Volume 35 Issue 6
Nov.  2018
Turn off MathJax
Article Contents

LI Zuyao, ZHANG Yanhua, ZHANG Lei, LI Yuan, SUN Yadong. Endogenous hormones in young bamboo development of Phyllostachys edulis 'Pachyloen'[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1107-1114. doi: 10.11833/j.issn.2095-0756.2018.06.014
Citation: LI Zuyao, ZHANG Yanhua, ZHANG Lei, LI Yuan, SUN Yadong. Endogenous hormones in young bamboo development of Phyllostachys edulis 'Pachyloen'[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1107-1114. doi: 10.11833/j.issn.2095-0756.2018.06.014

Endogenous hormones in young bamboo development of Phyllostachys edulis 'Pachyloen'

doi: 10.11833/j.issn.2095-0756.2018.06.014
  • Received Date: 2017-09-28
  • Rev Recd Date: 2018-05-07
  • Publish Date: 2018-12-20
  • To reveal distribution characteristics and dynamic changes of endogenous hormones in the Phyllostachys edulis 'Pachyloen' bamboo shoot during bamboo shoot development, and to explore the regulation of endogenous hormones on bamboo shoots during development, the enzyme-linked immunosorbent assay (ELISA) test was applied to measure the content of Indole-3-acetic acid (IAA), gibberellin (GA3), zeatin riboside (ZR), and abscisic acid (ABA) in latent buds (rhizome buds), germinating buds, winter shoots, spring shoots, and new bamboo. Analysis included variance analysis and multiple comparisons of a total of 60 samples which were collected in 3 areas and 3 periods. Results showed that the content of IAA and ABA were significantly higher than GA3 and ZR (P < 0.05). During the bamboo shoot enlargement period, there were no significant differences (P > 0.05) in the four endogenous hormones and the total amount of endogenous hormones in latent buds, shoot buds, and winter shoots. During the rapid shoot growth period, within the sheath of the spring shoot, the contents of IAA and ZR were significantly higher than in latent buds (P < 0.05), and the contents of IAA, ABA, and ZR were significantly higher than in shoots (P < 0.05). Spring shoots had a significantly lower ABA level than latent buds (P < 0.05). After new bamboo growth, endogenous hormones in bamboo leaves and branches were ABA > IAA > ZR > GA3, yet in bamboo stems and roots it was IAA > ABA > ZR > GA3. During development of young bamboo, dynamic changes in content and ratio of endogenous hormones differed with IAA, ABA, GA3, ZR/IAA, ZR/GA3, and GA3/IAA changing significantly during the transition from latent buds to winter shoots (P < 0.05); and IAA, ABA, ZR/ABA, ZR/IAA, GA3/IAA, and ZR/GA3 changing significantly during transformation from winter shoots to new bamboo (P < 0.05). This research revealed that the type and content of homogenous hormone, as well as antagonistic and synergistic effects among them, were important for promoting or regulating functions in the reproducing process of Ph. edulis 'Pachyloen'.
  • [1] WANG Wenyue, FENG Zhongping, WANG Jianchang, YANG Tao, ZHANG Zhen, ZHOU Zhichun.  Effects of top pruning and exogenous hormone application on endogenous hormone content and female bulb formation in Pinus massoniana . Journal of Zhejiang A&F University, 2023, 40(6): 1188-1196. doi: 10.11833/j.issn.2095-0756.20220768
    [2] GONG Xiangyu, RAO Shuaiqi, LÜ Xiaohan, YANG Jing, ZHU Biao.  Dynamic changes of capsaicinoids and vitamin C contents in Hangzhou pepper during the harvesting period . Journal of Zhejiang A&F University, 2020, 37(5): 950-956. doi: 10.11833/j.issn.2095-0756.20190577
    [3] HE Guoqing, YU Chunlian, RAO Ying, ZHANG Fuyang, SHEN Xiaofei, HUANG Jianqin, LIU Li, XIA Guohua.  Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity . Journal of Zhejiang A&F University, 2019, 36(6): 1208-1216. doi: 10.11833/j.issn.2095-0756.2019.06.019
    [4] GONG Li, HU Hengkang, HU Yuanyuan, YU Weiwu, WU Jiasheng, HUANG Jianqin, ZHANG Qixiang.  Immature embryo development and embryogenic frequency in Torreya grandis 'Merrillii' . Journal of Zhejiang A&F University, 2018, 35(5): 861-867. doi: 10.11833/j.issn.2095-0756.2018.05.010
    [5] CAI Zhoufei, CHEN Yaqi, XU Xinlu, WANG Xiaodong, WANG Junyu, ZHANG Rumin, GAO Yan.  Changes of volatile organic compounds released during flowering in four Osmanthus fragrans cultivar groups . Journal of Zhejiang A&F University, 2017, 34(4): 608-619. doi: 10.11833/j.issn.2095-0756.2017.04.006
    [6] LIU Mengmeng, ZENG Yanru, JIANG Jianbin, HAN Jiong, YU Weiwu.  Mineral elements in leaves and seeds of Torreya grandis ‘Merrillii’ during seed development . Journal of Zhejiang A&F University, 2014, 31(5): 724-729. doi: 10.11833/j.issn.2095-0756.2014.05.010
    [7] LU Guo-fu, DU Hua-qiang, ZHOU Guo-mo, Lü Yu-long, GU Cheng-yan, SHANG Zhen-zhen.  Dynamic change of Phyllostachys edulis forest canopy parameters and their relationships with photosynthetic active radiation in the bamboo shooting growth phase . Journal of Zhejiang A&F University, 2012, 29(6): 844-850. doi: 10.11833/j.issn.2095-0756.2012.06.007
    [8] LU Ya-ting, YUAN Xiao-liang, LIN Xin-chun, FANG Wei.  Endogenous hormone changes during floral bud morphological differentiation of Phyllostachys violascens . Journal of Zhejiang A&F University, 2012, 29(2): 161-165. doi: 10.11833/j.issn.2095-0756.2012.02.002
    [9] WANG Rong-ping, LI Shu-yi, WU Tao, QIN Xing-hua, LIAO Xin-rong, LAN Pei-ling.  Seasonal variation of leaf mineral nutrient concentrations in seedless wampee (Clausena lansium ‘Yunan Seedless’) . Journal of Zhejiang A&F University, 2008, 25(2): 200-205.
    [10] WANG Guo-ming, XUBin-fen, WANG Mei-qin, CHEN Bin.  Resources of wild woody ornamental plants in Zhoushan Archipelago . Journal of Zhejiang A&F University, 2007, 24(1): 55-59.
    [11] JIN Ya-qin, HUANG Xue-fang, LI Dong-lin, XIANG Qi-bai.  Variation of endogenous polyamines concentrations in Lycoris chinensis bulbs during reproductive period . Journal of Zhejiang A&F University, 2007, 24(4): 419-423.
    [12] HUANG Yan, JI Kong-shu, FANG Yan, ZHAI Jin-ru.  Rooting characteristics and endogenous hormone levels in Buxus sinica var. parvifolia during spring cutting . Journal of Zhejiang A&F University, 2007, 24(3): 284-289.
    [13] LUO Ping-yuan, SHI Ji-kong, ZHANG Wan-ping.  Changes of endogenous hormones , carbohydrate and mineral nutrition during the differentiation of female flower buds of Ginkgo biloba . Journal of Zhejiang A&F University, 2006, 23(5): 532-537.
    [14] HUANG Hua-hong, TONG Zai-kang, LIAO Wang-yi, BI Chun-hui, LOU Xiong-zhen.  High performance liquid chromatographic analysis and changes of endogenous hormones in female floral buds of Torreya grandis `Merrillii' . Journal of Zhejiang A&F University, 2005, 22(4): 390-395.
    [15] LIN Xia-zhen, LOU Lu-huan.  Resources of national key conservation wild plants in Zhejiang . Journal of Zhejiang A&F University, 2002, 19(1): 31-35.
    [16] ZHENG Bao-you, ZHENG Yu, MA Gui-lian, DAI Yun-xi.  Coccid species at forest plants in Huangyan District of Zhejiang Province . Journal of Zhejiang A&F University, 2000, 17(1): 109-111.
    [17] Zheng Guoliang, Ye Jiecheng, Zhu Yongqiang.  Materials in woody flora of Zhejiang . Journal of Zhejiang A&F University, 1998, 15(4): 429-430.
    [18] Liu Xinhong, Hu Shaoqing, Zhou Guanqing, Tang Zhaocheng, Lin Richuan.  A new record of Cymbidium from Zhejiang Province . Journal of Zhejiang A&F University, 1998, 15(3): 267-268.
    [19] Wang Guoming, Xu Shuhua, Ye Zhi jun, Miao Shijun.  Distribution and protection of rare plants in Zhoushan Islands. . Journal of Zhejiang A&F University, 1998, 15(2): 181-186.
    [20] Lou Luhuan, Li Genyou, Jin shuihu, Lü Zhengshui.  Addendum Materials on the Flora of Zhejiang . Journal of Zhejiang A&F University, 1994, 11(4): 449-452.
  • [1]
    LI Zuyao, LI Xiaoxia. Advances in research on germplasm characters and physiological activities in Phyllostachys edulis 'Pachyloen'[J]. Nonwood For Res, 2013, 31(2):167-170.
    [2]
    YANG Guangyao, LI Zuyao, DU Tianzhen, et al. A new cultivated variety of moso bamboo[J]. Acta Agric Univ Jiangxi, 1997, 19(4):97-98.
    [3]
    LI Jian, YANG Qingpei, FANG Kai, et al. Studies on physiological characters of cold resistance of Phyllostachys edulis 'Pachyloen' and Phyllostachys edulis[J]. Acta Agric Univ Jiangxi, 2011, 33(3):537-541.
    [4]
    GUO Qirong, HU Fangming, DU Tianzhen, et al. Leaves physiological and biochemical characters of Phyllostachys edulis cv. Pachyloen[J]. J Cent South For Univ, 2005, 25(3):7-11.
    [5]
    CHEN Jianhua, YAN Cunyu, WANG Yanmei, et al. Physiological characteristics of 6 different variation type bamboo's leaves[J]. J Cent South Univ For Technol, 2011, 31(4):70-73.
    [6]
    SHI Jianmin, YANG Guangyao, YANG Qingpei, et al. Seasonal photosynthetic variance of Phyllostachys edulis 'Pachyloen' response to environmental factors[J]. For Res, 2009, 22(6):872-877.
    [7]
    LI Jian, YANG Qingpei, SHI Jianmin, et al. Dynamics of photosynthetic physiology of Phyllostachys edulis 'Pachyloen'[J]. Acta Agric Univ Jiangxi, 2010, 32(4):763-767.
    [8]
    LI Yingchun, YANG Qingping, CHEN Shuanglin, et al. Studies on diurnal variation of photosynthesis of Phyllostachys edulis 'Pachyloen' and their relationships to environmental factors in spring[J]. For Res, 2009, 22(4):608-612.
    [9]
    CHEN Ting, SHI Yongjun, ZHOU Guomo, et al. Interannual variation characteristics for stand structures in the early stages of new moso bamboo carbon sink stands[J]. J Zhejiang A & F Univ, 2015, 32(2):181-187.
    [10]
    YU Shuhong, ZHOU Guomo, SHI Yongjun, et al. Net carbon sinks in the initial stages of moso bamboo stands[J]. J Zhejiang A & F Univ, 2016, 33(5):807-815.
    [11]
    KUCERA B, COHN M A, LEUBNER-METZGER G. Plant hormone interactions during seed dormancy release and germination[J]. Seed Sci Res, 2005, 15(4):281-307.
    [12]
    KIM T W, WANG Zhiyong. Brassinosteroid signal transduction from receptor kinases to transcription factors[J]. Annu Rev Plant Biol, 2010, 61:681-704.
    [13]
    HE Qijiang, WANG Kuihong, HUA Xiqi. Studies on amino-acid, endogenous hormones and nutrition of shooting forest of Phyllostachys praecox f. prevernalis[J]. Bull Sci Technol, 2006, 22(4):477-481.
    [14]
    HE Qijiang, WANG Kuihong, HUA Xiqi. Studies on endogenous hormones, amino acid and nutrition of Phyllostachys praecox C. D. Chu et C. S. Chao in forests with different yield[J]. J Bamboo Res, 2007, 26(2):34-39.
    [15]
    HU Chaozong, JIN Aiwu, ZHANG Zhuowen. Change of endohormone in mixed bud on Lei bamboo rhizome during differentiation[J]. J Zhejiang For Coll, 1996, 13(1):1-4.
    [16]
    HUANG Jianqin, LIU Li, ZHANG Binsen, et al. Dynamic changes of endophytohormones in rhizomal buds of Phyllostachys praecox[J]. Sci Silv Sin, 2002, 38(3):38-41.
    [17]
    GUO Shaoling, GAO Jian, XU Youming, et al. Effect of 60Coγ rays radiation on endogenous hormone during seed germination[J]. Chin Agric Sci Bull, 2013, 29(25):26-31.
    [18]
    DING Xingcui. Dynamic analysis for endogenous phytohormones of bamboo shoots (Phyllostachys heterocycla var. pubescens) during different growth and differentiation stage[J]. J Bamboo Res, 1997, 16(2):53-62.
    [19]
    ZHENG Yushan, HONG Wei, QIU Erfa, et al. Hormone content and distribution in Phyllostachys heterocycla cv. pubescens during period of shoot emergence[J]. Sci Silv Sin, 1998, 34(spec 1):100-104.
    [20]
    FANG Kai, YANG Guangyao, YANG Qingpei, et al. The features of endogene hormone in culm of Phyllostachys edulis 'Pachyloen' in its leaf-expansion stage[J]. Acta Agric Univ Jiangxi, 2012, 34(1):54-58.
    [21]
    ZHANG Yanhua, LEI Xiangao, LI Zuyao, et al. Response of endogenous hormone level and young bamboo development to different breeding methods in Phyllostachys heterocycla 'Pachyloen'[J]. J Bamboo Res, 2016, 35(4):14-19.
    [22]
    WU Xingbo, CHEN Dengju, MA Yuandan, et al. Chloromycetin effects on pigment content and chlorophyll fluorescence in Phyllostachys edulis seedlings[J]. J Zhejiang A & F Univ, 2016, 33(2):209-215.
    [23]
    WANG Bo, WANG Kuihong, LI Qin, et al. Content of nutrient, amino-acids and endogenous hormones in Phyllostachys heterocycla cv. Pubescens with and without mulching[J]. J Zhejiang For Sci Technol, 2015, 35(2):13-16.
    [24]
    FANG Kai, YANG Guangyao, YANG Qingpei, et al. Dynamic changes of endogenesis hormone in bamboo formation course (Phyllostachys edulis)[J]. Acta Agric Univ Jiangxi, 2011, 33(6):1107-1111.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(4)

Article views(3043) PDF downloads(480) Cited by()

Related
Proportional views

Endogenous hormones in young bamboo development of Phyllostachys edulis 'Pachyloen'

doi: 10.11833/j.issn.2095-0756.2018.06.014

Abstract: To reveal distribution characteristics and dynamic changes of endogenous hormones in the Phyllostachys edulis 'Pachyloen' bamboo shoot during bamboo shoot development, and to explore the regulation of endogenous hormones on bamboo shoots during development, the enzyme-linked immunosorbent assay (ELISA) test was applied to measure the content of Indole-3-acetic acid (IAA), gibberellin (GA3), zeatin riboside (ZR), and abscisic acid (ABA) in latent buds (rhizome buds), germinating buds, winter shoots, spring shoots, and new bamboo. Analysis included variance analysis and multiple comparisons of a total of 60 samples which were collected in 3 areas and 3 periods. Results showed that the content of IAA and ABA were significantly higher than GA3 and ZR (P < 0.05). During the bamboo shoot enlargement period, there were no significant differences (P > 0.05) in the four endogenous hormones and the total amount of endogenous hormones in latent buds, shoot buds, and winter shoots. During the rapid shoot growth period, within the sheath of the spring shoot, the contents of IAA and ZR were significantly higher than in latent buds (P < 0.05), and the contents of IAA, ABA, and ZR were significantly higher than in shoots (P < 0.05). Spring shoots had a significantly lower ABA level than latent buds (P < 0.05). After new bamboo growth, endogenous hormones in bamboo leaves and branches were ABA > IAA > ZR > GA3, yet in bamboo stems and roots it was IAA > ABA > ZR > GA3. During development of young bamboo, dynamic changes in content and ratio of endogenous hormones differed with IAA, ABA, GA3, ZR/IAA, ZR/GA3, and GA3/IAA changing significantly during the transition from latent buds to winter shoots (P < 0.05); and IAA, ABA, ZR/ABA, ZR/IAA, GA3/IAA, and ZR/GA3 changing significantly during transformation from winter shoots to new bamboo (P < 0.05). This research revealed that the type and content of homogenous hormone, as well as antagonistic and synergistic effects among them, were important for promoting or regulating functions in the reproducing process of Ph. edulis 'Pachyloen'.

LI Zuyao, ZHANG Yanhua, ZHANG Lei, LI Yuan, SUN Yadong. Endogenous hormones in young bamboo development of Phyllostachys edulis 'Pachyloen'[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1107-1114. doi: 10.11833/j.issn.2095-0756.2018.06.014
Citation: LI Zuyao, ZHANG Yanhua, ZHANG Lei, LI Yuan, SUN Yadong. Endogenous hormones in young bamboo development of Phyllostachys edulis 'Pachyloen'[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1107-1114. doi: 10.11833/j.issn.2095-0756.2018.06.014
  • 厚竹Phyllostachys edulis ‘Pachyloen’又称厚壁毛竹,是江西省特有的毛竹P. edulis变异新品种,2008年获植物新品种保护权[1],2017年被审定为国家级优良品种。厚竹因其秆壁厚度是等径毛竹的1.8~2.0倍且性状稳定而得名[2];生物学和生态学特性与毛竹相似,但生物量、竹笋中营养物质含量[1]、抗寒性[3]、氮代谢水平和利用率[4-5]、二氧化碳(CO2)和光能利用率[6-8]等均高于毛竹;作为笋用和笋材兼用竹种,其经济价值、种质价值、碳储量和固碳能力[9-10]较高,推广前景广阔。内源激素作为植物体内重要的活性物质,其质量分数和相互作用对植物的生长和发育起着非常重要的调节和控制作用[11-12]。何奇江等[13-14]、胡超宗等[15]和黄坚钦等[16]对雷竹Ph. praecox的内源激素进行了研究,郭少玲等[17]研究了60Coγ辐射对毛竹种子萌发过程中内源激素的影响,丁兴萃[18]和郑郁善等[19]研究了毛竹笋期的内源激素分布,方楷等[20]对厚竹展叶期竹秆内源激素进行了研究,张艳华等[21]研究了厚竹新竹中内源激素对繁殖方式的响应,吴兴波等[22]研究了氯霉素对毛竹幼苗色素质量分数及叶绿素荧光的影响。结果显示,内源激素对竹笋的生长发育影响较大,竹子不同器官中及竹笋不同部位的内源激素质量分数不同,人为干预措施可以改变竹子中内源激素的质量分数和分布。过去对竹子内源激素的研究多集中于某一特定时期或单一器官,主要研究单一内源激素。关于竹子孕笋成竹期内源激素的分布和动态变化,及各种内源激素的相对质量分数对竹子孕笋成竹的影响还值得深入研究。本试验通过分析厚竹从鞭芽萌动到成竹过程中不同部位内源激素的质量分数,研究厚竹孕笋成竹过程中内源激素的分布特征和动态变化规律,探索内源激素对厚竹孕笋成竹的调控作用,为进一步研究内源激素调控竹类植物生长的机理和厚竹定向培育提供理论依据。

  • 采样林分:采样地位于江西农业大学竹类植物种质园内(28°45′24.1″N,115°49′50.2″E),海拔49.5 m,低丘岗地,土壤为红壤。采样林分为厚竹纯林,1995年从厚竹原产地(江西省万载县高村乡严田村,28°06′33.38″N,114°26′24.78″E)引种繁育而成,面积约为0.5 hm2,立竹胸径为4.0~7.0 cm,立竹高度为6.0~10.0 m,竹林结构合理,生长正常。

    采样时间:2015年1月20日,笋芽膨大期,采集竹鞭潜伏芽、笋芽和冬笋样品。2015年3月31日,竹笋快速生长期,采集竹鞭潜伏芽和春笋样品。2015年6月10日,新竹长成期,采集新竹样品。

    采样部位:潜伏芽整芽取样。已经萌动的笋芽分芽肉和芽箨取样。冬笋和春笋分笋箨及顶部、中部和基部笋肉取样,春笋增加中部和基部笋肉的内壁、外壁及笋根取样。新竹分中上部竹秆、中下部竹枝、竹叶和篼根取样。各取样对象均选择3个及以上作为重复,采集样品量约1 g·部位-1

    样品处理:野外采集样品后立即放入冰盒中,2 h内转入-85 ℃超低温冰箱中冷冻。每一时期全部样品采集后用干冰包埋送中国农业大学分析。

  • 内源激素测定方法为酶联免疫吸附测定法(ELISA),每个样品平行测定3次,测定指标为吲哚-3-乙酸(IAA),赤霉素(GA3),玉米素核苷(ZR)和脱落酸(ABA)。

  • 试验数据采用SPSS 17.0分析软件分析,用单因素方差分析和Duncan多重比较对厚竹孕笋成竹期鞭芽、竹笋和新竹不同部位中的内源激素质量分数和比值进行差异性分析。采用Excel 2007统计软件进行数据处理和图表制作。

  • 表 1看出:笋芽膨大期,所有部位内源激素质量分数均表现为ABA>IAA>GA3>ZR,由于此时竹林处于休眠期,内源激素在不同部位间均无显著差异。竹笋快速生长期,潜伏芽和春笋的生命活动旺盛程度不同,内源激素质量分数也不相同,潜伏芽中ABA>IAA>ZR>GA3,而春笋中IAA>ABA>ZR>GA3,差异程度因部位而异。新竹抽枝展叶后,潜伏芽和竹叶中内源激素质量分数表现为ABA>IAA>ZR>GA3,竹秆中内源激素质量分数则是IAA>ABA>ZR>GA3

    时期部位wIAA/(ng·g-1wZR/(ng·g-1wGA3/(ng·g-1wABA/(ng·g-1wALL/(ng·g-1
    笋芽膨大期潜伏芽78.73 ± 7.91 Aa6.90 ± 0.70 Ab17.54 ± 2.76 Ab79.32 ± 9.23 Aa182.48 ± 14.45 A
    笋芽芽箨58.17 ± 11.15 Ab7.19 ± 2.04 Ac10.77 ± 2.56 Ac84.23 ± 8.12 Aa160.35 ± 20.12 A
    笋芽芽肉68.76 ± 9.11 Ab6.56 ± 2.08 Ac10.40 ± 2.83 Ac103.01 ± 19.03 Aa188.73 ± 23.83 A
    冬笋笋箨41.43 ± 14.38 Aab4.84 ± 0.39 Ab10.64 ± 0.45 Ab86.84 ± 28.78 Aa143.76 ± 15.57 A
    冬笋笋肉53.32 ± 8.87 Ab7.18 ± 1.41 Ac15.81 ± 3.29 Ac116.44 ± 22.81 Aa192.74 ± 18.21 A
    竹笋快速生长期潜伏芽51.04 ± 9.36 Ba8.79 ± 1.66 Bb6.81 ± 1.03 Ab70.45 ± 22.83 Aa137.08 ± 34.71 B
    春笋笋箨89.17 ± 17.61 Aa15.56 ± 2.74 Ab7.61 ± 1.16 Ab81.51 ± 22.22 Aa193.84 ± 43.54 A
    春笋笋肉43.45 ± 2.44 Bb8.93 ± 0.96 Bc6.38 ± 0.34 Ac35.30 ± 1.68 Ba94.06 ± 4.36 C
    新竹长成期潜伏芽67.75 ± 7.72 Aa9.72 ± 0.83 Ab7.07 ± 0.52 Ab78.50 ± 14.33 Ba163.04 ± 12.45 B
    竹叶71.90 ± 9.42 Ab9.48 ± 1.10 Ac5.86 ± 0.42 Ac159.05 ± 1.75 Aa246.28 ± 10.65 A
    竹秆72.11 ± 10.04 Aa7.84 ± 0.28 Ab7.66 ± 0.57 Ab53.46 ± 7.73 Ba141.07 ± 14.98 B
    说明:同列不同大写字母表示同一发育期内差异显著;同行不同小写字母表示不同内源激素间差异显著

    Table 1.  Contents of endogenous hormones in shoots and new bamboos

    进一步分析冬笋、春笋和新竹不同部位的内源激素。从表 2看出:不同内源激素质量分数因植株形态或部位不同而不同。冬笋所有部位均为ABA>IAA>GA3>ZR,春笋所有部位为IAA>ABA>ZR>GA3,新竹的竹枝和竹叶为ABA>IAA>ZR>GA3,而竹秆和蔸根则为IAA>ABA>ZR>GA3

    植株形态部位wIAA/(ng·g-1wZR/(ng·g-1wGA3/(ng·g-1wABA/(ng·g-1wALL/(ng·g-1
    冬笋笋箨41.43 ± 14.38 Aab4.84 ± 0.39 Ab10.64 ± 0.45 Ab86.84 ± 28.78 Aa143.76 ± 15.57 A
    笋尖38.25 ± 8.39 Aab5.29 ± 1.04 Ab12.00 ± 2.36 Ab133.10 ± 51.02 Aa188.65 ± 50.3 A
    中部笋肉54.21 ± 13.45 Aab8.00 ± 2.78 Ab14.66 ± 3.94 Ab97.19 ± 41.54 Aa174.06 ± 28.49 A
    基部笋肉67.49 ± 21.89 Ab8.26 ± 3.53 Ac20.76 ± 9.41 Ac119.02 ± 39.81 Aa215.52 ± 13.9 A
    春笋笋箨89.17 ± 17.61 Aa15.56 ± 2.74 Ab7.61 ± 1.16 Ab81.51 ± 22.22 Aa193.84 ± 43.54 A
    笋尖44.64 ± 5.33 Ba17.36 ± 3.35 Abc9.00 ± 1.57 Ac29.93 ± 4.99 Bb100.93 ± 12.86 B
    中部内壁39.34 ± 0.84 Ba6.66 ± 0.56 Bb5.85 ± 0.13 Ab38.31 ± 2.81 Ba90.16 ± 4.14 B
    中部外壁52.62 ± 5.60 Ba8.54 ± 0.94 Bc6.85 ± 0.52 Ac40.60 ± 2.39 Bb108.62 ± 4.79 B
    基部内壁39.92 ± 2.68 Ba7.49 ± 1.71 Bc5.46 ± 0.18 Ac33.01 ± 4.24 Bb85.89 ± 8.28 B
    基部外壁44.70 ± 14.75 Ba7.07 ± 1.63 Bb5.46 ± 0.6 Ab35.30 ± 8.71 Ba92.53 ± 25.16 B
    笋根37.08 ± 6.71 Ba6.07 ± 0.46 Bb5.79 ± 0.89 Ab36.82 ± 2.26 Ba85.77 ± 6.02 B
    新竹竹叶71.90 ± 9.42 Ab9.48 ± 1.10 Ac5.86 ± 0.42 Ac159.05 ± 1.75 Aa246.28 ± 10.65 A
    竹枝58.20 ± 10.95 Aa8.05 ± 0.48 Ab7.05 ± 0.58 Ab75.80 ± 6.44 Ba149.10 ± 8.92 B
    竹秆72.11 ± 10.04 Aa7.84 ± 0.28 Ac7.66 ± 0.57 Ac53.46 ± 7.73 Cb141.07 ± 14.98 B
    蔸根70.12 ± 11.59 Aa8.30 ± 1.19 Ab5.94 ± 0.62 Ab37.88 ± 1.24 Cc122.24 ± 11.27 B
    说明:同列不同大写字母表示同一植株体中差异显著;同行不同小写字母表示不同内源激素间差异显著

    Table 2.  Contents of endogenous hormones in different parts of bamboo

    表 1表 2还可看出:同种内源激素因发育时期或部位不同存在差异。笋芽膨大期,冬笋中促进生长类激素表现向基性增加;ABA则是笋尖和笋基部高,中部笋肉低,但潜伏芽、笋芽和冬笋之间及同一植株形态不同部位之间同种内源激素质量分数和内源激素总量差异均不显著。竹笋快速生长期,潜伏芽和春笋的内源激素质量分数差异显著,春笋笋箨中各内源激素质量分数显著高于笋肉,笋肉外壁中IAA,ZR和GA3呈向基性减少,但差异性未达到显著程度。ABA主要在叶片中合成,新竹叶片中ABA质量分数显著高于其他部位,并呈向基性减少。

  • 激素间的相互作用对植物的生长和发育有重要的调节和控制作用[9],研究激素间交互作用对厚竹生长发育的影响意义重大。研究认为,促进生长类激素与抑制生长类激素质量分数的比值对植物生长发育有重要的调控作用[23]。由表 3可知:生长中心的转移和不同植株形态的生命活动不同,厚竹在孕竹成笋过程中各内源激素质量分数的比值有较大差异,并且不同激素间的比值差异程度不同。从表 4看出:冬笋同一部位不同内源激素比值间存在显著差异,但相同内源激素比值在不同部位之间差异性均不显著。春笋笋尖由于细胞分裂和伸长生长活动旺盛,其中ZR和GA3在内源激素中的相对质量分数显著偏高,ZR/GA3也显著偏高,说明笋尖中细胞分裂活动尤为旺盛。新竹叶片中ABA质量分数显著偏高,促进生长类激素与ABA的比值显著低于其他部位,并呈显著向基性升高;新竹中代谢活动旺盛部位中的ZR/GA3显著高于代谢活动较弱的部位,而GA3/IAA值则相反。

    时期部位IAA/ABAZR/ABAGA3/ABA(IAA+ZR+GA3)/ABAZR/IAAGA3/IAAZR/GA3
    笋芽潜伏芽1.26 ± 0.24 Aa0.04 ± 0.00 Ab0.24 ± 0.03 Ab1.60 ± 0.29 Aa0.22 ± 0.02 Ab0.09 ± 0.01 Bb0.49 ± 0.06 Ab
    膨大笋芽芽箨0.69 ± 0.12 Aa0.09 ± 0.02 Ab0.12 ± 0.02 Ab0.90 ± 0.15 Ab0.12 ± 0.01 ABb0.19 ± 0.04 Bb0.71 ± 0.24 Aa
    笋芽芽肉0.72 ± 0.18 Aa0.07 ± 0.04 Ab0.10 ± 0.01 Ab0.89 ± 0.21 Aa0.09 ± 0.02 Bb0.16 ±0.04 Bb0.84 ± 0.48 Aa
    冬笋笋箨0.94 ± 0.71 Aa0.08 ± 0.04 Ac0.19 ± 0.10 Ac1.21 ± 0.85 Aa0.14 ± 0.04 ABc0.31 ± 0.08 Abc0.45 ± 0.02 Abc
    冬笋笋肉0.90 ± 0.33 Aab0.12 ± 0.05 Ac0.26 ± 0.11 Abc1.28 ± 0.49 Aa0.14 ± 0.02 ABc0.31 ± 0.04 Ab0.46 ± 0.03 Ab
    笋快速生长期潜伏芽0.79 ± 0.10 Bc0.14 ± 0.02 Ad0.11 ± 0.02 Bd1.03 ± 0.13 Bb0.17 ± 0.01 Ad0.14 ± 0.00 ABd1.28 ± 0.06 Ba
    春笋笋箨1.15 ± 0.11 Ac0.20 ± 0.02 Ad0.10 ± 0.02 Bd1.45 ± 0.14 ABb0.18 ± 0.01 Ad0.09 ± 0.00 Bd2.04 ± 0.18 Aa
    春笋笋肉1.25 ± 0.06 Ab0.27 ± 0.04 Ac0.19 ± 0.01 Ac1.70 ± 0.10 Aa0.20 ± 0.02 Ac0.15 ± 0.01 Ac1.37 ± 0.10 Bb
    新竹长成期潜伏芽1.05 ± 0.28 ABa0.06 ± 0.01 Bb0.10 ± 0.02 ABb1.3 ± 0.34 ABa0.11 ± 0.01 Ab0.15 ± 0.01 Ab1.38 ± 0.11 ABa
    竹叶0.45 ± 0.06 Bab0.06 ± 0.01 Bb0.04 ± 0.00 Bb0.55 ± 0.07 Bab0.13 ± 0.01 Ab0.08 ± 0.01 Ab1.61 ± 0.09 Aa
    竹秆1.40 ± 0.23 Aab0.15 ± 0.02 Ac0.15 ± 0.03 Ac1.70 ± 0.27 Aa0.11 ± 0.01 Ac0.11 ± 0.01 Ac1.04 ± 0.09 Bb
    说明:同列不同大写字母表示同一植株体中差异显著;同行不同小写字母表示不同内源激素比值间差异显著

    Table 3.  Ratios among different endogenous hormones in bamboo shoots and new bamboos during different periods

    植株体部位IAA/ABAZR/ABAGA3/ABA(IAA+ZR+GA3)/ABAZR/IAAGA3/IAAZR/GA3
    冬笋笋箨0.94 ± 0.71 Aa0.08 ± 0.04 Ab0.19 ± 0.10 Ab1.21 ± 0.85 Aa0.14 ± 0.04 Ab0.31 ± 0.08 Aab0.45 ± 0.02 Aab
    笋尖0.55 ± 0.38 Aa0.05 ± 0.02 Ab0.12 ± 0.04 Ab0.73 ± 0.44 Aa0.16 ± 0.05 Ab0.35 ± 0.10 Aab0.44 ± 0.01 Aab
    笋中部1.05 ± 0.67 Aa0.16 ± 0.12 Ab0.28 ± 0.19 Ab1.49 ± 0.98 Aa0.14 ± 0.01 Ab0.27 ± 0.05 Ab0.54 ± 0.07 Aab
    笋基部1.10 ± 0.80 Aa0.15 ± 0.12 Ab0.38 ± 0.31 Aab1.63 ± 1.23 Aa0.12 ± 0.02 Ab0.29 ± 0.05 Ab0.41 ± 0.02 Aab
    春笋笋箨1.15 ± 0.11 Ac0.20 ± 0.02 Bd0.10 ± 0.02 Bd1.45 ± 0.14 Ab0.18 ± 0.01 Bd0.09 ± 0.00 Cd2.04 ± 0.18 Aa
    笋尖1.56 ± 0.23 Ab0.62 ± 0.15 Ac0.30 ± 0.03 Ac2.48 ± 0.40 Aa0.38 ± 0.04 Ac0.20 ± 0.02 Ac1.98 ± 0.36 Aab
    中部内壁1.04 ± 0.06 Ab0.17 ± 0.01 Bc0.15 ± 0.01 Bc1.36 ± 0.07 Aa0.17 ± 0.01 Bc0.15 ± 0.00 ABc1.14 ± 0.09 Bb
    中部外壁1.32 ± 0.22 Aa0.21 ± 0.04 Bb0.17 ± 0.02 Bb1.71 ± 0.28 Aa0.16 ± 0.01 Bb0.13 ± 0.01 Bb1.25 ± 0.12 ABa
    基部内壁1.23 ± 0.10 Aa0.22 ± 0.03 Bb0.17 ± 0.02 Bb1.62 ± 0.10 Aa0.18 ± 0.03 Bb0.14 ± 0.01 Bb1.37 ± 0.30 ABa
    基部外壁1.23 ± 0.16 Aa0.21 ± 0.04 Bb0.16 ± 0.02 Bb1.60 ± 0.18 Aa0.17 ± 0.02 Bb0.14 ± 0.04 Bb1.30 ± 0.27 ABa
    笋根1.04 ± 0.25 Aa0.17 ± 0.02 Bb0.16 ± 0.03 Bb1.37 ± 0.31 Aa0.17 ± 0.03 Bb0.16 ± 0.00 ABb1.09 ± 0.15 Ba
    新竹竹叶0.45 ± 0.06 Cb0.06 ± 0.01 Cc0.04 ± 0.00 Cc0.55 ± 0.07 Cb0.13 ± 0.01 Ac0.08 ± 0.01 Bc1.61 ± 0.09 Aa
    竹枝0.80 ± 0.21 BCa0.11 ± 0.02 BCb0.10 ± 0.02 Bb1.00 ± 0.25 BCa0.15 ± 0.02 Ab0.13 ± 0.02 Ab1.15 ± 0.04 BCa
    竹秆1.40 ± 0.23 BAab0.15 ± 0.02 Bc0.15 ± 0.03 ABc1.70 ± 0.27 Ba0.11 ± 0.01 Ac0.11 ± 0.01 ABc1.04 ± 0.09 Cb
    蔸根1.87 ± 0.36 Aba0.22 ± 0.03 Ac0.16 ± 0.01 Ac2.24 ± 0.37 Aa0.12 ± 0.02 Ac0.09 ± 0.01 Bc1.39 ± 0.07 Bb
    说明:同列不同大写字母表示同一植株体中差异显著;同行不同小写字母表示不同内源激素比值间差异显著

    Table 4.  Ratios of different endogenous hormones in different bamboo parts

  • 潜伏芽是指竹鞭上未分化发育成笋或鞭的细小鞭芽,与已萌发的笋芽或鞭芽相比,生长极为缓慢或不生长。对不同生长期潜伏芽中的内源激素质量分数和比值进行比较可知,笋芽膨大期潜伏芽中GA3的质量分数显著高于竹笋快速生长期和新竹长成期;除GA3外,其他内源激素的绝对量变化不大(图 1A)。不同内源激素相对质量分数却有显著变化,且动态变化规律不同。由图 1B可知:ZR/ABA先增加后降低,不同生长时期差异显著;ZR/GA3和ZR/IAA随成笋进程显著降低。由此证实从笋芽膨大期到快速生长期,潜伏芽内GA3相对量增多,为打破潜伏芽休眠进而分化为笋芽做好准备;而竹笋快速生长期,竹笋内ZR相对量提高,有助于促进细胞分裂。

    Figure 1.  Changes of endogenous hormones content and ratio in latent buds

  • 图 2为厚竹不同形态下不同部位的内源激素质量分数及比值的变化。潜伏芽分化为笋芽,芽肉中GA3质量分数显著下降(图 2A),GA3/IAA显著下降但ZR/GA3和ZR/IAA显著升高(图 2B),说明潜伏芽至笋芽的分化以细胞分裂为主。冬笋为了适应低温环境并有利于打破休眠,从笋芽芽肉发育后,冬笋笋肉中GA3/IAA显著升高,而ZR/GA和ZR/IAA显著降低。进入竹笋快速生长期,春笋笋肉ABA质量分数出现显著降低(图 2A),GA3/IAA显著降低而ZR/ABA,ZR/IAA和ZR/GA3均显著升高(图 2B),可以认为此时竹笋生长以细胞数量增加为主。新竹抽枝展叶后,竹林的生长中心转入地下,新竹的细胞分裂活动基本停止,故竹秆中ABA质量分数显著增加,促进细胞分裂和伸长生长的ZR和GA3的相对质量分数显著降低。潜伏芽至笋芽芽箨、冬笋笋箨、春笋笋箨、竹叶的内源激素的动态变化趋势与笋肉相似(图 2C图 2D),竹笋快速生长期,笋(秆)箨生长迅速,脱落也快,笋箨中ZR,IAA和ABA均保持较高水平。

    Figure 2.  Changes of endogenous hormones content and ratio in bamboo shoots

    综合图 1图 2可知:内源激素对笋芽分化和竹笋生长具有重要调控作用。较高的IAA和较低的ABA有利于竹笋的分化和生长,较高的GA3有利于打破潜伏芽和冬笋的休眠,促进笋芽分化和冬笋萌动,而较高的ZR有利于促进竹笋生长。ZR/ABA,ZR/IAA,ZR/GA3及GA3/IAA比单一内源激素的绝对量更能反映厚竹孕笋成竹过程的变化,说明内源激素间的交互作用对厚竹的孕笋成竹有显著的调控作用。

  • 笋芽膨大期,竹林处于休眠状态,冬笋及鞭芽内抑制生长类激素(如ABA)质量分数显著高于促进生长类激素,抑制了笋芽和冬笋的快速生长,以应对低温环境。竹笋进入快速生长期后,促进细胞分裂的激素显著增加,抑制生长类激素显著减少,此时可见笋尖ZR质量分数明显增加,并且显著高于竹笋的中部和基部;ABA质量分数显著降低,GA3质量分数在竹笋各部位差异不显著,说明进入速生期后,竹笋生长以细胞分裂为主。新竹长成后,竹叶中的ZR和GA3质量分数显著低于笋尖,提示厚竹抽枝展叶后,地上系统的细胞分裂和生长基本停止,地下竹鞭已经成为竹林系统的生长中心。

    春笋笋肉中促进生长类激素的相对质量分数显著高于潜伏芽,特别是笋尖内ZR/IAA,ZR/ABA,GA3/IAA及GA3/ABA显著高于其他植株体或部位,新竹长成后,竹林系统生长中心转入地下,新竹中促进生长类激素与抑制生长类激素的比值呈显著向基性递增,生命活动相对旺盛的叶片和蔸根中的GA3/IAA显著低于竹秆和竹枝,但ZR/GA3则刚好相反,表明内源激素的相对质量分数对厚竹生长发育有显著影响,较高比例的ZR有利于碳水化合物的合成和器官的生长,促进竹笋和及篼根生长,而较高比例的GA3则有利于打破潜伏芽休眠,促进物质的转化及纤维素和木质素的形成,说明内源激素间的协调或拮抗作用对厚竹孕笋成竹有重要的调控作用,但其作用机理还有待于深入研究。

    郑郁善等[19]研究发现,内源激素在毛竹春笋中的质量分数表现为激动素(KT)>赤霉素(GA3)>IAA,在新竹叶片中表现为GA3>IAA>KT;王波等[23]发现无论笋或新竹叶片,均表现为GA3质量分数显著高于IAA;方楷等[24]研究发现:毛竹竹笋和新竹各个部位中,均表现为GA3质量分数显著高于玉米素(ZT)。本研究发现:厚竹春笋和新竹各个部位,均表现为IAA>ZR>GA3,其中IAA质量分数显著高于ZR和GA3。厚竹中促进细胞壁形成和蛋白质合成的IAA及促进细胞分裂的ZR质量分数高,促进细胞伸长生长的GA3质量分数相对较少,有利于竹壁的横向增长,可能是造成厚竹竹壁变厚的原因之一。

    厚竹中不同内源激素的质量分数存在较大差异,且不同部位的差异程度不同,从潜伏芽到新竹抽枝展叶,内源激素的质量分数及比值均发生显著变化。潜伏芽和冬笋中GA3质量分数偏高,春笋中ZR质量分数偏高,说明不同的内源激素对厚竹生长发育的调控作用不同,较高的GA3质量分数有利于促进笋芽分化和冬笋萌动,较高的ZR质量分数则会促进细胞分裂,有利于促进竹笋的生长。在厚竹孕笋成竹过程中,ZR/GA3,ZR/IAA和GA3/IAA变化显著,且与厚竹的生长发育活动关系密切,表明ZR,GA3和IAA之间的协调或拮抗作用对厚竹的孕笋成竹有重要的调控功能。

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return