-
氮和磷是植物生长发育所必需的大量元素,它们在土壤中的有效性直接影响着植物的生长和分布。近几十年来,化石燃料和农业氮肥的广泛使用导致全球氮沉降增加,一些地区甚至达到氮饱和状态,超过了生态系统的临界负荷,对森林生态系统产生了显著的负面影响[1]。过量的氮输入打破了生态系统的氮磷平衡,特别是在热带和亚热带森林中,进一步加剧了土壤磷限制[2]。由于土壤中的磷易被固定且迁移性较弱,植物难以有效吸收和利用[3],这使得氮和磷成为制约陆地生态系统生产力的主要因素。
在森林生态系统中,植物主要通过根系和菌根从土壤中获取养分。然而,养分资源的空间分布往往呈现高度异质性,形成所谓的“养分斑块”[4]。这种异质性对植物的地下觅食策略提出了严峻挑战,同时也推动了植物地下性状的适应性进化。研究表明,根系在形态和生理等功能上表现出显著的分化,例如MCCORMACK等[5]将细根划分为吸收根和运输根:吸收根具有直径小、代谢快、寿命短、成本效益比低等特点,主要承担养分和水分的吸收功能,对环境变化表现出更高的可塑性;而运输根则主要负责养分的运输和储存[5−6]。这种功能分化使植物能够更高效地适应异质养分环境。
本文系统介绍了植物地下觅食性状的划分,阐述了氮磷养分添加对地下觅食性状的影响,探讨了地下觅食性状之间的协调机制,并提出了当前研究的不足和未来发展方向,旨在深入理解植物地下养分觅食策略及其对环境变化的适应机制,为森林生态系统的经营管理提供科学依据。
-
植物的生长和生存依赖于对土壤中养分的有效获取。地下觅食性状是植物为了获取养分而进化出的一系列性状,包括吸收根性状、菌根性状和分泌性状[7−8],详见表1。形态、构型等吸收根性状能够使植物更精准地占据土壤中养分丰富的斑块,从而增强养分的获取效率[9−10]。与菌根真菌共生可增加根系养分吸收的有效性,因为菌根真菌能够通过菌丝网络扩大根系的吸收范围,进入根系无法到达的区域[11]。根系分泌物可以促进吸附在土壤矿物上的养分释放,或用于刺激土壤微生物的活性,增加矿化率和获得与有机质复合的养分[12]。这些地下性状能够促进植物对不同类型土壤资源(如易获取或较复杂的有机/无机资源)的获取,而不同资源库的利用成本与收益则取决于土壤养分背景[13]。
表 1 地下觅食性状描述
Table 1. Description of belowground foraging traits
项目 觅食性状 单位 描述 参考文献 吸收根形态性状 根直径 cm 反映细根结构、功能,与资源保护策略有关 [15−16] 比根长 m·g−1 衡量养分吸收效率,与养分获取策略有关 [17−18] 比表面积 cm²·g−1 反映养分吸收效率,与养分获取策略有关 [19] 根组织密度 g·cm−3 体现根系生物量积累、植物生长与养分吸收活性,与资源保护策略有关 [16, 20] 吸收根构型性状 比分枝密度 g−1 反映植物根系的环境适应力,同一序级的细根分枝越多,通常生长力和
适应力越强[21−22] 比根尖密度 g−1 表征养分吸收能力 [23] 吸收根增殖性状 根长生长速率 cm·d−1 反映植物探索土壤和获取养分的能力 [9] 根质量生长速率 mg·d−1 表征植物对根系生长的资源投入及其功能效率 [9] 菌根性状 菌根菌侵染率 % 衡量植物根系与菌根真菌共生关系强度 [24] 菌丝密度 m·g−1 衡量菌丝在特定环境中分布和生长强度,能够捕捉共生的功能性质,
对养分添加敏感[25−28] 分泌性状 根系碳分泌速率 mg·g−1·d−1 衡量根系向土壤中释放碳化合物的速率。分泌速率越高,根际微生物
代谢活性越强,促进养分循环和有机质分解[12, 29] 根系酸性磷酸酶 nmol·g−1·h−1 分解有机磷释放无机磷,是植物适应低磷环境、提升磷利用效率的关键 [30−31] 根系硝酸还原酶 nmol·g−1·h−1 植物氮代谢的关键酶,催化硝酸盐转化为亚硝酸盐供植物利用,其活性
决定氮利用效率[32] -
氮磷添加通过改变植物的资源分配策略,显著影响根系形态、菌根共生效率及根系分泌物动态,进而重塑根际生态过程。这些响应具有物种和环境的依赖性,但整体表现为从“高投资-高获取”向“低成本-高效率”策略的适应性转变[8, 14]。
-
在森林生态系统中,细根的关键功能往往与其形态特征密切相关。尽管已有大量研究探讨氮添加对细根形态性状的影响,但研究结果并不一致(表2)。不同植物细根形态性状对磷添加的响应也表现出显著的种间差异。例如:在低磷胁迫环境下(4 mg·kg−1),杉木Cunninghamia lanceolata于胁迫初期表现出更大的根表面积、根长和根体积增量[33]。磷添加处理(0.1 g·kg−1,P2O5)显著提高了白羊草Bothriochloa ischaemum细根的比根长和比表面积[34];当单株施磷量为6或8 g·株−1时,色木槭Acer mono的根直径和比根长均显著增加[35];而RYSER等[36]发现,在每周分别添加0.21、1.04和5.22 mg磷条件下,羽状短柄草Brachypodium pinnatum和鸭茅Dactylis glomerata根组织密度未呈现显著变化。可见,氮磷添加对细根形态性状的影响因物种特性和养分条件而异,植物会通过改变其形态特征来优化资源吸收[16]。
表 2 不同树种根系形态性状对氮添加的响应
Table 2. Responses of root morphological traits in different tree species to nitrogen addition
根系性状 树种 树龄/a 氮添加水平 氮添加时间/a 对氮添加的响应 参考文献 直径 红松Pinus koraiensis、臭冷杉Abies
nephrolepis、花楷槭Acer ukurunduense− 2.5、5.0 g·m−2·a−1 8 增大 [43] 油松Pinus tabuliformi 50 3、6、9 g·m−2·a−1 3 增大 [44] 日本柳杉Cryptomeria japonica 28 336 kg·hm−2·a−1 3 减小 [45] 米老排Mytilaria laosensis 22 30 kg·hm−2·月−1 1 减小 [46] 毛竹Pleioblastus amarus − 50、100、300 kg·hm−2·a−1 7 无显著变化 [47] 黄檗Phellodendron amurense 30 10 g·m−2·a−1 5个月 无显著变化 [48] 比根长 日本柳杉 28 336 kg·hm−2·a−1 3 增大 [45] 杉木Cunninghamia lanceolata 2 40、80 kg·hm−2·a−1 1 增大 [49] 雪岭云杉Picea schrenkiana − 10 kg·hm−2·a−1 1 增大 [50] 油松 50 3、6、9 g·m−2·a−1 3 减小 [44] 毛竹 − 300 kg·hm−2·a−1 7 减小 [47] 水曲柳、落叶松Larix gmelinii 17 100 kg·hm−2·a−1 1 减小 [51] 落叶松 − 75 kg·hm−2·a−1 8 减小 [52] 米老排 22 10、30 kg·hm−2·月−1 1 无显著变化 [46] 北美山杨Populus tremuloides 2 高氮(100%A层土壤)、
低氮(20%A层与80%
C层土壤混合)− 无显著变化 [53] 湿地松Pinus elliottii 28 10 kg·hm−2·a−1 1 无显著变化 [54] 组织密度 雪岭云杉 − 5 kg·hm−2·a−1 1 增大 [55] 米槠 Castanopsis carleisii 43 15.6 mg·kg−1 5个月 减小 [56] 日本扁柏Chamaecyparis obtuse 100 31.8 mg·kg−147.2 mg·kg−1 原位土壤氮肥力 减小 [57] 日本柳杉 28 336 kg·hm−2·a−1 3 无显著变化 [45] 米老排 22 10 kg·hm−2·月−130 kg·hm−2·月−1 1 无显著变化 [46] 杉木 43 18 mg·kg−1 5个月 无显著变化 [56] 木荷Schima superba 5 50、100、150 kg·hm−2·a−1 4 无显著变化 [58] 说明:“−”表示未知。 根系构型指同一根系中不同类型的根在生长介质中的空间造型和分布[21]。细根构型对养分条件的变化比较敏感,植物通过调整细根构型参数来提高对养分的吸收[37]。氮添加增加了亚热带丛枝菌根树种的分枝密度[24]。然而,COMAS等[38]研究发现,养分的提高会导致根系分枝数、根尖密度和分枝密度显著降低,这可能与养分过剩条件下植物资源分配策略的调整有关。此外,杨丽君等[23]对杨树Populus的研究表明,施肥显著提高了表层土的分枝比和分枝密度,表明复合养分添加对细根分枝性状具有协同促进作用。磷添加对分枝性状的影响与氮添加有所不同。LIU等[24]对亚热带树种的研究显示,磷添加增加了根的分枝密度,但降低了分枝比。这种变化可能是植物在磷添加条件下的一种适应性策略,即通过增加分枝密度来扩大根系的觅食范围,同时将更多资源分配给一级根的生长,而非二级根。上述研究表明,根系构型对养分输入的响应具有显著异质性,氮、磷或复合养分添加可能通过不同机制(如资源分配权衡、觅食范围优化)驱动分枝密度、分枝比等性状的差异化调整。
增殖性状是表征植物地下觅食策略和资源分配模式的重要指标。土壤缺氮通常会促进主根生长以及部分侧根伸长,但不刺激侧根分化;在极度缺氮条件下,侧根分化几乎完全缺失[39]。这种响应机制可能是植物在氮限制条件下优先将资源分配给主根以探索更深层土壤养分的策略。而土壤缺磷条件下,植物根系通常表现为变细长,生长出更多的侧根和根毛,通过增加根表面积提高对磷的吸收效率[40]。WILLIAMSON等[41]对拟南芥Arabidopsis thaliana研究进一步表明,低磷有效性通过增加侧根密度和长度来促进侧根生长,同时通过抑制细胞伸长来减缓初生根生长。张进如[32]对亚热带天然常绿阔叶林的研究发现,短期氮添加(<6 a)增加了细根长度和生物量,长期施氮则会导致细根长度和生物量减少。TAYLOR等[42]对火炬松Pinus taeda的研究表明,长期施氮处理显著降低了细根长度和生物量,这可能是由于氮过剩条件下植物将更多资源分配给地上部分的生长。LIU等[24]对亚热带树种的研究表明,氮磷钾复合肥添加显著提高了根长增殖,而氮、磷单独添加对增殖无显著影响,这表明养分交互作用对细根增殖性状具有协同效应。上述研究揭示,养分类型(氮、磷)、浓度梯度(缺乏或富集)及作用时间(短期与长期)共同塑造了根系增殖性状的响应模式。氮、磷匮乏分别驱动主根深拓与侧根扩张的差异化策略,而养分过量则通过碳-养分分配权衡抑制根系增殖。值得注意的是,复合养分输入可能通过协同效应放大根系可塑性,而单一养分管理可能低估植物对复杂环境的适应能力。
-
菌根是由特定真菌与植物根系形成的互利共生结构,是植物获取资源的重要器官。据统计约有5万种真菌与25万种植物形成菌根共生关系,而且陆地生态系统中高达80%的植物氮和磷是由菌根真菌提供的[59]。这种菌根共生关系使根系觅食行为变得更为复杂多样,能够重塑植物地下资源获取策略,且其具体效应受到共生体种类的直接调控[60−61]。菌根真菌主要分为丛枝菌根(arbuscular mycorrhizal, AM)真菌和外生菌根(ectomycorrhizal, ECM)真菌,它们在养分吸收和资源分配策略上存在显著差异。AM真菌通过菌丝网络扩大根系养分吸收面积,提高土壤体积的占有率;在土壤无机养分斑块中,AM真菌能够迅速增殖,从而增大对氮、磷的吸收[62]。AM真菌对无机养分具有较高的亲和力,同时部分AM真菌还能够从简单的有机化合物中获取养分[63],这种特性使AM真菌在低养分条件下具有显著优势。ECM真菌通过分泌水解酶、纤维素酶和蛋白酶等促进有机质的分解[62],但在无机养分较高的斑块中可能会受到抑制[64]。与AM树种相比,ECM树种通常表现出更强的养分利用保守性,而AM树种则以较低的生物量投资和较高代谢率进行资源获取[65]。
CHEN等[65]提出了一个模拟植物群落从养分富集区获取氮和磷的概念框架,发现不同根形态和菌根类型的植物能够适应一系列营养异质性环境。菌根真菌侵染植物根系后,能够显著改善宿主植物的养分吸收能力,因此菌根侵染率常被用作表征根系菌根化程度的重要指标。MA等[66]对AM和ECM树种的整合分析表明,短期氮添加增加了植物的地下碳分配,进而提高了细根菌根侵染率,且AM树种在氮添加条件下的生长表现优于ECM树种。然而,耿鹏飞[67]对红松的连续氮添加试验发现,随着土壤氮有效性的增加,菌根侵染率降低。这是因为在高氮条件下,植物无须依赖菌根共生体即可直接从土壤中获取足够养分,从而减少对菌根的光合产物分配,导致侵染率下降。林子然等[68]对紫花苜蓿Medicago sativa的研究表明,在高磷添加条件下,寄主植物磷营养状况得到改善,菌根真菌的菌丝生长受到抑制,导致菌根侵染率降低。类似地,王婷等[69]对杉木的氮磷添加实验发现,在低氮条件下,磷添加降低了菌根侵染率,这是因为氮磷添加提高了土壤中的有效氮和有效磷含量,杉木可以直接从土壤中吸收足够营养元素,从而减少对菌根的依赖。相关研究表明,菌根真菌侵染率的增加是植物根系应对缺磷条件的典型反应,因为缺磷会促使植物通过增加菌根真菌的侵染来扩大与土壤的接触面积,从而提高对无机磷的吸收能力[70−71]。TRESEDER等[14]对31个树种的整合分析发现,氮肥和磷肥的添加均导致菌根侵染率降低。可见,菌根真菌通过改变细根功能性状,显著影响植物的地下资源获取策略。
-
根系分泌物组成包括低分子量有机物(如糖类、氨基酸、有机酸等)、次生代谢物(如酚类化合物、黄酮类物质等)和酶类(如酸性磷酸酶、硝酸还原酶等)。根系分泌物的收集与分析技术(如根际原位收集法、离体培养法)因研究目标而异:原位收集法可反映自然分泌动态但通量低[8, 72];离体培养法可控制环境变量并实现高纯度分泌物获取,但可能因根系损伤导致应激性分泌[73]。该领域多采用液相色谱-质谱联用(LC-MS)进行代谢物定性与定量,但需注意标准化提取流程以减少批次误差[74]。以往对细根养分获取策略的研究主要集中在细根形态和菌根性状方面[24, 64],而对根系分泌性状,特别是根系分泌诱导的根际酶活性的研究相对较少。其中细根酸性磷酸酶和细根硝酸还原酶是两类关键的分泌性状,分别反映了植物对磷和氮的获取与代谢能力。
酸性磷酸酶是由真菌、细菌和植物根部分泌的一类酶,能够催化有机磷化合物中磷酸键的水解,释放出可被植物吸收的无机磷。酸性磷酸酶是植物在磷限制条件下获取有效磷的重要方式,其活性高低反映了植物对磷的获取性策略[75]。在低磷有效性土壤中,植物通常通过提高酸性磷酸酶活性来增强对有机磷的活化能力。例如,热带雨林植物在磷限制条件下表现出较高的磷酸酶活性[76]。然而,磷添加显著降低了米槠、杉木细根的酸性磷酸酶活性[77]。MARKLEIN等[78]对34项研究的整合分析表明,氮添加显著提高了磷酸酶活性,这可能是因为氮添加促进了植物生长,增加了对磷的需求,从而刺激了酸性磷酸酶的分泌以活化更多的有机磷。
硝酸还原酶是植物氮素同化过程中的关键酶,负责将硝酸盐还原为亚硝酸盐,进而转化为氨供植物利用。硝酸还原酶的活性直接影响植物的氮代谢能力[32]。氮沉降背景下,土壤中硝酸盐含量增加会刺激植物体内硝酸还原酶活性的提高,从而促进氮素的转化和同化。例如,吴淑华等[79]对常绿阔叶林6种植物的模拟氮沉降实验发现,氮添加显著提高了植物体内硝酸还原酶的活性。此外,根尖是氮素吸收和代谢最活跃的部位,其硝酸还原酶含量较高,能够快速同化吸收的氮素[80−81]。在氮胁迫条件下,植物的氮素代谢可能受阻,导致硝酸还原酶活性降低。例如,马祥庆等[82]对杉木的研究表明,氮胁迫显著降低了根系硝酸还原酶的活性。目前关于磷添加对硝酸还原酶活性影响的研究较少,但磷作为植物生长的重要元素,可能通过影响植物的氮代谢间接调控硝酸还原酶活性。
-
植物在异质养分环境中,通过调控根系形态、构型、增殖、菌根共生和根系分泌等性状之间的相互作用,形成了一套复杂的协调机制,以优化养分获取并适应环境变化。这种协调机制通过多层次功能整合实现,涵盖性状间的协同与权衡,以及资源分配中的成本效益优化[8, 83]。
-
在养分贫瘠的环境中,植物通常通过调整根系形态和生理性状来提高养分获取效率。例如,植物可能通过增加比根长来扩大根系的吸收表面积,同时提升养分吸收速率,形成“形态扩张-生理活化”协同策略增强对资源匮乏环境的适应能力[3]。然而,性状间的协同效应会随养分有效性梯度发生策略性转换:WEN 等[83]对温室作物根系的研究发现,当土壤中易利用养分富集时,具有竞争性形态性状的物种会减少根系分泌物或菌根共生体的碳投入,转而优先依赖形态性状实现快速吸收,体现了“形态优化-生理收缩”的资源分配权衡。HONVAULT等[84]进一步印证了这种机制:较粗的根虽因吸收表面积受限而处于形态劣势,但通过根鞘释放更多的羧酸盐或磷酸酶(生理优势)形成功能补偿,而较细的根则以低生理成本维持高效吸收界面,这种“形态-生理功能互补”本质上是异质环境中资源分配策略的权衡表达。
-
在成本效益上,植物通过根系和菌根共生体的协调作用,以最小的资源投入获取最大的养分收益[85]。如根直径较细的树种,单位根长构建成本低,通过根长增殖扩大吸收面积,而根直径较粗的树种,单位根长构建成本高,则倾向于投资菌根真菌的细密菌丝网络,以更低碳耗实现广域养分勘探[24]。在低氮或低磷条件下,植物依赖菌丝网络拓展(延伸至养分斑块)和代谢活化(分泌磷酸酶、有机酸等)高效捕获分散养分,此时菌根共生体的碳投资回报率显著高于自主根系探索[86]。然而,随着土壤氮磷有效性升高,植物对菌根的依赖性普遍降低:高磷直接抑制菌丝生长和侵染率,而高氮削弱菌根真菌的有机养分分解能力,促使植物将碳资源转向根系直接吸收或地上部生长[14, 24, 87]。这种“共生解耦”策略具有环境响应特异性,即当菌丝维持的碳成本超过其养分收益时(如高养分土壤),植物优先减少菌丝投资;但在特定逆境或有机养分主导环境中,保留菌根的抗逆功能或菌丝网络的定向养分捕获能力仍具有净收益优势[88−89]。菌根共生策略的动态调整,本质上映射了植物在资源异质性环境中对“碳投入-养分收益”权衡的精准计算和适应性表达。
-
已有研究探讨了氮磷添加对植物地下觅食性状的影响,但这些研究多局限于单一养分条件,很少考虑不同养分间的相互作用。氮磷交互作用可能对地下性状的响应产生协同或拮抗效应[90−91],因此,探讨植物地下觅食性状对不同养分间交互作用的响应,有助于揭示植物适应复杂养分环境的机制,为森林生态系统的经营和管理提供科学依据。目前,根系分泌性状,特别是根系分泌物诱导的根际酶活性的研究相对不足。根系分泌物在调节根际养分有效性方面具有重要作用,但与吸收根和菌根性状的协同响应机制尚未得到充分研究。未来研究应更加注重将根系分泌性状与吸收根、菌根性状相结合,探讨三者对养分斑块的协同响应机制,并纳入根系经济空间框架[7],这将有助于更全面地揭示植物在异质环境中的适应策略,并为理解植物地下觅食性状的功能整合提供新的视角。当前关于地下性状对异质斑块响应的研究多基于盆栽幼苗[92−93],而针对野外成熟植物的原位研究相对缺乏。尽管盆栽便于控制条件,但难以完全模拟自然环境中复杂的养分动态和生物互作过程,因此,加强野外原位研究对于深入理解植物地下生态过程、揭示植物适应环境变化的机制以及预测生态系统对全球变化的响应具有重要意义。不同菌根树种在根形态和结构上具有一定的差异性[25],且对养分吸收具有不同的偏好性[94−95],这可能导致不同菌根树种在养分获取策略上存在根本差异。因此,加强不同菌根树种地下养分获取策略的研究,将对深入理解森林生态系统中不同菌根树种的共存至关重要。
Research progress on the effects of nitrogen and phosphorus addition on plant belowground foraging traits
-
摘要: 植物地下觅食性状对于植物的养分获取和环境适应至关重要。氮磷有效性作为关键驱动因子,深刻影响植物地下养分获取策略。本文介绍了植物地下觅食性状的划分,包括吸收根性状(形态、构型、增殖)、菌根性状(菌根真菌侵染率、菌丝密度)和分泌性状(根系碳分泌速率、根系酶活性),阐述了氮磷添加对不同觅食性状的影响。研究发现:氮磷添加对吸收根性状的影响因树种和养分条件而异,植物会通过改变其形态、构型、增殖特征来优化资源吸收;菌根真菌通过差异化策略(如丛枝菌根真菌依赖菌丝拓展无机养分吸收,外生菌根真菌分泌酶分解有机质)调控植物地下资源获取,但氮磷添加普遍抑制菌根侵染率;根系酸性磷酸酶和硝酸还原酶作为反映植物对磷氮获取与代谢的关键指标,其活性受氮磷添加显著调控。本文还探讨了地下觅食性状之间的协调机制,包括性状间的协同与权衡、资源分配中的成本效益优化。针对当前研究的不足之处,提出从氮磷养分的交互作用、根系分泌性状与吸收根及菌根性状的协同响应机制、野外成熟植物的原位观测、不同菌根类型树种觅食策略等方面进一步研究,旨在深入理解植物地下养分获取策略及其对环境变化的适应机制,为森林生态系统的经营管理提供科学依据。表2参95Abstract: Plant belowground foraging traits are crucial for plant nutrient acquisition and environmental adaptation. Nitrogen (N) and phosphorus (P) availability, as key driving factors, have a profound impact on plant belowground nutrient acquisition strategies. First, it introduces the classification of plant belowground foraging traits. This include absorptive root traits (morphology, architecture, and proliferation), mycorrhizal traits (mycorrhizal fungal colonization rate and hyphal density), and exudation traits (root carbon exudation rate and root enzyme activity). Subsequently, it illustrates the effects of N and P addition on these foraging traits. Regarding absorptively root traits, studies have shown that the effects of N and P addition vary depending on tree species and nutrient conditions. Plants optimize resource acquisition by altering their morphology, architecture, and proliferation characteristics. For mycorrhizal traits, mycorrhizal fungi regulate belowground resource acquisition through differentiated strategies (For example, arbuscular mycorrhizal fungi rely on hyphal extension for inorganic nutrient uptake, while ectomycorrhizal fungi secrete enzymes to decompose organic matter), however, N and P addition generally suppress mycorrhizal colonization rates. As for exudation traits, root acid phosphatase and nitrate reductase, which are key indicators reflecting plant P and N acquisition and metabolism, were significantly regulated by N and P addition. Next, it also explores the coordination mechanisms among belowground foraging traits. This includes synergies and trade-offs among traits, as well as cost-benefit optimization in resource allocation. Finally, addressing current research gaps, future research directions are proposed, focusing on N-P interactions, the synergistic response mechanisms among root secretory traits, absorptive roots, and mycorrhizal traits, in situ observations of mature plants in the field, and foraging strategies of different mycorrhizal types of tree species. These directions aim to deepen our understanding of plant belowground nutrient acquisition strategies and their adaptation mechanisms to environmental changes, providing a scientific basis for the management of forest ecosystems. [Ch, 2 tab. 95 ref.]
-
表 1 地下觅食性状描述
Table 1. Description of belowground foraging traits
项目 觅食性状 单位 描述 参考文献 吸收根形态性状 根直径 cm 反映细根结构、功能,与资源保护策略有关 [15−16] 比根长 m·g−1 衡量养分吸收效率,与养分获取策略有关 [17−18] 比表面积 cm²·g−1 反映养分吸收效率,与养分获取策略有关 [19] 根组织密度 g·cm−3 体现根系生物量积累、植物生长与养分吸收活性,与资源保护策略有关 [16, 20] 吸收根构型性状 比分枝密度 g−1 反映植物根系的环境适应力,同一序级的细根分枝越多,通常生长力和
适应力越强[21−22] 比根尖密度 g−1 表征养分吸收能力 [23] 吸收根增殖性状 根长生长速率 cm·d−1 反映植物探索土壤和获取养分的能力 [9] 根质量生长速率 mg·d−1 表征植物对根系生长的资源投入及其功能效率 [9] 菌根性状 菌根菌侵染率 % 衡量植物根系与菌根真菌共生关系强度 [24] 菌丝密度 m·g−1 衡量菌丝在特定环境中分布和生长强度,能够捕捉共生的功能性质,
对养分添加敏感[25−28] 分泌性状 根系碳分泌速率 mg·g−1·d−1 衡量根系向土壤中释放碳化合物的速率。分泌速率越高,根际微生物
代谢活性越强,促进养分循环和有机质分解[12, 29] 根系酸性磷酸酶 nmol·g−1·h−1 分解有机磷释放无机磷,是植物适应低磷环境、提升磷利用效率的关键 [30−31] 根系硝酸还原酶 nmol·g−1·h−1 植物氮代谢的关键酶,催化硝酸盐转化为亚硝酸盐供植物利用,其活性
决定氮利用效率[32] 表 2 不同树种根系形态性状对氮添加的响应
Table 2. Responses of root morphological traits in different tree species to nitrogen addition
根系性状 树种 树龄/a 氮添加水平 氮添加时间/a 对氮添加的响应 参考文献 直径 红松Pinus koraiensis、臭冷杉Abies
nephrolepis、花楷槭Acer ukurunduense− 2.5、5.0 g·m−2·a−1 8 增大 [43] 油松Pinus tabuliformi 50 3、6、9 g·m−2·a−1 3 增大 [44] 日本柳杉Cryptomeria japonica 28 336 kg·hm−2·a−1 3 减小 [45] 米老排Mytilaria laosensis 22 30 kg·hm−2·月−1 1 减小 [46] 毛竹Pleioblastus amarus − 50、100、300 kg·hm−2·a−1 7 无显著变化 [47] 黄檗Phellodendron amurense 30 10 g·m−2·a−1 5个月 无显著变化 [48] 比根长 日本柳杉 28 336 kg·hm−2·a−1 3 增大 [45] 杉木Cunninghamia lanceolata 2 40、80 kg·hm−2·a−1 1 增大 [49] 雪岭云杉Picea schrenkiana − 10 kg·hm−2·a−1 1 增大 [50] 油松 50 3、6、9 g·m−2·a−1 3 减小 [44] 毛竹 − 300 kg·hm−2·a−1 7 减小 [47] 水曲柳、落叶松Larix gmelinii 17 100 kg·hm−2·a−1 1 减小 [51] 落叶松 − 75 kg·hm−2·a−1 8 减小 [52] 米老排 22 10、30 kg·hm−2·月−1 1 无显著变化 [46] 北美山杨Populus tremuloides 2 高氮(100%A层土壤)、
低氮(20%A层与80%
C层土壤混合)− 无显著变化 [53] 湿地松Pinus elliottii 28 10 kg·hm−2·a−1 1 无显著变化 [54] 组织密度 雪岭云杉 − 5 kg·hm−2·a−1 1 增大 [55] 米槠 Castanopsis carleisii 43 15.6 mg·kg−1 5个月 减小 [56] 日本扁柏Chamaecyparis obtuse 100 31.8 mg·kg−147.2 mg·kg−1 原位土壤氮肥力 减小 [57] 日本柳杉 28 336 kg·hm−2·a−1 3 无显著变化 [45] 米老排 22 10 kg·hm−2·月−130 kg·hm−2·月−1 1 无显著变化 [46] 杉木 43 18 mg·kg−1 5个月 无显著变化 [56] 木荷Schima superba 5 50、100、150 kg·hm−2·a−1 4 无显著变化 [58] 说明:“−”表示未知。 -
[1] KOU Liang, JIANG Lei, FU Xiaoli, et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations [J]. New Phytologist, 2018, 218(4): 1450−1461. [2] 夏允, 徐玲琳, 杨柳明, 等. 模拟氮沉降对中亚热带米槠天然林土壤解磷微生物群落和功能潜力的影响[J]. 生态学报, 2024, 44(4): 1727−1736. XIA Yun, XU Linglin, YANG Liuming, et al. Effects of simulated nitrogen deposition on soil microbial community and functional potential of phosphate-solubilizing microorganisms in a subtropical Castanopsis carlesii forest [J]. Acta Ecologica Sinica, 2024, 44(4): 1727−1736. [3] LYNCH J P. Root Phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops [J]. Plant Physiology, 2011, 156(3): 1041−1049. [4] HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients [J]. New Phytologist, 2004, 162(1): 9−24. [5] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New Phytologist, 2015, 207(3): 505−518. [6] MONTAGNOLI A, BARONTI S, ALBERTO D, et al. Pioneer and fibrous root seasonal dynamics of Vitis vinifera L. are affected by biochar application to a low fertility soil: a rhizobox approach [J/OL]. Science of the Total Environment, 2021, 751: 141455[2025-02-10] . DOI: 10.1016/j.scitotenv.2020.141455. [7] WEN Zhihui, WHITE P J, SHEN Jianbo, et al. Linking root exudation to belowground economic traits for resource acquisition [J]. New Phytologist, 2022, 233(4): 1620−1635. [8] ZHU Liqin, YAO Xiaodong, CHEN Weile, et al. Plastic responses of below-ground foraging traits to soil phosphorus-rich patches across 17 coexisting AM tree species in a subtropical forest [J]. Journal of Ecology, 2023, 111(4): 830−844. [9] EISSENSTAT D M, KUCHARSKI J M, ZADWORNY M, et al. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest [J]. New Phytologist, 2015, 208(1): 114−124. [10] XIA Zhichao, HE Yue, YU Lei, et al. Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution [J]. New Phytologist, 2020, 225(2): 782−792. [11] RHODES L H, GERDEMANN J W. Phosphate uptake zones of mycorrhizal and non-mycorrhizal Onions [J]. New Phytologist, 1975, 75(3): 555−561. [12] MCCORMACK M L, IVERSEN C M. Physical and functional constraints on viable belowground acquisition strategies [J]. [J/OL]. Frontiers in Plant Science, 2019, 10: 1215[2025-02-11].DOI: 10.3389/fpls.2019.01215. [13] RAVEN J A, LAMBERS H, SMITH S E, et al. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence [J]. New Phytologist, 2018, 217(4): 1420−1427. [14] TRESEDER K K, ALLEN M F. Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition [J]. New Phytologist, 2000, 147(1): 189−200. [15] ROBINSON D. The responses of plants to non-uniform supplies of nutrients [J]. New Phytologist, 1994, 127(4): 635−674. [16] WANG Peng, DIAO Fengwei, YIN Liming, et al. Absorptive roots trait plasticity explains the variation of root foraging strategies in Cunninghamia lanceolata [J]. Environmental and Experimental Botany, 2016, 129: 127−135. [17] BERNTSON G M. Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? [J]. New Phytologist, 1994, 127(3): 483−493. [18] CAPLAN J S, STONE B W G, FAILLACE C A, et al. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs [J]. Annals of Botany, 2017, 119(6): 977−988. [19] BAUHUS J, KHANNA P K, MENDEN N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii [J]. Canadian Journal of Forest Research, 2000, 30(12): 1886−1894. [20] OSTONEN I, PÜTTSEPP Ü, BIEL C, et al. Specific root length as an indicator of environmental change [J]. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology, 2007, 141(3): 426−442. [21] LYNCH J. Root architecture and plant productivity [J]. Plant Physiology, 1995, 109(1): 7−13. [22] 郭顺美, 刘景辉, 刘瑞芳, 等. 刈割次数对不同紫花苜蓿品种再生特性的影响[J]. 耕作与栽培, 2008, 28(1): 15−17, 51. GUO Shunmei, LIU Jinghui, LIU Ruifang, et al. Effects of cutting times on regeneration characteristics of different alfalfa varieties [J]. Tillage and Cultivation, 2008, 28(1): 15−17, 51. [23] 杨丽君. 杨树幼龄林细根构型对施肥的响应[D]. 雅安: 四川农业大学, 2014. YANG Lijun. Effect of Fertilization on Fine Root Architecture of the Plantation of Populus ×seuramericana cv. ‘74/76’[D]. Ya’an: Sichuan Agricultural University, 2014. [24] LIU Bitao, LI Hongbo, ZHU Biao, et al. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species [J]. New Phytologist, 2015, 208(1): 125−136. [25] CHEN Weile, KOIDE R T, ADAMS T S, et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(31): 8741−8746. [26] CHENG Lei, CHEN Weile, ADAMS T S, et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches [J]. Ecology, 2016, 97(10): 2815−2823. [27] SHELDRAKE M, ROSENSTOCK N P, MANGAN S, et al. Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest [J]. The ISME Journal, 2018, 12(10): 2433−2445. [28] CUSACK D F, ADDO-DANSO S D, AGEE E A, et al. Tradeoffs and synergies in tropical forest root traits and dynamics for nutrient and water acquisition: field and modeling advances [J/OL]. Frontiers in Forests and Global Change, 2021, 4: 704469[2025-02-10]. DOI: 10.3389/ffgc.2021.704469. [29] SUN Lijuan, ATAKA M, HAN Mengguang, et al. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest [J]. New Phytologist, 2021, 229(1): 259−271. [30] HAN Mengguang, CHEN Ying, LI Rui, et al. Root phosphatase activity aligns with the collaboration gradient of the root economics space [J]. New Phytologist, 2022, 234(3): 837−849. [31] BI Boyuan, YIN Qiulong, HAO Zhanqing. Root phosphatase activity is a competitive trait affiliated with the conservation gradient in root economic space [J/OL]. Forest Ecosystems, 2023, 10: 100111[2025-02-10]. DOI: 10.1016/j.fecs.2023.100111. [32] 张进如. 短期和长期模拟氮沉降对亚热带常绿阔叶林细根生物量及功能性状的影响[D]. 福州: 福建师范大学, 2024. ZHANG Jinru. Effects of Short-term and Long-term Simulated Nitrogen Deposition on Fine Root Biomass and Functional Traits in a Subtropical Evergreen Broad-leaved Forest[D]. Fuzhou: Fujian Normal University, 2024. [33] 邹显花. 杉木对异质磷斑块胁迫适应机制的研究[D]. 福州: 福建农林大学, 2012. ZHOU Xianhua. Study on Adaptation Mechanism of Chinese fir to Heterogeneous Supply of Phosphorus[J]. Fuzhou: Fujian Agriculture and Forestry University, 2012. [34] XU B, GAO Z, WANG J, et al. Morphological changes in roots of Bothriochloa ischaemum intercropped with Lespedeza davurica following phosphorus application and water stress [J]. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology, 2015, 149(2): 298−306. [35] RAZAQ M, ZHANG Peng, SHEN Hailong, et al. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono [J/OL]. PLoS One, 2017, 12(2): e0171321[2025-02-10]. DOI: 10.1371/journal.pone.0171321. [36] RYSER P, LAMBERS H. Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply [J]. Plant and Soil, 1995, 170(2): 251−265. [37] LINKOHR B I, WILLIAMSON L C, FITTER A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis [J]. The Plant Journal, 2002, 29(6): 751−760. [38] COMAS L H, BECKER S R, CRUZ V M V, et al. Root traits contributing to plant productivity under drought [J/OL]. Frontiers in Plant Science, 2013, 4: 442[2025-02-10]. DOI: 10.3389/fpls.2013.00442. [39] NACRY P, BOUGUYON E, GOJON A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource [J]. Plant and Soil, 2013, 370(1): 1−29. [40] 韩长栋. 小麦TaSPX家族鉴定及耐低磷相关基因TaPHO1; H2的功能分析[D]. 郑州: 河南农业大学, 2024. HAN Changdong. Identification of Ta SPX Family in Wheat and Functional Analysis of Ta PHO1; H2 Gene Related to Low Phosphorus Tolerance[D]. Zhengzhou: Hannan Agricultural University, 2024. [41] WILLIAMSON L C, RIBRIOUX S P, FITTER A H, et al. Phosphate availability regulates root system architecture in Arabidopsis [J]. Plant Physiology, 2001, 126(2): 875−882. [42] TAYLOR B N, STRAND A E, COOPER E R, et al. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest [J]. Tree Physiology, 2014, 34(9): 955−965. [43] 周诚. 长期氮添加对阔叶红松林三个树种细根形态、解剖结构和化学组分的影响[D]. 哈尔滨: 东北林业大学, 2023. ZHOU Cheng. Effects of Long-term Nitrogen Addition on the Morphology, Anatomical Structure and Stoichiometry of Fine Roots of Three Tree Species in Broad-leaved Korean Pine Forest[D]. Harbin: Northeast Forestry University, 2023. [44] WANG Guoliang, FAHEY T J, XUE Sha, et al. Root morphology and architecture respond to N addition in Pinus tabuliformis, West China [J]. Oecologia, 2013, 171(2): 583−590. [45] NOGUCHI K, NAGAKURA J, KANEKO S. Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization [J/OL]. Frontiers in Plant Science, 2013, 4: 347[2025-02-10]. DOI: 10.3389/fpls.2013.00347. [46] LIU Ruiqiang, HUANG Zhiqun, LUKE MCCORMACK M, et al. Plasticity of fine-root functional traits in the litter layer in response to nitrogen addition in a subtropical forest plantation [J]. Plant and Soil, 2017, 415(1): 317−330. [47] CHEN Guantao, TU Lihua, PENG Yong, et al. Effect of nitrogen additions on root morphology and chemistry in a subtropical bamboo forest [J]. Plant and Soil, 2017, 412(1): 441−451. [48] WANG Wenna, WANG Yan, HOCH G, et al. Linkage of root morphology to anatomy with increasing nitrogen availability in six temperate tree species [J]. Plant and Soil, 2018, 425(1): 189−200. [49] 史顺增, 熊德成, 冯建新, 等. 模拟氮沉降对杉木幼苗细根的生理生态影响[J]. 生态学报, 2017, 37(1): 74−83. SHI Shunzeng, XIONG Decheng, FENG Jianxin, et al. Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir (Cunninghamia lanceolata) seedlings [J]. Acta Ecologica Sinica, 2017, 37(1): 74−83. [50] GONG Lu, ZHAO Jingjing. The response of fine root morphological and physiological traits to added nitrogen in Schrenk’s spruce (Picea schrenkiana) of the Tianshan mountains, China [J/OL]. PeerJ, 2019, 7: e8194[2025-02-10]. DOI: 10.7717/peerj.8194. [51] 刘金梁, 梅莉, 谷加存, 等. 内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J]. 生态学杂志, 2009, 28(1): 1–6. LIU Jinliang, MEI Li, GU Jiacun, et al. Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshurica and Larix gmelinii: a study with in-growth core approach. Chinese Journal of Ecology, 2009, 28(1): 1–6. [52] LIU Guancheng, XING Yajuan, WANG Qinggui, et al. Long-term nitrogen addition regulates root nutrient capture and leaf nutrient resorption in Larix gmelinii in a boreal forest [J]. European Journal of Forest Research, 2021, 140(4): 763−776. [53] PREGITZER K S, ZAK D R, MAZIASZ J, et al. Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides [J]. Ecological Applications, 2000, 10(1): 18−33. [54] KOU Liang, GUO Dali, YANG Hao, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China [J]. Plant and Soil, 2015, 391(1): 207−218. [55] 赵晶晶. 氮添加对新疆天山雪岭云杉细根生理生态特征的影响[D]. 乌鲁木齐: 新疆大学, 2019. ZHAO Jingjing. The Effects of Fine Root Physiological and Ecological Traits to Added Nitrogen in Schrenk’s Spruce (Picea schrenkiana) of the Tianshan mountains, China[D]. Urumqi: Xinjiang University, 2019. [56] 郑子艺, 姜琦, 贾林巧, 等. 杉木和米槠人工林细根形态对短期氮和磷添加的可塑性响应[J]. 热带亚热带植物学报, 2024, 32(5): 620−628. ZHENG Ziyi, JIANG Qi, JIA Linqiao, et al. Plasticity response of fine root morphological traits to short-term nitrogen and phosphorus addition in subtropical Cunninghamia lanceolata and Castanopsis carleisii plantations [J]. Journal of Tropical and Subtropical Botany, 2024, 32(5): 620−628. [57] MAKITA N, HIRANO Y, SUGIMOTO T, et al. Intraspecific variation in fine root respiration and morphology in response to in situ soil nitrogen fertility in a 100-year-old Chamaecyparis obtusa forest [J]. Oecologia, 2015, 179(4): 959−967. [58] 谢瑶. 氮沉降对木荷幼苗细根形态及化学计量特征的影响[D]. 福州: 福建师范大学, 2019. XIE Yao. Morphological and Chemometrics of Schima superb Seeding Fine Root in Response of Nitrogen[D]. Fuzhou: Fujian Normal University, 2019. [59] van der HEIJDEN M G A, MARTIN F M, SELOSSE M A, et al. Mycorrhizal ecology and evolution: the past, the present, and the future [J]. New Phytologist, 2015, 205(4): 1406−1423. [60] DUDINSZKY N, CABELLO M N, GRIMOLDI A A, et al. Role of grazing intensity on shaping arbuscular mycorrhizal fungi communities in Patagonian semiarid steppes [J]. Rangeland Ecology & Management, 2019, 72(4): 692−699. [61] 张志铭, 周芮宸, 宋桃李, 等. 植物根系觅食行为的功能生态学研究进展[J]. 河南农业大学学报, 2021, 55(6): 994−1001. ZHANG Zhiming, ZHOU Ruichen, SONG Taoli, et al. Research progress in the functional ecology of plant root foraging behavior [J]. Journal of Henan Agricultural University, 2021, 55(6): 994−1001. [62] FERNANDEZ C W, KENNEDY P G. Revisiting the ‘gadgil effect’: Do interguild fungal interactions control carbon cycling in forest soils? [J]. New Phytologist, 2016, 209(4): 1382−1394. [63] HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material [J]. Nature, 2001, 413(6853): 297−299. [64] KONG Deliang, MA Chengen, ZHANG Qian, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species [J]. New Phytologist, 2014, 203(3): 863−872. [65] CHEN Weile, KOIDE R T, EISSENSTAT D M. Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes [J]. Functional Ecology, 2018, 32(4): 858−869. [66] MA Xiaomin, ZHU Biao, NIE Yanxia, et al. Root and mycorrhizal strategies for nutrient acquisition in forests under nitrogen deposition: a meta-analysis [J/OL]. Soil Biology and Biochemistry, 2021, 163: 108418[2025-02-10]. DOI: 10.1016/j.soilbio.2021.108418. [67] 耿鹏飞. 氮添加对红松人工林细根功能性状及生长动态的影响[D]. 哈尔滨: 东北林业大学, 2023. GENG Pengfei. Effects of N Addition on Functional Traits and Growth Dynamics of Fine Roots in Korean Pine Plantation[D]. Harbin: Northeast Forestry University, 2023. [68] 林子然, 张英俊. 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响[J]. 草业科学, 2018, 35(1): 115−122. LIN Ziran, ZHANG Yingjun. Effect of arbuscular mycorrhizal fungi and phosphorus on growth and physiological properties of alfalfa seedlings under drought stress [J]. Pratacultural Science, 2018, 35(1): 115−122. [69] 王婷, 沈益康, 汪鹞雄, 等. 氮磷添加对杉木根际土壤丛枝菌根真菌和易提取球囊霉素的影响[J]. 陆地生态系统与保护学报, 2021, 1(2): 1−10. WANG Ting, SHEN Yikang, WANG Yaoxiong, et al. Effects of nitrogen and phosphorus addition on arbuscular mycorrhizal fungi and easily extracted glomalin-related soil protein in the Chinese fir plantation [J]. Terrestrial Ecosystem and Conservation, 2021, 1(2): 1−10. [70] RYAN M H, KIDD D R, SANDRAL G A, et al. High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum) [J]. Applied Soil Ecology, 2016, 98: 221−232. [71] SAWERS R J H, SVANE S F, QUAN C, et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters [J]. New Phytologist, 2017, 214(2): 632−643. [72] PHILLIPS R P, ERLITZ Y, BIER R, et al. New approach for capturing soluble root exudates in forest soils [J]. Functional Ecology, 2008, 22(6): 990−999. [73] VIVES-PERIS V, de OLLAS C, GÓMEZ-CADENAS A, et al. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Reports, 2020, 39(1): 3−17. [74] ZHALNINA K, LOUIE K B, HAO Zhao, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. Nature Microbiology, 2018, 3(4): 470−480. [75] 李彭丽. 甜瓜对低磷胁迫适应性响应的生理基础研究[D]. 上海: 上海交通大学, 2022. LI Pengli. The Physiological Basis Study for Adaptability Responses of Melon to Low Phosphate Stress[D]. Shanghai: Shanghai Jiao Tong University, 2022. [76] KITAYAMA K. The activities of soil and root acid phosphatase in the nine tropical rain forests that differ in phosphorus availability on Mount Kinabalu, Borneo [J]. Plant and Soil, 2013, 367(1): 215−224. [77] 宋豪威, 洪慧滨, 陈思路, 等. 磷添加对米槠和杉木及其混合细根分解的影响[J]. 森林与环境学报, 2021, 41(1): 1−9. SONG Haowei, HONG Huibin, CHEN Silu, et al. Effects of phosphorus addition on fine root decomposition of Castanopsis carlesii, Cunninghamia lanceolata and mixed [J]. Journal of Forest and Environment, 2021, 41(1): 1−9. [78] MARKLEIN A R, HOULTON B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems [J]. New Phytologist, 2012, 193(3): 696−704. [79] 吴淑华, 王佳新, 张世柯, 等. 模拟氮沉降对常绿阔叶林6种植物氮同化的影响[J]. 生态环境学报, 2019, 28(2): 262−269. WU Shuhua, WANG Jiaxin, ZHANG Shike, et al. Effects of simulated nitrogen deposition on nitrogen assimilation of six plants in evergreen broad-leaved forest [J]. Ecology and Environmental Sciences, 2019, 28(2): 262−269. [80] COLMER T D, BLOOM A J. A comparison of and\begin{document}${\mathrm{NH}}_4^+ $\end{document} net fluxes along roots of rice and maize [J]. Plant, Cell Environment, 1998, 21(2): 240−246.\begin{document}${\mathrm{NO}}_3^- $\end{document} [81] KRONZUCKER H, KIRK G, YAEESH S M, et al. Effects of hypoxia on fluxes in rice roots. kinetics and compartmental analysis kinetics and compartmental analysis [J]. Plant Physiology, 1998, 116(2): 581−587.\begin{document}${}^{13}{\mathrm{NH}}_4^+ $\end{document} [82] 马祥庆, 刘爱琴, 黄宝龙, 等. 氮素高效基因型杉木无性系的选择研究[J]. 林业科学, 2002, 38(6): 53−57. MA Xiangqing, LIU Aiqin, HUANG Baolong, et al. Study on selection of high-nitrogen-efficiency-genotypes of Chinese fir clones [J]. Scientia Silvae Sinicae, 2002, 38(6): 53−57. [83] WEN Zhihui, LI Hongbo, SHEN Qi, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species [J]. New Phytologist, 2019, 223(2): 882−895. [84] HONVAULT N, HOUBEN D, NOBILE C, et al. Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification [J]. Plant and Soil, 2021, 461(1): 137−150. [85] EISSENSTAT D M, YANAI R D. The ecology of root lifespan[M]// LAVELLE P. Advances in Ecological Research. Vol. 27. Amsterdam: Elsevier, 1997: 1−60. [86] SMITH S E, READ D J. Mycorrhizal Symbiosis[M]. New York: Academic Press, 2008. [87] SHARDA J N, KOIDE R T. Exploring the role of root anatomy in P-mediated control of colonization by arbuscular mycorrhizal fungi [J]. Botany, 2010, 88(2): 165−173. [88] JOHNSON N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales [J]. New Phytologist, 2010, 185(3): 631−647. [89] HOEKSEMA J D, CHAUDHARY V B, GEHRING C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi [J]. Ecology Letters, 2010, 13(3): 394−407. [90] JOHNSON N C, WILSON G W T, BOWKER M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2093−2098. [91] LI Hongbo, ZHANG Fusuo, SHEN Jianbo. Contribution of root proliferation in nutrient-rich soil patches to nutrient uptake and growth of maize [J]. Pedosphere, 2012, 22(6): 776−784. [92] YAN Xiaoli, WANG Chen, MA Xiangqing, et al. Root morphology and seedling growth of three tree species in Southern China in response to homogeneous and heterogeneous phosphorus supplies [J]. Trees, 2019, 33(5): 1283−1297. [93] YANG Zhenya, ZHOU Benzhi, GE Xiaogai, et al. Species-specific responses of root morphology of three co-existing tree species to nutrient patches reflect their root foraging strategies [J/OL]. Frontiers in Plant Science, 2021, 11: 618222[2025-02-10]. DOI: 10.3389/fpls.2020.618222. [94] PHILLIPS R P, BRZOSTEK E, MIDGLEY M G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests [J]. New Phytologist, 2013, 199(1): 41−51. [95] LIU Xubing, BURSLEM D F R P, TAYLOR J D, et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests [J]. Ecology Letters, 2018, 21(5): 713−723. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20250164
下载: