[1] CHASE J M, BLOWES S A, KNIGHT T M, et al. Ecosystem decay exacerbates biodiversity loss with habitat loss [J]. Nature, 2020, 584: 238 − 243. doi:  10.1038/s41586-020-2531-2
[2] FAO. China-Global Forest Resources Assessment 2015-Country Report [EB/OL]. (2015-01-01) [2021-04-11]. http://www.fao.org/documents/card/en/c/a6afe3a7-0fb6-4920-bb18-ae3465c2f0a9/.
[3] WU Chuping, VELLEND M, YUAN Weiguo, et al. Patterns and determinants of plant biodiversity in non-commercial forests of eastern China[J]. PLoS One, 2017, 12(11). doi: 10.1371/journal.pone.0188409.
[4] 沈爱华, 袁位高, 张骏, 等. 浙江省生态公益林物种多样性时空格局研究[J]. 浙江林业科技, 2014, 34(1): 1 − 6. doi:  10.3969/j.issn.1001-3776.2014.01.001

SHEN Aihua, YUAN Weigao, ZHANG Jun, et al. Spatial-temporal patterns of species diversity in ecological forests of Zhejiang [J]. J Zhejiang For Sci Tech, 2014, 34(1): 1 − 6. doi:  10.3969/j.issn.1001-3776.2014.01.001
[5] 钱逸凡, 伊力塔, 钭培民, 等. 浙江缙云公益林生物量及固碳释氧效益[J]. 浙江农林大学学报, 2012, 29(2): 257 − 264. doi:  10.3969/j.issn.2095-0756.2012.02.016

QIAN Yifan, Yilita, DOU Peimin, et al. Biomass and carbon fixation with oxygen release benefits in an ecological service forest of Jinyun County, China [J]. J Zhejiang A&F Univ, 2012, 29(2): 257 − 264. doi:  10.3969/j.issn.2095-0756.2012.02.016
[6] BROSE U, HILLEBRAND H. Biodiversity and ecosystem functioning in dynamic landscapes[J]. Philos Trans Royal Soc B Biol Sci, 2016, 371(1694). doi: 10.1098/rstb.2015.0267.
[7] EVANS E W. Biodiversity, ecosystem functioning, and classical biological control [J]. Appl Entomol Zool, 2016, 51(2): 173 − 184. doi:  10.1007/s13355-016-0401-z
[8] LOREAU M, NAEEM S, INCHAUSTI P, et al. Biodiversity and ecosystem functioning: current knowledge and future challenges [J]. Science, 2001, 294(5543): 804 − 808. doi:  10.1126/science.1064088
[9] SUTHERLAND W J, FRECKLETON R P, CHARLES H, et al. Identification of 100 fundamental ecological questions [J]. J Ecol, 2013, 101(1): 58 − 67. doi:  10.1111/1365-2745.12025
[10] CAVENDER-BARES J, KOZAK K H, FINE P V A, et al. The merging of community ecology and phylogenetic biology [J]. Ecol Lett, 2009, 12(7): 693 − 715. doi:  10.1111/j.1461-0248.2009.01314.x
[11] LASKY J R, URIARTE M, BOUKILI V, et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession [J]. Ecol Lett, 2014, 17(9): 1158 − 1167. doi:  10.1111/ele.12322
[12] CADOTTE M W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity [J]. Proc Natl Acad Sci, 2013, 110(22): 8996 − 9000. doi:  10.1073/pnas.1301685110
[13] LARUE E A, CHAMBERS S M, EMERY N C. Eco-evolutionary dynamics in restored communities and ecosystems [J]. Restoration Ecol, 2017, 25(1): 19 − 26. doi:  10.1111/rec.12458
[14] DAVIES T J, URBAN M, RAYFIELD B, et al. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning [J]. Ecology, 2016, 97(9): 2212 − 2222. doi:  10.1002/ecy.1507
[15] SANTOS A M C, CIANCIARUSO M, BARBOSA A M, et al. Current climate, but also long-term climate changes and human impacts, determine the geographic distribution of European mammal diversity [J]. Global Ecol Biogeogr, 2020, 29(10): 1758 − 1769. doi:  10.1111/geb.13148
[16] 王立竹, 于晓鹏, 管杰然, 等. 浙江缙云县公益林群落植物多样性及生物量动态分析[J]. 生态科学, 2018, 37(4): 147 − 153.

WANG Lizhu, YU Xiaopeng, GUAN Jieran, et al. Plant diversity and biomass dynamics of the public-welfare forest in Jinyun County, Zhejiang Province [J]. Ecol Sci, 2018, 37(4): 147 − 153.
[17] RUIZ-BENITO P, RATCLIFFE S, ZAVALA M A, et al. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality [J]. Global Change Biol, 2017, 23(10): 4162 − 4176. doi:  10.1111/gcb.13728
[18] ALI A, YAN Enrong, CHANG S X, et al. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests [J]. Sci Total Environ, 2017, 574: 654 − 662. doi:  10.1016/j.scitotenv.2016.09.022
[19] BECKNELL J M, POWERS J S. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest [J]. Can J For Res, 2014, 44(6): 604 − 613. doi:  10.1139/cjfr-2013-0331
[20] PEÑA-CLAROS M, POORTER L, ALARCON A, et al. Soil effects on forest structure and diversity in a moist and a dry tropical forest [J]. Biotropica, 2012, 44(3): 276 − 283. doi:  10.1111/j.1744-7429.2011.00813.x
[21] van der SANDE M, PEÑA-CLAROS M, ASCARRUNZ N L, et al. Abiotic and biotic drivers of biomass change in a Neotropical forest [J]. J Ecol, 2017, 105(5): 1223 − 1234. doi:  10.1111/1365-2745.12756
[22] COOMES D A, KUNSTLER G, CANHAM C D, et al. A greater range of shade-tolerance niches in nutrient-rich forests: an explanation for positive richness-productivity relationships? [J]. J Ecol, 2009, 97(4): 705 − 717. doi:  10.1111/j.1365-2745.2009.01507.x
[23] 闫东锋, 郭丹丹, 吴桂藏, 等. 栎类天然次生林不同组分及土壤碳氮分布对森林抚育的响应[J]. 浙江农林大学学报, 2017, 34(2): 215 − 224. doi:  10.11833/j.issn.2095-0756.2017.02.003

YAN Dongfeng, GUO Dandan, WU Guizang, et al. Carbon and nitrogen distribution with forest tending in a natural secondary oak forest [J]. J Zhejiang A&F Univ, 2017, 34(2): 215 − 224. doi:  10.11833/j.issn.2095-0756.2017.02.003
[24] 王涛, 万晓华, 程蕾, 等. 杉木采伐迹地营造阔叶树种对土壤微生物生态化学计量特征的影响[J]. 应用生态学报, 2020, 31(11): 3851 − 3858.

WANG Tao, WANG Xiaohua, CHENG Lei, et al. Effects of broadleavedtree species on soil microbial stoichiometry in clear-cut patches of Cunninghamia lanceolata plantation [J]. Chin J Appl Ecol, 2020, 31(11): 3851 − 3858.
[25] KHALIL M, GIBSON D J, BAER S G. Phylogenetic diversity reveals hidden patterns related to population source and species pools during restoration [J]. J Appl Ecol, 2017, 54(1): 91 − 101. doi:  10.1111/1365-2664.12743
[26] 袁位高. 浙江省生态公益林主要群落结构的比较研究[D]. 北京: 中国林业科学研究院, 2009.

YUAN Weigao. Comparative Studies on Structure of Main Forest Type of Ecological Service Forest in Zhejiang Province[D]. Beijing: Chinese Academy of Forestry, 2009.
[27] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[28] The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG Ⅲ [J]. Bot J Linn Soc, 2009, 161(2): 105 − 121. doi:  10.1111/j.1095-8339.2009.00996.x
[29] ZANNE A E, TANK D C, CORNWELL W K, et al. Three keys to the radiation of angiosperms into freezing environments [J]. Nature, 2014, 506(7486): 89 − 92. doi:  10.1038/nature12872
[30] OKSANEN J, BLANCHET F G, FRIENDLY M, et al. Package “vegan”: Community Ecology Package. R package version 2.5–6, 2019[CP/OL]. (2020-11-12) [2020-12-12]. http://CARN.R-project.org/package=vegan.
[31] FAITH D P. Conservation evaluation and phylogenetic diversity [J]. Biol Conserv, 1992, 61(1): 1 − 10. doi:  10.1016/0006-3207(92)91201-3
[32] TUCKER C M, CADOTTE M W, CARVALHO S B, et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology [J]. Biol Rev, 2017, 92(2): 698 − 715. doi:  10.1111/brv.12252
[33] HELMUS M R, BLAND T J, WILLIAMS C K, et al. Phylogenetic measures of biodiversity [J]. Am Nat, 2007, 169(3): 68 − 83. doi:  10.1086/511334
[34] KEMBEL S W, COWAN P D, HELMUS M R, et al. Picante: R tools for integrating phylogenies and ecology [J]. Bioinformatics, 2010, 26(11): 1463 − 1464. doi:  10.1093/bioinformatics/btq166
[35] 袁位高, 江波, 葛永金, 等. 浙江省重点公益林生物量模型研究[J]. 浙江林业科技, 2009, 29(2): 1 − 5. doi:  10.3969/j.issn.1001-3776.2009.02.001

YUAN Weigao, JIANG Bo, GE Yongjin, et al. Study on biomass model of key ecological forest in Zhejiang Province [J]. J Zhejiang For Sci Tech, 2009, 29(2): 1 − 5. doi:  10.3969/j.issn.1001-3776.2009.02.001
[36] HAIR J F, ANDERSON R E, TATHAM R L, et al. Multi-variate Data Analysis[M]. 5th ed. New Jersey: Prentice Hall, 1998.
[37] BURNHAM K P, ANDERSON D R. Model Selection and Multi-model Inference: A Practical Information Theoretic Approach[M]. New York: Springer, 2010.
[38] SATDICHANH M, MA H X, YAN K, et al. Phylogenetic diversity correlated with above-ground biomass production during forest succession: evidence from tropical forests in Southeast Asia [J]. J Ecol, 2019, 107(3): 1419 − 1432. doi:  10.1111/1365-2745.13112
[39] 吴初平, 韩文娟, 江波, 等. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6): 545 − 553. doi:  10.17520/biods.2017320

WU Chuping, HAN Wenjuan, JIANG Bo, et al. Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province [J]. Biodiversity Sci, 2018, 26(6): 545 − 553. doi:  10.17520/biods.2017320
[40] OUYANG Shuai, XIANG Wenhua, WANG Xiangping, et al. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China [J]. For Ecol Manage, 2016, 372: 291 − 302. doi:  10.1016/j.foreco.2016.04.020
[41] VENAIL P, GROSS K, OAKLEY T H, et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies [J]. Funct Ecol, 2015, 29(5): 615 − 626. doi:  10.1111/1365-2435.12432
[42] 车盈, 金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响[J]. 应用生态学报, 2019, 30(7): 2241 − 2248.

CHE Ying, JIN Guangze. Effects of species diversity and phylogenetic diversity on productivity of a mixed broad-leaved-Korean pine forest [J]. Chin J Appl Ecol, 2019, 30(7): 2241 − 2248.
[43] 侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构简[J]. 生态学报, 2017, 37(22): 7502 − 7513.

HOU Manman, LI Xiaoyu, WANG Junwei, et al. Phylogenetic development and functional structures during successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China [J]. Acta Ecol Sin, 2017, 37(22): 7502 − 7513.
[44] YUAN Zuoqiang, WANG Shaopeng, GAZOL A, et al. Multiple metrics of diversity have different effects on temperate forest functioning over succession [J]. Oecologia, 2016, 182(4): 1175 − 1185. doi:  10.1007/s00442-016-3737-8