[1] 胡哲森. 浙江红花油茶种子油中脂肪酸的分析[J]. 福建林学院学报, 1987, 7(1): 70 − 71.

HU Zhesen. Chemical composition of fatty acid in seed oil from Camellia chekiangoleosa [J]. J Fujian Coll For, 1987, 7(1): 70 − 71.
[2] 郭华, 谭惠元, 周建平. 红花油茶果的主要成分及其种子油的脂肪酸组成测定[J]. 浙江大学学报(农业与生命科学版), 2010, 36(6): 662 − 669.

GUO Hua, TAN Huiyuan, ZHOU Jianping. Proximate composition of Camellia chekiangoleosa Hu fruit and fatty acid constituents of its seed oil [J]. J Zhejiang Univ Agric Life Sci, 2010, 36(6): 662 − 669.
[3] 张宏达. 茶树的系统分类[J]. 中山大学学报(自然科学版), 1981, 20(1): 89 − 101.

ZHANG Hongda. Thea: a section of beveragial tea-trees of the genus Camellia [J]. Acta Sci Nat Univ Sunyatseni, 1981, 20(1): 89 − 101.
[4] 庄瑞林. 中国油茶[M]. 2版. 北京: 中国林业出版社, 2008: 112.

ZHUANG Ruilin. China Camellia[M]. 2nd ed. Beijing: China Forestry Publishing House, 2008: 112.
[5] 周文才, 肖相元, 沈敬理, 等. 浙江红花油茶种质资源述评及育种策略[J]. 南方林业科学, 2019, 47(6): 20 − 24.

ZHOU Wencai, XIAO Xiangyuan, SHEN Jingli, et al. Review on germplasm resources and breeding strategy for Camellia chekiangoleosa [J]. South China For Sci, 2019, 47(6): 20 − 24.
[6] 谢云, 李纪元, 潘文英, 等. 浙江红山茶野生种质资源现状及保护对策[J]. 浙江农林大学学报, 2011, 28(6): 973 − 981.

XIE Yu, LI Jiyuan, PAN Wenying, et al. Status and conservation strategies for germplasm resources of wild Camellia chekiangoleosa [J]. J Zhejiang A&F Univ, 2011, 28(6): 973 − 981.
[7] 薛海兵, 李玉善. 亚热带北缘浙江红花油茶和腾冲红花油茶引种成功[J]. 陕西林业科技, 1996, 24(4): 53 − 54.

XU Haibing, LI Yushan. Successful introduction of Camellia chekiangoleosa and Camellia reticulata on northern margin of subtropical zone [J]. Shaanxi For Sci Technol, 1996, 24(4): 53 − 54.
[8] 黄建, 曹洪虎, 刘承珊, 等. 上海引种驯化红花油茶的试验研究[J]. 上海农业学报, 2010, 26(4): 75 − 79.

HUANG Jian, CAO Honghu, LIU Chengshan, et al. Study on introduction and acclimatization of red flower camellia in Shanghai [J]. Acta Agric Shanghai, 2010, 26(4): 75 − 79.
[9] 刘曲, 姚小华, 王开良, 等. 低海拔地区浙江红花油茶无性系的开花物候特性[J]. 林业科学研究, 2015, 28(2): 249 − 254.

LIU Qu, YAO Xiaohua, WANG Kailiang, et al. Flowering phenology of Camellia chekiangoleosa clone in low altitude area [J]. For Res, 2015, 28(2): 249 − 254.
[10] 李田, 黄文印, 黄建军, 等. 浙江红花油茶林分群体产量结构特征分析[J]. 南方林业科学, 2020, 48(5): 1217.

LI Tian, HUANG Wenyin, HUANG Jianjun, et al. Analysis on the population yield components characteristics of Camellia chekiangoleosa stands [J]. South China For Sci, 2020, 48(5): 1217.
[11] 吴建国, 吕佳佳, 艾丽. 气候变化对生物多样性的影响: 脆弱性和适应[J]. 生态环境学报, 2009, 18(2): 693 − 703.

WU Jianguo, LÜ Jiajia, AI Li. The impacts of climate change on the biodiversity: vulnerability and adaptation [J]. Ecol Environ Sci, 2009, 18(2): 693 − 703.
[12] PARMESAN C. Ecological and evolutionary responses to recent climate change[J]. Ann Rev Ecol Evol Systematics, 2006, 37: 637 − 669.
[13] 胡文佳, 晁碧霄, 王玉玉, 等. 基于最大熵模型的福建省红树林潜在适生区评估[J]. 中国环境科学, 2020, 40(9): 4029 − 4038.

HU Wenjia, CHAO Bixiao, WANG Yuyu, et al. Assessing the potential distributions of mangrove forests in Fujian Province using MaxEnt model [J]. China Environ Sci, 2020, 40(9): 4029 − 4038.
[14] 罗集丰, 洪纯丹, 方怡然, 等. 橙带蓝尺蛾在中国的潜在分布预测研究[J]. 西部林业科学, 2020, 49(6): 107 − 111.

LUO Jifeng, HONG Chundan, FANG Yiran, et al. Prediction of potential geographic distribution of Milionia basalis Walker in China [J]. J West China For Sci, 2020, 49(6): 107 − 111.
[15] 申家朋, 陈东升, 洪奕丰, 等. 基于MaxEnt模型对日本落叶松在中国潜在分布区的预测[J]. 植物资源与环境学报, 2019, 28(3): 19 − 25.

SHEN Jiapeng, CHEN Dongsheng, HONG Yifeng, et al. Prediction on potential distribution areas of Larix kaempferi in China based on MaxEnt model [J]. J Plant Resour Environ, 2019, 28(3): 19 − 25.
[16] 张华, 赵浩翔, 王浩. 基于MaxEnt模型的未来气候变化情景下胡杨在中国的潜在地理分布[J]. 生态学报, 2020, 40(18): 6552 − 6563.

ZHANG Hua, ZHAO Haoxiang, WANG Hao. Potential geographical distribution of Populus euphratica in China under future climate change scenarios based on Maxent model [J]. Acta Ecol Sin, 2020, 40(18): 6552 − 6563.
[17] FABIANA G B, FABIANA S. Characteristics of the top-cited papers in species distribution predictive models [J]. Ecol Modelling, 2015, 313: 77 − 83.
[18] VAZ U L, CUNHA H F, NABOUT J C. Trends and biases in global scientific literature about ecological niche models[J]. Braz J Biol, 2015, 75(suppl 1): 17 − 24.
[19] 刘晓彤, 袁泉, 倪健. 中国植物分布模拟研究现状[J]. 植物生态学报, 2019, 43(4): 273 − 283.

LIU Xiaotong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273 − 283.
[20] STEVEN J P, ROBERT P A, MIROSLAV D, et al. Opening the black box: an open-source release of MaxEnt [J]. Ecography, 2017, 40(7): 887 − 893.
[21] CORY M, MATTHEW J S, JOHN A S J. A practical guide to MaxEnt for modeling species’distributions: what it does, and why inputs and settings matter [J]. Ecography, 2013, 36(10): 1058 − 1069.
[22] 王小军, 刘光旭, 肖彤. 气候变化情景下油茶生长的适宜性特征[J]. 热带地理, 2020, 40(5): 868 − 880.

WANG Xiaojun, LIU Guangxu, XIAO Tong. Suitability characteristics of Camellia oleifera growth under climate change scenarios [J]. Trop Geogr, 2020, 40(5): 868 − 880.
[23] 胡菀, 张志勇, 陈陆丹, 等. 末次盛冰期以来观光木的潜在地理分布变迁[J]. 植物生态学报, 2020, 44(1): 44 − 55.

HU Wan, ZHANG Zhiyong, CHEN Ludan, et al. Changes in potential geographical distribution of Tsoongiodendron odorum since the last Glacial Maximum [J]. Chin J Plant Ecol, 2020, 44(1): 44 − 55.
[24] 贾翔, 王超, 金慧, 等. 基于优化的MaxEnt模型评价红松适宜分布区[J]. 生态学杂志, 2019, 38(8): 2570 − 2576.

JIA Xiang, WANG Chao, JIN Hui, et al. Assessing the suitable distribution area of Pinus koraiensis based on an optimized MaxEnt model [J]. Chin J Ecol, 2019, 38(8): 2570 − 2576.
[25] 刘清亮, 李垚, 方升佐. 基于MaxEnt模型的青钱柳潜在适宜栽培区预测[J]. 南京林业大学学报(自然科学版), 2017, 41(4): 25 − 29.

LIU Qingliang, LI Yao, FANG Shengzuo. MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions [J]. J Nanjing For Univ Nat Sci Ed, 2017, 41(4): 25 − 29.
[26] 马松梅, 聂迎彬, 耿庆龙, 等. 气候变化对蒙古扁桃适宜分布范围和空间格局的影响[J]. 植物生态学报, 2014, 38(3): 262 − 269.

MA Songmei, NIE Yingbin, GEN Qinglong, et al. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica [J]. Chin J Plant Ecol, 2014, 38(3): 262 − 269.
[27] ROBERT J H, SUSAN E C, JUAN L P, et al. Very high resolution interpolated climate surfaces for global land areas [J]. Int J Clim, 2005, 25(15): 1965 − 1978.
[28] MORALES N S, FERNÁNDEZ I C, BACA-GONZÁLEZ V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? a systematic review[J/OL]. Peer J, 2017, 5[2021-09-10]. doi: 10.7717/peerj.3093.
[29] 朱耿平, 乔慧捷. MaxEnt模型复杂度对物种潜在分布区预测的影响[J]. 生物多样性, 2016, 24(10): 1189 − 1196.

ZHU Genping, QIAO Huijie. Effect of the MaxEnt model’s complexity on the prediction of species potential distributions [J]. Biodiversity Sci, 2016, 24(10): 1189 − 1196.
[30] ROBERT M, PETER J G, MARIANO S G, et al. ENM eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models [J]. Methods Ecol Evol, 2014, 5(11): 1198 − 1205.
[31] RICHARD G P, TERENCE P D. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? [J]. Glob Ecol Biogeogr, 2003, 12(5): 361 − 371.
[32] SARA D R, ÁNGEL P. Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations [J]. Plant Ecol, 2006, 185(2): 269 − 282.
[33] 王开良, 姚小华, 曹福亮, 等. 浙江红花油茶开花性状变异规律研究[J]. 江西农业大学学报, 2010, 32(2): 334 − 338.

WANG Kailiang, YAO Xiaohua, CAO Fuliang, et al. A study on the varying law of flowering characters of Camellia chekiangoleosa Hu. [J]. Acta Agric Univ Jiangxi, 2010, 32(2): 334 − 338.
[34] 张华新, 陈丛梅. 油松无性系开花物候特点的研究[J]. 林业科学研究, 2001, 14(3): 288 − 296.

ZHANG Huaxin, CHEN Congmei. Studies on flowering phenology of clones in Pinus tabulaeformis seed orchard [J]. For Res, 2001, 14(3): 288 − 296.
[35] 贺义昌, 吴妹杰, 董乐, 等. 主产区浙江红花油茶籽仁含油率及脂肪酸组成变异分析[J]. 经济林研究, 2020, 38(3): 37 − 45.

HE Yichang, WU Meijie, DONG Le, et al. Analysis of kernel oil content and variation of fatty acid composition of Camellia chekiangoleosa in the main producing areas [J]. Non-wood For Res, 2020, 38(3): 37 − 45.
[36] 乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学: 生命科学, 2013, 43(11): 915 − 927.

QIAO Huijie, HU Junhua, HUANG Jihong. Theoretical basis, future directions, and challenges for ecological niche models [J]. Sci Sin Vitae, 2013, 43(11): 915 − 927.
[37] 谢云, 李纪元, 王毅, 等. 浙江红山茶引种栽培与利用现状[J]. 湖北农业科学, 2011, 50(21): 4411 − 4414.

XIE Yun, LI Jiyuan, WANG Yi, et al. The present status of cultivation and utilization about Camellia chekiangoleosa [J]. Hubei Agric Sci, 2011, 50(21): 4411 − 4414.
[38] 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016, 12(1): 10 − 19.

ZHANG Yanwu, ZHANG Li, XU Ying. Simulations and projections of the surface air temperature in China by CMIP5 models [J]. Clim Change Res, 2016, 12(1): 10 − 19.
[39] 沈永平, 王国亚. IPCC第一工作组第5次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5): 1068 − 1076.

SHEN Yongping, WANG Guoya. Key findings and assessment results of IPCC WGI fifth assessment report [J]. J Glaciol Geocryol, 2013, 35(5): 1068 − 1076.
[40] KEYWAN R, SHILPA R, VOLKER K, et al. RCP 8.5: a scenario of comparatively high greenhouse gas emissions [J]. Clim Change, 2011, 109(1): 33 − 57.
[41] 高文强, 王小菲, 江泽平, 等. 气候变化下栓皮栎潜在地理分布格局及其主导气候因子[J]. 生态学报, 2016, 36(14): 4475 − 4484.

GAO Wenqiang, WANG Xiaofei, JIANG Zeping, et al. Impact of climate change on the potential geographical distribution pattern and dominant climatic factors of Quercus variabilis [J]. Acta Ecol Sin, 2016, 36(14): 4475 − 4484.