本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。
重组竹/玻纤/PET泡沫复合多层结构保温板制备及性能评价
doi: 10.11833/j.issn.2095-0756.20200330
Preparation and performance evaluation of bamboo scrimber/glass fiber/PET foam multilayer structural insulated panel
-
摘要:
目的 为了促进木质结构保温板(SIP)的可持续发展,引入具有优良力学性能及装饰效果的可再生重组竹,结合环保型粉状环氧树脂胶黏剂,制备了重组竹/结构保温板复合材料。 方法 通过差示扫描量热法(DSC法)、力学性能测试和导热系数测试研究粉状环氧树脂胶黏剂的固化特性及复合材料的结合强度、抗弯强度、导热系数及耐热水性。 结果 ①粉状环氧树脂胶黏剂的最佳固化条件为84 ℃开始发生固化反应,在116 ℃时充分固化,于180 ℃下体系完全固化。②当涂胶量为150 g·m−2,热压时间为15 min时,重组竹/结构保温板复合材料的结合强度和抗弯强度分别可达0.83和19.80 MPa,导热系数为0.054 2 W·m−1·K−1(25 ℃)。在80 ℃热水浸泡3 h后,复合材料的结合强度仍达0.15 MPa。 结论 获得综合性能优异且具有良好耐热水性的重组竹/结构保温板复合材料。图6表2参21 Abstract:Objective The purpose of this study is to introduce renewable bamboo scrimber with excellent mechanical properties and decorative effect, combined with environment-friendly powdery epoxy resin adhesive, to prepare bamboo scrimber/structural insulated panel, so as to promote the sustainable development of woody structural insulated panel(SIP). Method The curing characteristics of powdery epoxy resin adhesive and bonding strength, flexure strength, thermal conductivity as well as hot-water resistance were investigated by differential scanning calorimetry (DSC), mechanical property test and thermal conductivity tester. Result (1) The optimal curing condition of powdery epoxy resin adhesive was that the curing reaction began at 84 ℃, curing thoroughly at 116 ℃, and curing completely at 180 ℃. (2) When the amount of glue was 150 g·m−2 and the hot pressing time was 15 min, the tensile bonding strength and flexure strength of the composite reached 0.83 MPa and 19.8 MPa respectively, and the thermal conductivity was 0.054 2 W·m−1·K−1 (25 ℃). After being soaked in hot water at 80 ℃ for 3 h, the bonding strength of the composite still reached 0.15 MPa. Conclusion The bamboo scrimber/structural insulated panel composite with excellent comprehensive properties and good hot-water resistance is obtained. [Ch, 6 fig. 2 tab. 21 ref.] -
表 1 粉状环氧树脂胶黏剂在不同升温速率下(β)的固化峰特征参数
Table 1. Characteristic parameters of curing peak of powdery epoxy resin adhesive at different heating rates(β)
β/(℃·min−1) Ti/℃ Tp/℃ Tf/℃ 5 86.90 122.65 185.17 10 90.40 132.79 193.27 15 94.10 141.58 200.26 20 96.60 146.53 203.53 说明:Ti. 峰始温度; Tp. 峰顶温度; Tf. 峰终温度 表 2 复合材料的导热系数测试数据
Table 2. Test data of thermal conductivity of the composites
编号 样品
名称温度/℃ 导热系数/
(W·m−1·K−1)编号 样品
名称温度/℃ 导热系数/
(W·m−1·K−1)编号 样品
名称温度/℃ 导热系数/
(W·m−1·K−1)1 重组竹 25 0.068 6 2 PET泡沫 25 0.051 5 3 复合材料 25 0.054 2 40 0.070 6 40 0.057 0 40 0.059 5 60 0.078 8 60 0.067 8 60 0.069 0 70 0.081 3 70 0.074 1 70 0.074 9 -
[1] JING Meng, RAONGJANT W. Fiber reinforced structural insulated panel used as two-way slabs [J]. Mater Sci Forum, 2016, 859: 50 − 55. doi: 10.4028/www.scientific.net/MSF.859.50 [2] YANG Jian, LI Zhen, DU Qiang. An experimental study on material and structural properties of structural insulated panels (SIPs) [J]. Appl Mech Mater, 2011, 147: 127 − 131. doi: 10.4028/www.scientific.net/AMM.147.127 [3] PANJEHPOUR M, ALI A A A, VOO Y L. Structural insulated panels: past, present, and future [J]. J Eng Proj Prod Manage, 2013, 3(1): 2 − 8. [4] KAWASAKI T, ZHANG Min, WANG Qian, et al. Elastic moduli and stiffness optimization in four-point bending of wood-based sandwich panel for use as structural insulated walls and floors [J]. J Wood Sci, 2006, 52(4): 302 − 310. doi: 10.1007/s10086-005-0766-z [5] 查晓雄, 张旭琛. 新型绿色建筑结构绝缘板力学性能的理论研究[J]. 工业建筑, 2011, 41(3): 1 − 5. ZHA Xiaoxiong, ZHANG Xuchen. Theoretical research on mechanical behavior of new green structural insulated panels [J]. Ind Constr, 2011, 41(3): 1 − 5. [6] 刘晓娜, 周海宾. 结构用木质保温板(SIPs)的业现状及发展前景[J]. 木材工业, 2017, 31(2): 14 − 18. LIU Xiaona, ZHOU Haibin. Current status and future development of wood-based structural insulated panels (SIPs) [J]. China Wood Ind, 2017, 31(2): 14 − 18. [7] 严帅, 刘伟庆, 陆伟东, 等. SIP板式结构住宅体系[J]. 新型建筑材料, 2010, 37(8): 35 − 39. doi: 10.3969/j.issn.1001-702X.2010.08.011 YAN Shuai, LIU Weiqing, LU Weidong, et al. Study on SIP slab structure residential system [J]. New Build Mater, 2010, 37(8): 35 − 39. doi: 10.3969/j.issn.1001-702X.2010.08.011 [8] SHARMA B, GATÓO A, BOCK M, et al. Engineered bamboo for structural applications [J]. Constr Build Mater, 2015, 81: 66 − 73. doi: 10.1016/j.conbuildmat.2015.01.077 [9] FU Yang, FANG Hai. Study on the properties of the recombinant bamboo by finite element method [J]. Compos Parts B Eng, 2017, 115: 151 − 159. doi: 10.1016/j.compositesb.2016.10.022 [10] 龚正, 袁少飞, 张建, 等. 重组竹材生产设备现状及发展趋势[J]. 林业机械与木工设备, 2018, 46(9): 4 − 9, 15. doi: 10.3969/j.issn.2095-2953.2018.09.001 GONG Zheng, YUAN Shaofei, ZHANG Jian, et al. Research status and development trend of reconstituted bamboo lumber production equipment [J]. For Mach Woodworking Equip, 2018, 46(9): 4 − 9, 15. doi: 10.3969/j.issn.2095-2953.2018.09.001 [11] 潘金炎, 王立, 张玉强, 等. 基于重组竹的结构用胶合竹材力学性能实验研究[J]. 施工技术, 2018, 47(21): 135 − 139. PAN Jinyan, WANG Li, ZHANG Yuqiang, et al. Experimental study on mechanical properties of structural glued bamboo based on recombinant bamboo [J]. Constr Technol, 2018, 47(21): 135 − 139. [12] 于文吉. 我国重组竹产业发展现状与机遇[J]. 世界竹藤通讯, 2019, 17(3): 1 − 4. YU Wenji. Current situation and opportunities for the development of bamboo scrimber industry in China [J]. World Bamboo Ratta, 2019, 17(3): 1 − 4. [13] 王雪花, 费本华, 送莎莎, 等. 覆面材料对SIP保温性能的影响[J]. 新型建筑材料, 2015, 42(5): 67 − 71. doi: 10.3969/j.issn.1001-702X.2015.05.020 WANG Xuehua, FEI Benhua, SONG Shasha, et al. Effect of different facing materials on SIP heat-insulating property [J]. New Build Mater, 2015, 42(5): 67 − 71. doi: 10.3969/j.issn.1001-702X.2015.05.020 [14] 王雪花, 方露, 陈红, 等. 覆面材料对结构保温板力学性能的影响[J]. 林业工程学报, 2017, 2(3): 16 − 21. WANG Xuehua, FANG Lu, CHEN Hong, et al. Mechanical properties of structural insulated panels faced with different materials [J]. J For Eng, 2017, 2(3): 16 − 21. [15] MANDILARAS I, DATSONIOS I A, ZANNIS G, et al. Thermal performance of a building envelope incorporating ETICS with vacuum insulation panels and EPS [J]. Energy Build, 2014, 85: 654 − 665. doi: 10.1016/j.enbuild.2014.06.053 [16] MIESBAUER O, KUCUKPINAR E, KIESE S, et al. Studies on the barrier performance and adhesion strength of novel barrier films for vacuum insulation panels [J]. Energy Build, 2014, 85: 597 − 603. doi: 10.1016/j.enbuild.2014.06.054 [17] 米莹娟, 王伟, 张冬梅, 等. 1种新型自粘接预浸料-Nomex蜂窝板面-芯结合强度关键影响因素试验研究[J]. 复合材料学报, 2013, 30(4): 156 − 162. MI Yingjuan, WANG Wei, ZHANG Dongmei, et al. Experimental investigation of key factors on adhesive properties of skin-core for honeycomb sandwich panel with self-adhesive prepreg [J]. Acta Mater Compos Sin, 2013, 30(4): 156 − 162. [18] DONG Hongxing, LI Yonghe, ZHANG Jin, et al. Kinetics simulation and a novel curing procedure to avoid thermal shock during the curing process of epoxy composites [J]. RSC Adv, 2016, 6(70): 65533 − 65540. doi: 10.1039/C6RA07448K [19] 何星蔚. 中温固化环氧树脂体系及胶合性能研究[D]. 杭州: 浙江农林大学, 2018. HE Xingwei. Study on Curing Epoxy Resin System and Adhesive Properties at Medium Temperature[D]. Hangzhou: Zhejiang A&F University, 2018. [20] 吴博. 1种低黏度高玻璃化转变温度的环氧胶的研制[J]. 精细石油化工, 2019, 36(6): 53 − 56. doi: 10.3969/j.issn.1003-9384.2019.06.012 WU Bo. Development of an epoxy adhesive with low viscosity and high glass transition temperature [J]. Spec Petrochem, 2019, 36(6): 53 − 56. doi: 10.3969/j.issn.1003-9384.2019.06.012 [21] 杜姝婧, 龚文化, 许亚洪. RTM用6818高温固化环氧树脂的固化工艺与耐热性研究[J]. 化工新型材料, 2019, 47(11): 131 − 133. DU Shujing, GONG Wenhua, XU Yahong. Study on curing process and heat resistance of 6818 heat temperature curing epoxy resin system for RTM [J]. New Chem Mater, 2019, 47(11): 131 − 133. -
-
链接本文:
http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200330

计量
- 文章访问数: 18
- 被引次数: 0