-
CONSTANS(CO)基因是植物响应光周期调控的重要基因,位于生物钟的输出途径上,能正调控下游开花基因SOC1和FT,进而调控植物开花。PUTTERILL等[1]首先在拟南芥Arabidopsis thaliana中分离出CO基因,反转录PCR(RT-PCR)检测到CO基因在根和叶中表达。ONOUCHI等[2]对花椰菜Brassica oleracea花叶病毒35S(Cauliflower mosaic virus 35S, CaMV 35S)融合CO(35S::CO)转化拟南芥研究发现,CO蛋白会诱导早花和丧失光周期敏感性。进一步研究发现[3],CO在染色体上的位置介于生物节律钟基因和下游开花基因之间,可将光信号转变为开花信号。对拟南芥CO基因过表达研究[1]发现,CO基因过表达的植株比野生型提前开花,表明CO蛋白的活性决定开花时间;但这种调控在不同成员间并不一致,过表达COL1和COL2对植株开花时间没有影响[4],过表达COL9则导致开花延迟,但COL9缺失突变体在长日照下又表现为早花,说明COL9不但抑制CO基因表达调控开花时间,同时下调FT的表达水平从而延迟成花转变[5]。COL3在拟南芥光形态建成时起正调控作用,促进侧根生长和花色素苷积累,并调节长日照敏感植物的花芽分化[6]。从形态来看,CO基因常以多拷贝的形式存在,如拟南芥的CO家族有17个成员[7],水稻Oryza sativa中有16个成员[8],甘蓝型油菜Brassica napus中也克隆到4个CO同源基因[9]。但各CO家族成员的功能存在明显差异。葡萄Vitis vinifera的VvCOL1主要在芽休眠过程中起作用,表明该基因参与光周期,控制芽休眠的诱导和维持[10]。拟南芥中过表达衣藻Chlamydomonas reinhardtii的CrCO会表现出早花表型,结合衣藻的研究发现:CrCO对淀粉的合成和细胞分裂有调节功能,推测CO在高等植物中可能仍保持调节淀粉合成[11]。大麦Hordeum vulgare的HvCO1和Hd1基因与CO亲缘关系最近,可以通过激活HvFT1诱导大麦开花[8],但在转基因拟南芥中则丢失该功能[12]。拟南芥co突变体过表达牵牛花Ipomoea nil的PnCO基因可促进植物开花[13]。黑麦草Lolium perenne的LpCO可以互补拟南芥co突变体的晚花表型[14],甜菜Beta vulgaris的BvCO1可以修复拟南芥co-2突变体的晚花表型[15]。大豆Glycine max的GmCO9影响根的发育,与种子的成熟密切相关[16]。毛果杨Populus trichocarpa的PtCO促使植株提前开花,也可调控植株的生长和芽的分化[17]。本研究以14个已被测序的物种为试验材料,通过生物信息学手段,从外显子-内含子结构、基因重复、基因差异表达分析等3个方面开展CO家族研究,为探讨不同家族成员的潜在功能提供依据。
Evolution of the flowering time gene CONSTANS in a photoperiod pathway
-
摘要: CONSTANS(CO)是植物响应光周期调节的重要基因和监测日照长度的重要元件,可将光信号和生物钟信号转变为开花信号,激活下游基因(FT)的表达,从而诱导植物开花。选取14个已被测序的物种,采用生物信息学手段,从外显子-内含子结构、基因重复、基因差异表达等方面开展CO基因家族研究。结果表明:14个物种共鉴定到159个CO家族成员,CO基因常以多拷贝的形式存在,多数含2~4个外显子,在进化过程中表现出多样性。CO家族重复基因的扩张与基因组重复相关。CO在水稻Oryza sativa根、旗叶、花和种子中均有表达,花芽到花的转变过程中OsCO3的表达量上升,而OsCO7下降,说明水稻CO家族成员之间存在功能差异。Abstract: CONSTANS(CO), an essential element for monitoring the duration of a day and an important gene responding to photoperiod regulation, can transform light and biological clock signals into flowering signals, as well as activate the expression of downstream genes (FT), which induces plant flowering. However, their evolutionary history and patterns have not been examined systematically. In this study, a total of 14 species, whose whole-genomes have been sequenced, were selected. Then, via the analyses of bioinformatics, the CO family was studied in regards to exon-intron structure, gene duplication, and differential expression. Results showed 159 members in the CO family. For each plant species, the CO family existed in the form of multiple copies. Almost every copy contained 2 to 4 exons indicating diversity in the evolution process. The synteny analysis showed that expansion of duplicate genes in the CO family was related to genome duplication. In addition, the gene differential expression analysis showed that CO members were expressed in roots, flag leaves, flowers, and seeds of rice (Oryza sativa). Especially, OsCO3 was up-regulated in the process of floral development; whereas, the expression of OsCO7 was down-regulated. This suggested that members of the CO gene family played different roles in rice.
-
Key words:
- botany /
- CO /
- CO family /
- phylogenetic /
- synteny analysis /
- gene duplication
-
-
[1] PUTTERILL J, ROBSON F, LEE K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors[J]. Cell, 1995, 80(6):847-857. [2] ONOUCHI H, IGEÑO M I, PÉRILLEUX C, et al. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J]. Plant Cell, 2000, 12(6):885-900. [3] SUÁREZ-LÓPEZ P, WHEATLEY K, ROBSON F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature, 2001, 410(6832):1116-1120. [4] LEDGER S, STRAYER C, ASHTON F, et al. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes[J]. Plant J, 2001, 26(1):15-22. [5] CHENG Xiaofei, WANG Zengyu. Over expression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana[J]. Plant J, 2005, 43(5):758-768. [6] DATTA S, HETTIARACHCHI G H C M, DENG Xingwang, et al. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth[J]. Plant Cell, 2006, 18(1):70-84. [7] ROBSON F, COSTA M M R, HEPWORTH S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants[J]. Plant J, 2001, 28(6):619-631. [8] GRIFFITHS S, DUNFORD R P, COUPLAND G, et al. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis[J]. Plant Physiol, 2003, 131(4):1855-1867. [9] ROBERT L S, ROBSON F, SHARPE A, et al. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus[J]. Plant Mol Biol, 1998, 37(5):763-772. [10] ALMADA R, CABRERA N, CASARETTO J A, et al. VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds[J]. Plant Cell Rep, 2009, 28(8):1193-1203. [11] TENORIO G, OREA A, ROMERO J M, et al. Oscillation of mRNA level and activity of granule-bound starch synthase in Arabidopsis leaves during the day/night cycle[J]. Plant Mol Biol, 2003, 51(6):949-958. [12] CAMPOLI C, DROSSE B, SEARLE I, et al. Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS[J]. Plant J, 2012, 69(5):868-880. [13] HAYAMA R, AGASHE B, LULEY E, et al. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis[J]. Plant Cell, 2007, 19(10):2988-3000. [14] MARTIN J, STORGAARD M, ANDERSEN C H, et al. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog[J]. Plant Mol Biol, 2004, 56(2):159-169. [15] CHIA T Y P, MÜLLER A, JUNG C, et al. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus[J]. J Exp Bot, 2008, 59(10):2735-2748. [16] HUANG Guowen, MA Jinghua, HAN Yuzhen, et al. Cloning and expression analysis of the soybean CO-Like gene GmCOL9[J]. Plant Mol Biol Rep, 2011, 29:352-359. [17] BÖHLENIUS H, HUANG Tao, CHARBONNEL-CAMPAA L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 2006, 312(5776):1040-1043. [18] PAZHOUHANDEH M, MOLINIER J, BERR A, et al. MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis[J]. Proc Nat Acad Sci USA, 2011, 108(8):3430-3435. [19] AHN J H, MILLER D, WINTER V J, et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. EMBO J, 2006, 25(3):605-614. [20] LAGERCRANTZ U, AXELSSON T. Rapid evolution of the family of CONSTANS LIKE genes in plants[J]. Mol Biol Evol, 2000, 17(10):1499-1507. [21] TANG Haibao, BOWERS J E, WANG Xiyin, et al. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage[J]. Proc Nat Acad Sci USA, 2010, 107(1):472-477. [22] YU Jun, WANG Jun, LIN Wei, et al. The genomes of Oryza sativa:a history of duplications[J]. PLoS Biol, 2005, 3(2):266-281. [23] KIM S K, YUN C H, LEE J H, et al. Os-CO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-LIKE genes under SD conditions in rice[J]. Planta, 2008, 228(2):355-365. [24] XUE Weiya, XING Yongzhong, WENG Xiaoyu, et al. Natural variation in Ghd7 in an important regulator of heading date and yield potential in rice[J]. Nat Genet, 2008, 40(6):761-767. [25] KOJIMA S, TAKAHASHI Y, KOBAYASHI Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions[J]. Plant Cell Physiol, 2002, 43(10):1096-1105. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.01.002