-
浙江红花油茶Camellia chekiangoleosa是山茶属Camellia红山茶组Sect. Camellia代表种,又被称为浙江红山茶、红花油茶。浙江红花油茶种仁含油率及脂肪酸组成普遍优于普通油茶C. oleifera[1-2],兼具油用、药用、观赏等价值。浙江红花油茶自然分布于雨量充沛、湿度大、季节分明的亚热带季风湿润气候区[3],集中分布在江西、福建、浙江三省交界的高海拔山地。浙江红花油茶种植面积和产量在全国油茶树种中位居第4位[4]。然而在其分布区,浙江红花油茶多处于野生及半野生状态,并以自然片状散生为主,且由于花开艳丽而自然产量不稳定,乱伐乱挖现象严重,自然生境受人为影响较大[5]。目前,浙江红花油茶野生资源垂直分布集中在海拔360~1 600 m区段,并在海拔360 m以下和海拔1 600 m以上区段自然分布较少[6],一直被认为是典型的高山油茶。近年来,浙江红花油茶作为一种极佳的油茶新品种资源,不少省(区)、市甚至低海拔地区有引种成功报道[7-10]。
气候及环境的变化对物种的分布、种间关系和繁殖发育行为势必产生深刻影响[11],而物种对气候变化也存在进化性适应,且这种适应与物种分布变化、繁殖和迁徙等密切相关[12]。由于生命周期长、分布生境相对固定,林木对气候变化适应性研究一直是生物地理学以及保护生物学的研究热点。预测物种的潜在适宜生境分布区可在动植物生长环境分析、动植物防疫、生物多样性保护策略的构建、气候变化对物种分布影响分析等领域起到重要作用[13-16]。目前使用最为广泛的物种分布预测模型是最大熵模型(maximum entropy model, MaxEnt)[17-19],MaxEnt模型以物种分布信息和环境数据为基础,通过查找具有最大熵(即最接近地理均匀性)的分布来预测物种的分布(地理范围),具有建模简便、结果精度较高且易于解释等优点[20]。此外,由于具有定量客观、直观快速及预测结果良好的特点,且能较好地区分物种在不同区域的适生程度,MaxEnt模型成为物种潜在生境预测与适生区划的重要工具[21]。近年来,MaxEnt模型已被广泛应用于普通油茶Camellia oleifera[22]、观光木Tsoongiodendron odorum[23]、红松Pinus koraiensis[24]、青钱柳Cyclocarya paliurus[25]、蒙古扁桃Amygdalus mongolica[26]等经济树种或珍贵濒危树种的资源保护与利用。
政府间气候变化专门委员会(IPCC)的一系列评估报告显示,自20世纪中叶以来,全球气候变暖的影响,导致积雪和积冰减少、海平面上升及温室气体浓度增加。在此背景下,运用MaxEnt模型研究气候变化对窄域树种浙江红花油茶潜在分布的影响,对该树种的保护与引种开发至关重要。鉴于此,本研究基于MaxEnt模型和地理信息系统(GIS)技术,收集浙江红花油茶现有分布地立地环境因子数据,筛选主导环境因子,模拟适生区区划,分析限制浙江红花油茶分布的主要环境因子,预测未来不同气候情景下潜在适生区的变化趋势,可为浙江红花油茶引种栽培及推广提供理论依据和技术支持。
-
分布点记录表明:浙江红花油茶集中分布在浙江、福建、江西省,少量分布在安徽、湖南两省。空间分布经纬度为25°~31°N,112°~122°E,分布的平均经纬度为28.16°N±1.12°N和118.17°E±1.70°E。经度、纬度因子的变异系数分别为0.014、0.039,即经度因子的稳定性较大,较纬度因子而言,浙江红花油茶分布点格局主要受经度因子的影响。
-
MaxEnt模型预测结果的ROC曲线见图1。10次交叉检验的平均训练集AUC值为0.991±0.004(平均值±标准差),大于0.9,模型的拟合程度相对较高,由此模型预测的浙江红花油茶适生范围具有较高的可信度。
-
用模型检测环境因子对浙江红花油茶分布贡献率(表1)可知:相较于其他环境因子,最冷季度降水量、最暖季度平均气温、土壤类型这3个环境因子对浙江红花油茶潜在分布影响最大,贡献率分别为76.3%、9.1%、4.3%,其累计贡献率达90%以上。利用刀切法评估(图2)发现:仅最冷季度降水量时增益最大,无此变量时增益下降最明显,说明最冷季度降水量对模型预测贡献最大,包含的有用信息最多,是影响浙江红花油茶分布的关键环境变量。可见,最冷季度降水量、最暖季度平均气温和土壤类型是影响浙江红花油茶地理分布的主导环境因子。
表 1 主要环境因子贡献率及适宜范围
Table 1. Contribution rate and suitable range of major environmental factors
环境因子 贡献率/% 适宜区间 环境因子 贡献率/% 适宜区间 最冷季度降水量(bio19)/mm 79.3 196~521 最暖季度降水量(bio18)/mm 3.6 559~826 最暖季度平均气温(bio10)/℃ 9.1 21~28 年均温变化范围(bio7)/℃ 2.9 26~31 土壤类型(sym90) 4.3 薄层土、饱和薄层土、
艳色高活性淋溶土等土壤酸碱度(pH) 0.6 3.8~5.1 降水量变异系数(bio15)/% 0.1 44.1~61.8 使用MaxEnt模型绘制单因子响应曲线,可反映单一环境因子变化对物种分布概率的影响。一般认为,当分布概率值>0.5时,其所对应的环境因子的值适合植物生长[16]。7个主要环境因子适宜区间见表1,主导环境因子为:冷季度降水量(196~521 mm)、最暖季度平均气温(21~28 ℃)和土壤类型。
-
浙江红花油茶在当代气候条件下的潜在适生区集中在32°N以南,108°E以东,总适宜面积约36.5万km2,其中次适生区、适生区和最适生区面积分别约4.8、8.2和23.5万km2(表2),占国土面积的0.51%、0.88%和2.51%,覆盖国水热资源丰富的东南部亚热带季风气候区。统计适宜区总面积排名前3位的省份,依次为江西、福建、浙江;其中,江西省适宜区面积最大,为11.15万km2,但其最适生面积为1.18万km2,低于浙江省的1.73万km2。
表 2 未来气候不同情景下浙江红花油茶潜在分布区面积
Table 2. Suitable areas of C. chekiangoleosa under different climate change scenarios
气候情景 时期/年 最适生区/(×104 km2) 适生区/(×104 km2) 次适生区/(×104 km2) 总面积/(×104 km2) 当代 4.80 8.24 23.48 36.52 低排放浓度路径
(RCP2.6)2041—2060 71.16 13.93 21.90 106.99 2061—2080 65.20 10.68 14.84 90.71 中等排放浓度路径
(RCP4.5)2041—2060 76.90 14.99 18.30 110.20 2061—2080 43.53 18.87 18.62 81.02 高排放浓度路径
(RCP8.5)2041—2060 54.98 16.46 15.70 87.13 2061—2080 1.57 2.94 21.68 26.20 -
RCP2.6、RCP4.5和RCP8.5排放背景下2041—2060年与2061—2080年浙江红花油茶适生区变迁如表2。3种气候情景下,2041—2060年较2061—2080年适生区面积增加趋势更加明显,最适生区面积增加更多。2041—2060年适宜区面积增加幅度由大到小依次为RCP4.5、RCP2.6、RCP8.5。在2061—2080年RCP8.5排放情景下浙江红花油茶的潜在地理分布急剧收缩,适生区总面积最小,且低于当代潜在分布区总面积。未来不同气候变化情景下,当代适生区基本保留,除RCP8.5(2061—2080年)外,潜在分布区面积均有不同程度的增加,整体向西南呈现大幅度扩张趋势。江西、福建、浙江在2个未来预测时期内,一直是浙江红花油茶的高度适生区,且未来潜在分布区范围几乎覆盖全境。此外,原本具有部分适生区的台湾、湖南、广东、广西适生区呈现一定幅度的扩张,原本基本不具有适生区的湖北、海南,在未来分布区预测时,也出现了部分的潜在适生区。
Potential distribution of Camellia chekiangoleosa under future climate change
-
摘要:
目的 预测浙江红花油茶Camellia chekiangoleosa潜在分布范围,分析影响其分布的主要环境因子,为浙江红花油茶保护利用及引种开发提供理论基础。 方法 基于浙江红花油茶在中国区域内55个分布点的环境因子,运用最大熵模型(MaxEnt)预测了当前及未来3种RCPs气候变化情景下浙江红花油茶在中国的潜在适生区分布及其变化。 结果 影响浙江红花油菜潜在分布的主要环境因子是最冷季度降水量、最暖季度平均气温和土壤类型,其中最冷季度降水量贡献率最高,最暖季度平均气温和土壤类型次之。当代潜在适生区集中分布于中国中部和南部地区,其中,核心分布区主要位于江西、福建和浙江。在未来气候变化情景下,总体适生区范围较当前有不同程度地扩展,总体呈现由华东向西南方向显著扩张的趋势。 结论 浙江红花油茶潜在适生区主要受降水、气温和土壤影响,受海拔影响较小,在中国南方地区有较广泛的适生性,具有引种栽培推广潜力。图2表2参41 Abstract:Objective As a unique Camellia tree species in south China as well as an emerging resource of Camellia with oil, medicinal and ornamental value, Camellia chekiangoleosa has great development potential. Therefore, this study is aimed to make a prediction of the potential distribution range of C. chekiangoleosa and conduct an analysis of the main environmental variables which impact its distribution so as to promote its conservation, utilization and introduction. Method With the employment of MaxEnt model, on the basis of the environmental variables of 55 distribution points in China, a prediction was made of the potential geographical distribution and change of C. chekiangoleosa in China under three RCPs climate change scenarios. Result (1) Precipitation of the coldest quarter, temperature and soil characteristics were the main environmental factor affecting the potential distribution with the first contributing the most, followed by the second and the third; (2) With central and southern China as the potential distribution areas currently, the core areas are mainly located in Jiangxi, Fujian and Zhejiang; (3) With future climate change as a norm, the overall potential distribution areas will expand to different degrees, showing a significant expansion trend from central China to the southwest. Conclusion Precipitation, temperature and soil characteristics were the main factors affecting the potential distribution of C. chekiangoleosa, with altitude playing a less significant role. It was also found that C. chekiangoleosa enjoys wide range of potential distribution in most areas of south China where efforts in their introduction, cultivation and popularization should be encouraged. [Ch, 2 fig. 2 tab. 41 ref.] -
表 1 主要环境因子贡献率及适宜范围
Table 1. Contribution rate and suitable range of major environmental factors
环境因子 贡献率/% 适宜区间 环境因子 贡献率/% 适宜区间 最冷季度降水量(bio19)/mm 79.3 196~521 最暖季度降水量(bio18)/mm 3.6 559~826 最暖季度平均气温(bio10)/℃ 9.1 21~28 年均温变化范围(bio7)/℃ 2.9 26~31 土壤类型(sym90) 4.3 薄层土、饱和薄层土、
艳色高活性淋溶土等土壤酸碱度(pH) 0.6 3.8~5.1 降水量变异系数(bio15)/% 0.1 44.1~61.8 表 2 未来气候不同情景下浙江红花油茶潜在分布区面积
Table 2. Suitable areas of C. chekiangoleosa under different climate change scenarios
气候情景 时期/年 最适生区/(×104 km2) 适生区/(×104 km2) 次适生区/(×104 km2) 总面积/(×104 km2) 当代 4.80 8.24 23.48 36.52 低排放浓度路径
(RCP2.6)2041—2060 71.16 13.93 21.90 106.99 2061—2080 65.20 10.68 14.84 90.71 中等排放浓度路径
(RCP4.5)2041—2060 76.90 14.99 18.30 110.20 2061—2080 43.53 18.87 18.62 81.02 高排放浓度路径
(RCP8.5)2041—2060 54.98 16.46 15.70 87.13 2061—2080 1.57 2.94 21.68 26.20 -
[1] 胡哲森. 浙江红花油茶种子油中脂肪酸的分析[J]. 福建林学院学报, 1987, 7(1): 70 − 71. HU Zhesen. Chemical composition of fatty acid in seed oil from Camellia chekiangoleosa [J]. J Fujian Coll For, 1987, 7(1): 70 − 71. [2] 郭华, 谭惠元, 周建平. 红花油茶果的主要成分及其种子油的脂肪酸组成测定[J]. 浙江大学学报(农业与生命科学版), 2010, 36(6): 662 − 669. GUO Hua, TAN Huiyuan, ZHOU Jianping. Proximate composition of Camellia chekiangoleosa Hu fruit and fatty acid constituents of its seed oil [J]. J Zhejiang Univ Agric Life Sci, 2010, 36(6): 662 − 669. [3] 张宏达. 茶树的系统分类[J]. 中山大学学报(自然科学版), 1981, 20(1): 89 − 101. ZHANG Hongda. Thea: a section of beveragial tea-trees of the genus Camellia [J]. Acta Sci Nat Univ Sunyatseni, 1981, 20(1): 89 − 101. [4] 庄瑞林. 中国油茶[M]. 2版. 北京: 中国林业出版社, 2008: 112. ZHUANG Ruilin. China Camellia[M]. 2nd ed. Beijing: China Forestry Publishing House, 2008: 112. [5] 周文才, 肖相元, 沈敬理, 等. 浙江红花油茶种质资源述评及育种策略[J]. 南方林业科学, 2019, 47(6): 20 − 24. ZHOU Wencai, XIAO Xiangyuan, SHEN Jingli, et al. Review on germplasm resources and breeding strategy for Camellia chekiangoleosa [J]. South China For Sci, 2019, 47(6): 20 − 24. [6] 谢云, 李纪元, 潘文英, 等. 浙江红山茶野生种质资源现状及保护对策[J]. 浙江农林大学学报, 2011, 28(6): 973 − 981. XIE Yu, LI Jiyuan, PAN Wenying, et al. Status and conservation strategies for germplasm resources of wild Camellia chekiangoleosa [J]. J Zhejiang A&F Univ, 2011, 28(6): 973 − 981. [7] 薛海兵, 李玉善. 亚热带北缘浙江红花油茶和腾冲红花油茶引种成功[J]. 陕西林业科技, 1996, 24(4): 53 − 54. XU Haibing, LI Yushan. Successful introduction of Camellia chekiangoleosa and Camellia reticulata on northern margin of subtropical zone [J]. Shaanxi For Sci Technol, 1996, 24(4): 53 − 54. [8] 黄建, 曹洪虎, 刘承珊, 等. 上海引种驯化红花油茶的试验研究[J]. 上海农业学报, 2010, 26(4): 75 − 79. HUANG Jian, CAO Honghu, LIU Chengshan, et al. Study on introduction and acclimatization of red flower camellia in Shanghai [J]. Acta Agric Shanghai, 2010, 26(4): 75 − 79. [9] 刘曲, 姚小华, 王开良, 等. 低海拔地区浙江红花油茶无性系的开花物候特性[J]. 林业科学研究, 2015, 28(2): 249 − 254. LIU Qu, YAO Xiaohua, WANG Kailiang, et al. Flowering phenology of Camellia chekiangoleosa clone in low altitude area [J]. For Res, 2015, 28(2): 249 − 254. [10] 李田, 黄文印, 黄建军, 等. 浙江红花油茶林分群体产量结构特征分析[J]. 南方林业科学, 2020, 48(5): 1217. LI Tian, HUANG Wenyin, HUANG Jianjun, et al. Analysis on the population yield components characteristics of Camellia chekiangoleosa stands [J]. South China For Sci, 2020, 48(5): 1217. [11] 吴建国, 吕佳佳, 艾丽. 气候变化对生物多样性的影响: 脆弱性和适应[J]. 生态环境学报, 2009, 18(2): 693 − 703. WU Jianguo, LÜ Jiajia, AI Li. The impacts of climate change on the biodiversity: vulnerability and adaptation [J]. Ecol Environ Sci, 2009, 18(2): 693 − 703. [12] PARMESAN C. Ecological and evolutionary responses to recent climate change[J]. Ann Rev Ecol Evol Systematics, 2006, 37: 637 − 669. [13] 胡文佳, 晁碧霄, 王玉玉, 等. 基于最大熵模型的福建省红树林潜在适生区评估[J]. 中国环境科学, 2020, 40(9): 4029 − 4038. HU Wenjia, CHAO Bixiao, WANG Yuyu, et al. Assessing the potential distributions of mangrove forests in Fujian Province using MaxEnt model [J]. China Environ Sci, 2020, 40(9): 4029 − 4038. [14] 罗集丰, 洪纯丹, 方怡然, 等. 橙带蓝尺蛾在中国的潜在分布预测研究[J]. 西部林业科学, 2020, 49(6): 107 − 111. LUO Jifeng, HONG Chundan, FANG Yiran, et al. Prediction of potential geographic distribution of Milionia basalis Walker in China [J]. J West China For Sci, 2020, 49(6): 107 − 111. [15] 申家朋, 陈东升, 洪奕丰, 等. 基于MaxEnt模型对日本落叶松在中国潜在分布区的预测[J]. 植物资源与环境学报, 2019, 28(3): 19 − 25. SHEN Jiapeng, CHEN Dongsheng, HONG Yifeng, et al. Prediction on potential distribution areas of Larix kaempferi in China based on MaxEnt model [J]. J Plant Resour Environ, 2019, 28(3): 19 − 25. [16] 张华, 赵浩翔, 王浩. 基于MaxEnt模型的未来气候变化情景下胡杨在中国的潜在地理分布[J]. 生态学报, 2020, 40(18): 6552 − 6563. ZHANG Hua, ZHAO Haoxiang, WANG Hao. Potential geographical distribution of Populus euphratica in China under future climate change scenarios based on Maxent model [J]. Acta Ecol Sin, 2020, 40(18): 6552 − 6563. [17] FABIANA G B, FABIANA S. Characteristics of the top-cited papers in species distribution predictive models [J]. Ecol Modelling, 2015, 313: 77 − 83. [18] VAZ U L, CUNHA H F, NABOUT J C. Trends and biases in global scientific literature about ecological niche models[J]. Braz J Biol, 2015, 75(suppl 1): 17 − 24. [19] 刘晓彤, 袁泉, 倪健. 中国植物分布模拟研究现状[J]. 植物生态学报, 2019, 43(4): 273 − 283. LIU Xiaotong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273 − 283. [20] STEVEN J P, ROBERT P A, MIROSLAV D, et al. Opening the black box: an open-source release of MaxEnt [J]. Ecography, 2017, 40(7): 887 − 893. [21] CORY M, MATTHEW J S, JOHN A S J. A practical guide to MaxEnt for modeling species’distributions: what it does, and why inputs and settings matter [J]. Ecography, 2013, 36(10): 1058 − 1069. [22] 王小军, 刘光旭, 肖彤. 气候变化情景下油茶生长的适宜性特征[J]. 热带地理, 2020, 40(5): 868 − 880. WANG Xiaojun, LIU Guangxu, XIAO Tong. Suitability characteristics of Camellia oleifera growth under climate change scenarios [J]. Trop Geogr, 2020, 40(5): 868 − 880. [23] 胡菀, 张志勇, 陈陆丹, 等. 末次盛冰期以来观光木的潜在地理分布变迁[J]. 植物生态学报, 2020, 44(1): 44 − 55. HU Wan, ZHANG Zhiyong, CHEN Ludan, et al. Changes in potential geographical distribution of Tsoongiodendron odorum since the last Glacial Maximum [J]. Chin J Plant Ecol, 2020, 44(1): 44 − 55. [24] 贾翔, 王超, 金慧, 等. 基于优化的MaxEnt模型评价红松适宜分布区[J]. 生态学杂志, 2019, 38(8): 2570 − 2576. JIA Xiang, WANG Chao, JIN Hui, et al. Assessing the suitable distribution area of Pinus koraiensis based on an optimized MaxEnt model [J]. Chin J Ecol, 2019, 38(8): 2570 − 2576. [25] 刘清亮, 李垚, 方升佐. 基于MaxEnt模型的青钱柳潜在适宜栽培区预测[J]. 南京林业大学学报(自然科学版), 2017, 41(4): 25 − 29. LIU Qingliang, LI Yao, FANG Shengzuo. MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions [J]. J Nanjing For Univ Nat Sci Ed, 2017, 41(4): 25 − 29. [26] 马松梅, 聂迎彬, 耿庆龙, 等. 气候变化对蒙古扁桃适宜分布范围和空间格局的影响[J]. 植物生态学报, 2014, 38(3): 262 − 269. MA Songmei, NIE Yingbin, GEN Qinglong, et al. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica [J]. Chin J Plant Ecol, 2014, 38(3): 262 − 269. [27] ROBERT J H, SUSAN E C, JUAN L P, et al. Very high resolution interpolated climate surfaces for global land areas [J]. Int J Clim, 2005, 25(15): 1965 − 1978. [28] MORALES N S, FERNÁNDEZ I C, BACA-GONZÁLEZ V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? a systematic review[J/OL]. Peer J, 2017, 5[2021-09-10]. doi: 10.7717/peerj.3093. [29] 朱耿平, 乔慧捷. MaxEnt模型复杂度对物种潜在分布区预测的影响[J]. 生物多样性, 2016, 24(10): 1189 − 1196. ZHU Genping, QIAO Huijie. Effect of the MaxEnt model’s complexity on the prediction of species potential distributions [J]. Biodiversity Sci, 2016, 24(10): 1189 − 1196. [30] ROBERT M, PETER J G, MARIANO S G, et al. ENM eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models [J]. Methods Ecol Evol, 2014, 5(11): 1198 − 1205. [31] RICHARD G P, TERENCE P D. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? [J]. Glob Ecol Biogeogr, 2003, 12(5): 361 − 371. [32] SARA D R, ÁNGEL P. Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations [J]. Plant Ecol, 2006, 185(2): 269 − 282. [33] 王开良, 姚小华, 曹福亮, 等. 浙江红花油茶开花性状变异规律研究[J]. 江西农业大学学报, 2010, 32(2): 334 − 338. WANG Kailiang, YAO Xiaohua, CAO Fuliang, et al. A study on the varying law of flowering characters of Camellia chekiangoleosa Hu. [J]. Acta Agric Univ Jiangxi, 2010, 32(2): 334 − 338. [34] 张华新, 陈丛梅. 油松无性系开花物候特点的研究[J]. 林业科学研究, 2001, 14(3): 288 − 296. ZHANG Huaxin, CHEN Congmei. Studies on flowering phenology of clones in Pinus tabulaeformis seed orchard [J]. For Res, 2001, 14(3): 288 − 296. [35] 贺义昌, 吴妹杰, 董乐, 等. 主产区浙江红花油茶籽仁含油率及脂肪酸组成变异分析[J]. 经济林研究, 2020, 38(3): 37 − 45. HE Yichang, WU Meijie, DONG Le, et al. Analysis of kernel oil content and variation of fatty acid composition of Camellia chekiangoleosa in the main producing areas [J]. Non-wood For Res, 2020, 38(3): 37 − 45. [36] 乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学: 生命科学, 2013, 43(11): 915 − 927. QIAO Huijie, HU Junhua, HUANG Jihong. Theoretical basis, future directions, and challenges for ecological niche models [J]. Sci Sin Vitae, 2013, 43(11): 915 − 927. [37] 谢云, 李纪元, 王毅, 等. 浙江红山茶引种栽培与利用现状[J]. 湖北农业科学, 2011, 50(21): 4411 − 4414. XIE Yun, LI Jiyuan, WANG Yi, et al. The present status of cultivation and utilization about Camellia chekiangoleosa [J]. Hubei Agric Sci, 2011, 50(21): 4411 − 4414. [38] 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016, 12(1): 10 − 19. ZHANG Yanwu, ZHANG Li, XU Ying. Simulations and projections of the surface air temperature in China by CMIP5 models [J]. Clim Change Res, 2016, 12(1): 10 − 19. [39] 沈永平, 王国亚. IPCC第一工作组第5次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5): 1068 − 1076. SHEN Yongping, WANG Guoya. Key findings and assessment results of IPCC WGI fifth assessment report [J]. J Glaciol Geocryol, 2013, 35(5): 1068 − 1076. [40] KEYWAN R, SHILPA R, VOLKER K, et al. RCP 8.5: a scenario of comparatively high greenhouse gas emissions [J]. Clim Change, 2011, 109(1): 33 − 57. [41] 高文强, 王小菲, 江泽平, 等. 气候变化下栓皮栎潜在地理分布格局及其主导气候因子[J]. 生态学报, 2016, 36(14): 4475 − 4484. GAO Wenqiang, WANG Xiaofei, JIANG Zeping, et al. Impact of climate change on the potential geographical distribution pattern and dominant climatic factors of Quercus variabilis [J]. Acta Ecol Sin, 2016, 36(14): 4475 − 4484. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210641