVAULT N, HOUBEN D, NOBILE C, et al. Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification [J]. Plant and Soil, 2021, 461(1): 137−150.
[85] EISSENSTAT D M, YANAI R D. The ecology of root lifespan[M]// LAVELLE P. Advances in Ecological Research. Vol. 27. Amsterdam: Elsevier, 1997: 1−60.
[86] SMITH S E, READ D J. Mycorrhizal Symbiosis[M]. New York: Academic Press, 2008.
[87] SHARDA J N, KOIDE R T. Exploring the role of root anatomy in P-mediated control of colonization by arbuscular mycorrhizal fungi [J]. Botany, 2010, 88(2): 165−173.
[88] JOHNSON N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales [J]. New Phytologist, 2010, 185(3): 631−647.
[89] HOEKSEMA J D, CHAUDHARY V B, GEHRING C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi [J]. Ecology Letters, 2010, 13(3): 394−407.
[90] JOHNSON N C, WILSON G W T, BOWKER M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2093−2098.
[91] LI Hongbo, ZHANG Fusuo, SHEN Jianbo. Contribution of root proliferation in nutrient-rich soil patches to nutrient uptake and growth of maize [J]. Pedosphere, 2012, 22(6): 776−784.
[92] YAN Xiaoli, WANG Chen, MA Xiangqing, et al. Root morphology and seedling growth of three tree species in Southern China in response to homogeneous and heterogeneous phosphorus supplies [J]. Trees, 2019, 33(5): 1283−1297.
[93] YANG Zhenya, ZHOU Benzhi, GE Xiaogai, et al. Species-specific responses of root morphology of three co-existing tree species to nutrient patches reflect their root foraging strategies [J/OL]. Frontiers in Plant Science, 2021, 11: 618222[2025-02-10]. DOI: 10.3389/fpls.2020.618222.
[94] PHILLIPS R P, BRZOSTEK E, MIDGLEY M G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests [J]. New Phytologist, 2013, 199(1): 41−51.
[95] LIU Xubing, BURSLEM D F R P, TAYLOR J D, et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests [J]. Ecology Letters, 2018, 21(5): 713−723.